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Abstract

In this paper, we obtain a unique common coupled fixed point theorem by using

(ψ, α, β)−contraction in ordered partial metric spaces. We give an application to integral equations

as well as homotopy theory. Also we furnish an example which supports our theorem.
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1. Introduction and Preliminaries

The aim of this paper is to study unique common coupled fixed point theorems of Jungck type maps

by using a (ψ, α, β)−contraction condition over partially ordered PMSs. First we recall some basic

definitions and lemmas which play a crucial role in the theory of PMSs.

Definition 1.1. A partial metric on a non-empty set X is a function p : X × X → R+ such that, for all

x, y, z ∈ X,

(p1) : x = y ⇔ p(x, x) = p(x, y) = p(y, y),

(p2) : p(x, x) ≤ p(x, y), p(y, y) ≤ p(x, y),

(p3) : p(x, y) = p(y, x),

(p4) : p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

The pair (X, p) is called a PMS. If p is a partial metric on X, then the function dp : X × X → R+, given by

dp(x, y) = 2p(x, y)− p(x, x)− p(y, y), (1)

is a metric on X.
*Corresponding author (dranimeshgupta10@gmail.com)(Research Scholar)
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Example 1.2. Consider X = [0, ∞)withp(x, y) = max{x, y}. Then (X, p) is a PMS. It is clear that p is not a

(usual) metric. Note that in this case dp(x, y) = |x − y|.

Example 1.3. Let X = {[a, b] : a, b ∈ R, a ≤ b} and define p([a, b], [c, d]) = max{b, d} − min{a, c}. Then

(X, p) is a PMS. Each partial metric p on X generates a T0 topology τp on X which has as a base the family of

open p-balls {Bp(x, ε), x ∈ X, ε > 0}, where Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε} for all x ∈ X and

ε > 0.

We now state some basic topological notions (such as convergence, completeness, continuity) on PMSs.

Definition 1.4.

(1) A sequence {xn} in the PMS (X, p) converges to the limit x if and only if p(x, x) = lim
n→∞

p(x, xn).

(2) A sequence {xn} in the PMS (X, p) is called a Cauchy sequence if lim
n,m→∞

p(xn, xm) exists and is finite.

(3) A PMS (X, p) is called complete if every Cauchy sequence {xn} in X converges with respect to τp, to a

point x ∈ X such that p(x, x) = lim
n,m→∞

p(xn, xm).

(4) A mapping F : X → X is said to be continuous at x0 ∈ X if, for every ϵ > 0, there exists δ > 0 such that

F(Bp(x0, δ)) ⊆ Bp(Fx0, ϵ).

The following lemma is one of the basic results as regards PMS.

Lemma 1.5.

(1) A sequence {xn} is a Cauchy sequence in the PMS (X, p) if and only if it is a Cauchy sequence in the

metric space (X, dp).

(2) A PMS (X, p) is complete if and only if the metric space (X, dp) is complete. Moreover,

lim
n→∞

dp(x, xn) = 0 ⇔ p(x, x) = lim
n→∞

p(x, xn) = lim
n,m→∞

p(xn, xm). (2)

Next, we give two simple lemmas which will be used in the proofs of our main results. For the proofs

we refer [13].

Lemma 1.6. Assume xn → zasn → ∞ in a PMS (X, p) such that p(z, z) = 0. Then lim
n→∞

p(xn, y) = p(z, y)

for every y ∈ X.

Lemma 1.7. Let (X, p) be a PMS. Then

(A) if p(x, y) = 0, then x = y,

(B) if x ̸= y, then p(x, y) > 0.

Remark 1.8. If x = y, p(x, y) may not be 0.
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Definition 1.9. Let (X,⪯) be a partially ordered set and F : X × X → X. Then the map F is said to have mixed

monotone property if F(x, y) is monotone non-decreasing in x and monotone non-increasing in y; that is, for any

x, y ∈ X,

x1 ⪯ x2 implies F(x1, y) ⪯ F(x2, y) for all y ∈ X and

y1 ⪯ y2 implies F(x, y2) ⪯ F(x, y1) for all x ∈ X.

Definition 1.10. An element (x, y) ∈ X × X is called a coupled fixed point of a mapping F : X × X → X if

F(x, y) = x and F(y, x) = y.

Definition 1.11. An element (x, y) ∈ X × X is called

(g1) : a coupled coincident point of mappings F : X ×X → X and f : X → X if f x = F(x, y) and f y = F(y, x),

(g2) : a common coupled fixed point of mappings F : X × X → X and f : X → X if x = f x = F(x, y) and

y = f y = F(y, x).

Definition 1.12. The mappings F : X × X → X and f : X → X are called w− compatible if f (F(x, y)) =

F( f x, f y) and f (F(y, x)) = F( f y, f x) whenever f x = F(x, y) and f y = F(y, x).

Inspired by Definition 2.9, Lakshmikantham and Ćirić in [31] introduced the concept of a g-mixed

monotone mapping.

Definition 1.13. Let (X,⪯) be a partially ordered set, F : X × X → X and g : X → X be mappings. Then

the map F is said to have a mixed g−monotone property if F(x, y) is monotone g-non-decreasing in x as well as

monotone g−non-increasing in y; that is, for any x, y ∈ X,

gx1 ⪯ gx2 implies F(x1, y) ⪯ F(x2, y) for all y ∈ X and

gy1 ⪯ gy2 implies F(x, y2) ⪯ F(x, y1) for all x ∈ X.

Now we prove our main results.

2. Results and Discussions

Definition 2.1. Let (X, p) be a PMS, let F : X × X → X and g : X → X be mappings. We say that F satisfies

a (ψ, α, β)−contraction with respect to g if there exist ψ, α, β : [0, ∞) → [0, ∞) satisfying the following:

(2.1.1): ψ is continuous and monotonically non-decreasing, α is continuous and β is lower semi continuous,

(2.1.2): ψ(t) = 0 if and only if t = 0, α(0) = β(0) = 0,

(2.1.3): ψ(t)− α(t) + β(t) > 0 for t > 0,



Applications and Common Coupled Fixed Point Results in Ordered Partial Metric Spaces / Sanju Patel, R. N. Yadava 4

(2.1.4): ψ(p(F(x, y), F(u, v))) ≤ α(M(x, y, u, v))− β(M(x, y, u, v)), ∀x, y, u, v ∈ X, gx ⪯ gu, gy ⪰ gv and

M(x, y, u, v)

= max

 p(gx, gu), p(gy, gv), p(gx, F(x, y)), p(gy, F(y, x)), p(gu, F(u, v)), p(gv, F(v, u)),
p(gx,F(x,y))p(gy,F(y,x))

1+p(gx,gu)+p(gy,gv)+p(F(x,y),F(u,v)) , p(gu,F(u,v))p(gv,F(v,u))
1+p(gx,gu)+p(gy,gv)+p(F(x,y),F(u,v))

 .

Theorem 2.2. Let (X,⪯) be a partially ordered set and p be a partial metric such that (X, p) is a PMS. Let

F : X × X → X and g : X → X be such that

(2.2.1): F satisfies a (ψ, α, β)−contraction with respect to g,

(2.2.2): F(X × X) ⊆ g(X) and g(X) is a complete subspace of X,

(2.2.3): F has a mixed g-monotone property,

(2.2.4): (a) if a non-decreasing sequence {xn} → x, then xn ⪯ x for all n,

(b) if a non-increasing sequence {yn} → y, then y ⪯ yn for all n.

If there exist x0, y0 ∈ X such that gx0 ⪯ F(x0, y0) and gy0 ⪰ F(y0, x0), then F and g have a coupled coincidence

point in X × X.

Proof. Let x0, y0 ∈ X be such that gx0 ⪯ F(x0, y0) and gy0 ⪰ F(y0, x0). Since F(X × X) ⊆ g(X), we

choose x1, y1 ∈ X such that gx0 ⪯ F(x0, y0) = gx1 and gy0 ⪰ F(y0, x0) = gy1 and choose x2, y2 ∈ X

such that gx2 = F(x1, y1) and gy2 = F(y1, x1). Since F has the mixed g− monotone property, we obtain

gx0 ⪯ gx1 ⪯ gx2 and gy0 ⪰ gy1 ⪰ gy2. Continuing this process, we construct the sequences {xn} and

{yn} in X such that gxn+1 = F(xn, yn) and gyn+1 = F(yn, xn), n = 0, 1, 2, . . . with

gx0 ⪯ gx1 ⪯ gx2 ⪯ · · · and

gy0 ⪰ gy1 ⪰ gy2 ⪰ · · · .

 (3)

Case (a): I f gxm = gxm+1 and gym = gym+1 for some m, then (xm, ym) is a coupled coincidence point

in X × X.

Case (b): Assume gxn ̸= gxn+1 or gyn ̸= gyn+1 for all n. Since gxn ⪯ gxn+1andgyn ⪰ gyn+1, from

(2.2.1), we obtain

ψ
(

p(gxn, gxn+1)
)
= ψ

(
p
(

F(xn−1, yn−1), F(xn, yn)
))

≤ α
(

M(xn−1, yn−1, xn, yn)
)
− β

(
M(xn−1, yn−1, xn, yn)

)
,

M(xn−1, yn−1, xn, yn) = max



p(gxn−1, gxn), p(gyn−1, gyn), p(gxn−1, gxn),

p(gyn−1, gyn), p(gxn, gxn+1), p(gyn, gyn+1),
p(gxn−1,gxn)p(gyn−1,gyn)

1+p(gxn−1,gxn)+p(gyn−1,gyn)+p(gxn,gxn+1)
,

p(gxn,gxn+1)p(gyn,gyn+1)
1+p(gxn−1,gxn)+p(gyn−1,gyn)+p(gxn,gxn+1)


.
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But

p(gxn−1, gxn)p(gyn−1, gyn)

1 + p(gxn−1, gxn) + p(gyn−1, gyn) + p(gxn, gxn+1)
≤ max

{
p(gxn−1, gxn), p(gxn, gxn+1)

}
and

p(gxn, gxn+1)p(gyn, gyn+1)

1 + p(gxn−1, gxn) + p(gyn−1, gyn) + p(gxn, gxn+1)
≤ p(gyn, gyn+1).

Therefore

M(xn−1, yn−1, xn, yn) = max

 p(gxn−1, gxn), p(gyn−1, gyn),

p(gxn, gxn+1), p(gyn, gyn+1)

 .

Hence

ψ
(

p(gxn, gxn+1)
)
≤ α

max

 p(gxn−1, gxn), p(gyn−1, gyn),

p(gxn, gxn+1), p(gyn, gyn+1)




− β

max

 p(gxn−1, gxn), p(gyn−1, gyn),

p(gxn, gxn+1), p(gyn, gyn+1)


 .

Similarly

ψ
(

p(gyn, gyn+1)
)
≤ α

max

 p(gxn−1, gxn), p(gyn−1, gyn),

p(gxn, gxn+1), p(gyn, gyn+1)




− β

max

 p(gxn−1, gxn), p(gyn−1, gyn),

p(gxn, gxn+1), p(gyn, gyn+1)


 .

Put Rn = max{p(gxn, gxn+1), p(gyn, gyn+1)}. Let us suppose that

Rn ̸= 0 for all n ≥ 1. (4)

Let, if possible, for some n, Rn−1 < Rn. Now

ψ(Rn) = ψ
(
max

{
p(gxn, gxn+1), p(gyn, gyn+1)

})
= max

{
ψ
(

p(gxn, gxn+1)
)
, ψ

(
p(gyn, gyn+1)

)}
≤ α

max

 p(gxn−1, gxn), p(gyn−1, gyn),

p(gxn, gxn+1), p(gyn, gyn+1)


− β

max

 p(gxn−1, gxn), p(gyn−1, gyn),

p(gxn, gxn+1), p(gyn, gyn+1)




= α
(
max{Rn−1, Rn}

)
− β

(
max{Rn−1, Rn}

)
= α(Rn)− β(Rn).

From (2.1.2) and (2.1.3), it follows that Rn = 0, a contradiction. Hence

Rn ≤Rn−1. (5)

Thus {Rn} is a non-increasing sequence of non-negative real numbers and must converge to a real
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number r ≥ 0. Also ψ(Rn) ≤ α(Rn−1)− β(Rn−1). Letting n → ∞, we get ψ(r) ≤ α(r)− β(r). From

(3.1.2) and (3.1.3), we get r = 0. Thus

lim
n→∞

max
{

p(gxn, gxn+1), p(gyn, gyn+1)
}
= 0,

lim
n→∞

p(gxn, gxn+1) = 0 = lim
n→∞

p(gyn, gyn+1).
(6)

Hence from (p2), we have

lim
n→∞

p(gxn, gxn) = 0 = lim
n→∞

p(gyn, gyn). (7)

From 6 and 7 and by the definition of dp, we get

lim
n→∞

dp(gxn, gxn+1) = 0 = lim
n→∞

dp(gyn, gyn+1). (8)

Now we prove that {gxn} and {gyn} are Cauchy sequences. To the contrary, suppose that {gxn}

or {gyn} is not Cauchy. This implies that dp(gxm, gxn) ̸→ 0 or dp(gym, gyn) ̸→ 0 as n, m → ∞.

Consequently max
{

dp(gxm, gxn), dp(gym, gyn)
}

̸→ 0 as n, m → ∞. Then there exist an ϵ > 0 and

monotone increasing sequences of natural numbers {mk} and {nk} such that nk > mk > k. We have

max
{

dp(gxmk , gxnk), dp(gymk , gynk)
}
≥ ϵ and (9)

max
{

dp(gxmk , gxnk−1), dp(gym, gynk−1)
}
< ϵ. (10)

From (9) and (10), we have

ϵ ≤ max
{

dp(gxmk , gxnk), dp(gymk , gynk)
}

≤ max
{

dp(gxmk , gxnk−1), dp(gymk , gynk−1)
}
+ max

{
dp(gxnk−1, gxnk), dp(gynk−1, gynk)

}
< ϵ + max

{
dp(gxnk−1, gxnk), dp(gynk−1, gynk)

}
.

Letting k → ∞ and using 8, we get

lim
k→∞

max
{

dp(gxmk , gxnk), dp(gymk , gynk)
}
= ϵ. (11)

By the definition of dp and using 7 we get

lim
k→∞

max
{

p(gxmk , gxnk), p(gymk , gynk)
}
=

ϵ

2
. (12)
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From (9), we have

ϵ ≤ max
{

dp(gxmk , gxnk), dp(gymk , gynk)
}

≤ max
{

dp(gxmk , gxmk−1), dp(gymk , gymk−1)
}
+ max

{
dp(gxmk−1, gxnk), dp(gymk−1, gynk)

}
≤ 2 max

{
dp(gxmk , gxmk−1), dp(gymk , gymk−1)

}
+ max

{
dp(gxmk , gxnk), dp(gymk , gynk)

}
.

(13)

Letting k → ∞, using (8), (11) and (13), we get

lim
k→∞

max
{

dp(gxmk−1, gxnk), dp(gymk−1, gynk)
}
= ϵ. (14)

Hence, we get

lim
k→∞

max
{

p(gxmk−1, gxnk), p(gymk−1, gynk)
}
=

ϵ

2
. (15)

From (10), we have

ϵ ≤ max
{

dp(gxmk , gxnk), dp(gymk , gynk)
}

≤ max
{

dp(gxmk , gxmk−1), dp(gymk , gymk−1)
}
+ max

{
dp(gxmk−1, gxnk+1), dp(gymk−1, gynk+1)

}
+ max

{
dp(gxnk+1, gxnk), dp(gynk+1, gynk)

}
≤ 2 max

{
dp(gxmk , gxmk−1), dp(gymk , gymk−1)

}
+ max

{
dp(gxmk , gxnk), dp(gymk , gynk)

}
+ 2 max

{
dp(gxnk , gxnk+1), dp(gynk , gynk+1)

}
.

(16)

Letting k → ∞, using (8), (11) and (16), we get

lim
k→∞

max
{

dp(gxmk−1, gxnk+1), dp(gymk−1, gynk+1)
}
= ϵ. (17)

Hence, we have

lim
k→∞

max
{

p(gxmk−1, gxnk+1), p(gymk−1, gynk+1)
}
=

ϵ

2
. (18)

Now from (9), we have

ϵ ≤ max
{

dp(gxmk , gxnk), dp(gymk , gynk)
}

≤ max
{

dp(gxmk , gxnk+1), dp(gymk , gynk+1)
}
+ max

{
dp(gxnk+1, gxnk), dp(gynk+1, gy2nk)

}
.
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Letting k → ∞ and using (8), we obtain

ϵ ≤ lim
k→∞

max
{

dp(gxmk , gxnk+1), dp(gymk , gynk+1)
}
+ 0

≤ lim
k→∞

max

 2p(gxmk , gxnk+1)− p(gxmk , gxmk)− p(gxnk+1, gxnk+1),

2p(gymk , gynk+1)− p(gymk , gymk)− p(gynk+1, gynk+1)


= 2 lim

k→∞
max

{
p(gxmk , gxnk+1), p(gymk , gynk+1)

}
, from (6).

Thus,
ϵ

2
≤ lim

k→∞
max

{
p(gxmk , gxnk+1), p(gymk , gynk+1)

}
.

By the properties of ψ,

ψ

(
ϵ

2

)
≤ lim

k→∞
ψ
(
max

{
p(gxmk , gxnk+1), p(gymk , gynk+1)

})
= lim

k→∞
max

{
ψ
(

p(gxmk , gxnk+1)
)
, ψ

(
p(gymk , gynk+1)

)}
.

(19)

Now

ψ
(

p(gxmk , gxnk+1)
)
= ψ

(
p
(

F(xmk−1, ymk−1), F(xnk , ynk)
))

≤ α
(

M(xmk−1, ymk−1, xnk , ynk)
)
− β

(
M(xmk−1, ymk−1, xnk , ynk)

)

= α


max



p(gxmk−1, gxnk), p(gymk−1, gynk), p(gxmk−1, gxmk),

p(gymk−1, gymk), p(gxnk , gxnk+1), p(gynk , gynk+1),
p(gxmk−1,gxmk )p(gymk−1,gymk )

1+p(gxmk−1,gxnk ),p(gymk−1,gynk )+p(gxmk ,gxnk+1)
,

p(gxnk ,gxnk+1)p(gynk ,gynk+1)

1+p(gxmk−1,gxnk ),p(gymk−1,gynk )+p(gxmk ,gxnk+1)





− β


max



p(gxmk−1, gxnk), p(gymk−1, gynk), p(gxmk−1, gxmk),

p(gymk−1, gymk), p(gxnk , gxnk+1), p(gynk , gynk+1),
p(gxmk−1,gxmk )p(gymk−1,gymk )

1+p(gxmk−1,gxnk ),p(gymk−1,gynk )+p(gxmk ,gxnk+1)
,

p(gxnk ,gxnk+1)p(gynk ,gynk+1)

1+p(gxmk−1,gxnk ),p(gymk−1,gynk )+p(gxmk ,gxnk+1)




.

Letting k → ∞, we have

lim
k→∞

ψ
(

p(gxmk , gxnk+1)
)
≤ α

(
ϵ

2

)
− β

(
ϵ

2

)
.

Similarly, we obtain

lim
k→∞

ψ
(

p(gymk , gynk+1)
)
≤ α

(
ϵ

2

)
− β

(
ϵ

2

)
.

Hence from 19, we have

ψ

(
ϵ

2

)
≤ α

(
ϵ

2

)
− β

(
ϵ

2

)
.

From (3.1.2) and (3.1.3), we get ϵ
2 = 0, a contradiction. Hence {gxn} and {gyn} are Cauchy sequences

in the metric space (X, dp). Hence we have lim
n,m→∞

dp(gxn, gxm) = 0 = lim
n,m→∞

dp(gyn, gym). Now from
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the definition of dp and from 7, we have

lim
n→∞

p(gxn, gxm) = 0 = lim
n→∞

p(gyn, gym). (20)

Suppose g(X) is a complete subspace of X. Since {gxn} and {gyn} are Cauchy sequences in a complete

metric space (g(X), dp). Then {gxn} and {gyn} converges to some u and v in g(X) respectively. Thus

lim
n→∞

dp(gxn, u) = 0

lim
n→∞

dp(gyn, v) = 0

for some u and v in g(X). Since u, v ∈ g(X), there exist x, y ∈ X such that u = gx and v = gy. Since

{gxn} and {gyn} are Cauchy sequences, gxn → u, gyn → v, gxn+1 → u and gyn+1 → v. From Lemma

1.5, (2) and (20), we obtain

p(u, u) = lim
n→∞

p(gxn, u) = p(v, v) = lim
n→∞

p(gyn, v) = 0. (21)

Now we prove that lim
n→∞

p(F(x, y), gxn) = p(F(x, y), u). By definition of dp,

dp
(

F(x, y), gxn
)
= 2p

(
F(x, y), gxn

)
− p

(
F(x, y), F(x, y)

)
− p(gxn, gxn).

Letting n → ∞, we have

dp
(

F(x, y), u
)
= 2 lim

n→∞
p
(

F(x, y), gxn
)
− p

(
F(x, y), F(x, y)

)
− 0, from 7 .

By Definition of dp and 20, we have

lim
n→∞

p
(

F(x, y), gxn
)
= p

(
F(x, y), u

)
.

Similarly,

lim
n→∞

p(F(y, x), gyn) = p(F(y, x), v).

From (p4), we have

p
(
u, F(x, y)

)
≤ p(u, gxn+1) + p

(
gxn+1, F(x, y)

)
− p(gxn+1, gxn+1)

= p(u, gxn+1) + p
(

gxn+1, F(x, y)
)
.

Letting n → ∞, we have

p
(
u, F(x, y)

)
≤ 0 + lim

n→∞
p
(

F(xn, yn), F(x, y)
)
.

Also from (2.2.4), we get gxn ⪯ gx and gyn ⪰ gy. Since ψ is a continuous and non-decreasing function,
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we get

ψ
(

p
(
u, F(x, y)

)
≤ lim

n→∞
ψ
(

p
(

F(xn, yn), F(x, y)
))

≤ lim
n→∞

[
α
(

M(xn, yn, x, y)
)
− β

(
M(xn, yn, x, y)

)]
,

M(xn, yn, x, y) = max



p(gxn, u), p(gyn, v), p(gxn, gxn+1),

p(gyn, gyn+1), p(u, F(x, y)), p(v, F(y, x)),
p(gxn,gxn+1)p(gyn,gyn+1)

1+p(gxn,u)+p(gyn,v)+p(gxn+1,F(x,y)) ,
p(u,F(x,y))p(v,F(y,x))

1+p(gxn,u)+p(gyn,v)+p(gxn+1,F(x,y))


→ max

{
p
(
u, F(x, y)

)
, p

(
v, F(y, x)

)}
as n → ∞.

Therefore

ψ
(

p
(
u, F(x, y)

))
≤ α

max

 p(u, F(x, y)),

p(v, F(y, x))


− β

max

 p(u, F(x, y)),

p(v, F(y, x))


 .

Similarly,

ψ
(

p
(
v, F(y, x)

))
≤ α

max

 p(u, F(x, y)),

p(v, F(y, x))


− β

max

 p(u, F(x, y)),

p(v, F(y, x))


 .

Hence
ψ
(
max

{
p
(
u, F(x, y)

)
, p

(
v, F(y, x)

)})
= max

{
ψ
(

p
(
u, F(x, y)

))
, ψ

(
p
(
v, F(y, x)

))}
≤ α

max

 p(u, F(x, y)),

p(v, F(y, x))


− β

max

 p(u, F(x, y)),

p(v, F(y, x))


 .

It follows that max{p(u, F(x, y)), p(v, F(y, x))} = 0. So F(x, y) = u and F(y, x) = v. Hence F(x, y) =

gx = u and F(y, x) = gy = v. Hence F and g have a coincidence point in X × X.

Theorem 2.3. In addition to the hypothesis of Theorem 2.2, we suppose that for every (x, y), (x1, y1) ∈ X × X

there exists (u, v) ∈ X × X such that (F(u, v), F(v, u)) is comparable to (F(x, y), F(y, x)) and

(F(x1, y1), F(y1, x1)). If (x, y) and (x1, y1) are coupled coincidence points of F and g, then

F(x, y) = gx = gx1 = F
(
x1, y1) and

T(y, x) = gy = gy1 = F
(
y1, x1).

Moreover, if (F, g) is w -compatible, then F and g have a unique common coupled fixed point in X × X.

Proof. The proof follows from Theorem 2.2 and the definition of comparability.

Theorem 2.4. Let (X,⪯) be a partially ordered set and p be a partial metric such that (X, p) is a complete

PMS. Let F : X × X → X be such that
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(3.4.1): ψ
(

p
(

F(x, y), F(u, v)
))

≤ α
(
max

{
p(x, u), p(y, v)

})
− β

(
max

{
p(x, u), p(y, v)

})
, ∀ x, y, u, v ∈ X,

x ⪯ u and y ⪰ v, where ψ, α and β are defined in Definition 2.1 and

(3.4.2): (a) If a non-decreasing sequence {xn} → x, then xn ⪯ x for all n, and

(b) If a non-increasing sequence {yn} → y, then y ⪯ yn for all n.

If there exist x0, y0 ∈ X such that x0 ⪯ F(x0, y0) and y0 ⪰ F(y0, x0), then F has a unique coupled fixed point

in X × X.

Example 2.5. Let X = [0, 1], let ⪯ be partially ordered on X by x ⪯ y ⇔ x ≥ y. The mapping

F : X × X → X defined by F(x, y) = x2+y2

8(x+y+1) and p : X × X → [0, ∞) by p(x, y) = max{x, y} is a complete

partial metric on X. Define ψ, α, β : [0, ∞) → [0, ∞) by ψ(t) = t, α(t) = t
2 and β(t) = t

4 . We have

p
(

F(x, y), F(u, v)
)
=max

{
x2 + y2

8(x + y + 1)
,

u2 + v2

8(u + v + 1)

}
=

1
4

[
max

{
x2

x + y + 1
,

u2

u + v + 1

}
+ max

{
y2

x + y + 1
,

v2

u + v + 1

}]
≤1

8

[
max

{
x2

x + 1
,

u2

u + 1

}
+ max

{
y2

y + 1
,

v2

v + 1

}]
≤1

8

[
max

{
x

x + 1
,

u
u + 1

}
+ max

{
y

y + 1
,

v
v + 1

}]
≤1

8
[
max{x, u}+ max{y, v}

]
=

1
8
[
p(x, u) + p(y, v)

]
≤1

4
max

{
p(x, u), p(y, v)

}
=α

(
max

{
p(x, u), p(y, v)

})
− β

(
max

{
p(x, u), p(y, v)

})
.

Hence all conditions of Theorem 2.2 hold. From Theorem 2.4, (0, 0) is a unique coupled fixed point of F in X × X.

3. Application to Integral Equations

In this section, we study the existence of a unique solution to an initial value problem, as an application

to Theorem 2.2. Consider the initial value problem

x1(t) = f
(
t, x(t), x(t)

)
, t ∈ I = [0, 1],

x(0) = x0,
(22)

where f : I × [ x0
4 , ∞)× [ x0

4 , ∞) → [ x0
4 , ∞) and x0 ∈ R.

Theorem 3.1. Consider the initial value problem 22 with f ∈ C(I × [ x0
4 , ∞)× [ x0

4 , ∞)) and

∫ t

0
f
(
s, x(s), y(s)

)
ds ≤ max

 1
4

∫ t
0 f (s, x(s), x(s)) ds − 9x0

16 ,
1
4

∫ t
0 f (s, y(s), y(s)) ds − 9x0

16

 .
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Then there exists a unique solution in C(I, [ x0
4 , ∞)) for the initial value problem 22.

Proof. The integral equation corresponding to initial value problem 22 is

x(t) = x0 +
∫ t

0
f
(
s, x(s), x(s)

)
ds. (23)

Let X = C(I, [ x0
4 , ∞)) and p(x, y) = max{x − x0

4 , y − x0
4 } for x, y ∈ X. Define ψ, α, β : [0, ∞) → [0, ∞) by

ψ(t) = t, α(t) = 1
2 t and β(t) = 1

4 t. Define F : X × X → X by

F(x, y)(t) =x0 +
∫ t

0
f
(
s, x(s), y(s)

)
ds.

Now

p
(

F(x, y)(t), F(u, v)(t)
)
= max

{
F(x, y)− x0

4
, F(u, v)− x0

4

}
= max

{
3x0

4
+

∫ t

0
f
(
s, x(s), y(s)

)
ds,

3x0

4
+

∫ t

0
f
(
s, u(s), v(s)

)
ds
}

≤ max



3x0
4 + max

 1
4

∫ t
0 f (s, x(s), x(s)) ds − 9x0

16 ,
1
4

∫ t
0 f (s, y(s), y(s)) ds − 9x0

16

 ,

3x0
4 + max

 1
4

∫ t
0 f (s, u(s), u(s)) ds − 9x0

16 ,
1
4

∫ t
0 f (s, v(s), v(s)) ds − 9x0

16




= max

 max
{

x(t)
4 − x0

16 , y(t)
4 − x0

16

}
,

max
{

u(t)
4 − x0

16 , v(t)
4 − x0

16

}


=
1
4

max
{

max
{

x(t)− x0

4
, u(t)− x0

4

}
, max

{
y(t)− x0

4
, v(t)− x0

4

}}
=

1
4

max
{

p(x, u), p(y, v)
}

= α
(
max

{
p(x, u), p(y, v)

})
− β

(
max

{
p(x, u), p(y, v)

})
.

Thus F satisfies the condition (3.4.1) of Theorem 2.4. From Theorem 2.4, we conclude that F has a

unique coupled fixed point (x, y) with x = y. In particular x(t) is the unique solution of the integral

equation 23.

4. Application to Homotopy

In this section, we study the existence of a unique solution to homotopy theory.

Theorem 4.1. Let (X, p) be a complete PMS, U be an open subset of X and U be a closed subset of X such that

U ⊆ U. Suppose H : U × U × [0, 1] → X is an operator such that the following conditions are satisfied:

(i) x ̸= H(x, y, λ) and y ̸= H(y, x, λ) for each x, y ∈ ∂U and λ ∈ [0, 1] (here ∂U denotes the boundary of U

in X),
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(ii) ψ(p(H(x, y, λ), H(u, v, λ))) ≤ α(max{p(x, y), p(u, v)}) − β(max{p(x, y), p(u, v)}) ∀x, y ∈ U and

λ ∈ [0, 1], where ψ, α : [0, ∞) → [0, ∞) is continuous and non-decreasing and β : [0, ∞) → [0, ∞) is

lower semi continuous with ψ(t)− α(t) + β(t) > 0 for t > 0,

(iii) there exists M ≥ 0 such that p
(

H(x, y, λ), H(x, y, µ)
)
≤ M|λ − µ| for every x ∈ U and λ, µ ∈ [0, 1].

Then H(·, 0) has a coupled fixed point if and only if H(·, 1) has a coupled fixed point.

Proof. Consider the set

A =
{

λ ∈ [0, 1] : (x, y) = H(x, y, λ) for some x, y ∈ U
}

.

Since H(·, 0) has a coupled fixed point in U, we have 0 ∈ A, so that A is a non-empty set. We will

show that A is both open and closed in [0, 1] so by the connectedness we have A = [0, 1]. As a result,

H(·, 1) has a fixed point in U. First we show that A is closed in [0, 1]. To see this let {λn}∞
n=1 ⊆ A with

λn → λ ∈ [0, 1] as n → ∞. We must show that λ ∈ A. Since λn ∈ A for n = 1, 2, 3, . . ., there exist

xn, yn ∈ U with un = (xn, yn) = H(xn, ynλn). Consider

p(xn, xn+1) = p
(

H(xn, yn, λn), H(xn+1, yn+1, λn+1)
)

≤ p
(

H(xn, yn, λn), H(xn+1, yn+1λn)
)

+ p
(

H(xn+1, yn+1, λn), H(xn+1, yn+1, λn+1)
)
− p

(
H(xn+1, yn+1, λn), H(xn+1, yn+1, λn)

)
≤ p

(
H(xn, yn, λn), H(xn+1, yn+1, λn)

)
+ M|λn − λn+1|.

Letting n → ∞, we get

lim
n→∞

p(xn, xn+1) ≤ lim
n→∞

p
(

H(xn, yn, λn), H(xn+1, yn+1, λn)
)
+ 0.

Since ψ is continuous and non-decreasing we obtain

lim
n→∞

ψ
(

p(xn, xn+1)
)
≤ lim

n→∞
ψ
(

p
(

H(xn, yn, λn), H(xn+1, yn+1, λn)
))

≤ lim
n→∞

[
α
(
max

{
p(xn, xn+1), p(yn, yn+1)

})
− β

(
max

{
p(xn, xn+1), p(yn, yn+1)

})]
.

Similarly

lim
n→∞

ψ
(

p(yn, yn+1)
)
≤ lim

n→∞

[
α
(
max

{
p(xn, xn+1), p(yn, yn+1)

})
− β

(
max

{
p(xn, xn+1), p(yn, yn+1)

})]
.

It follows that

lim
n→∞

p(xn, xn+1) = 0 = lim
n→∞

p(yn, yn+1). (24)
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From (p2),

lim
n→∞

p(xn, xn) = 0 = lim
n→∞

p(yn, yn). (25)

By the definition of dp, we obtain

lim
n→∞

dp(xn, xn+1) = 0 = lim
n→∞

dp(yn, yn+1). (26)

Now we prove that {xn} and {yn} are Cauchy sequences in (X, dp). Contrary to this hypothesis,

suppose that {xn} or {sn} is not Cauchy. There exists an ϵ > 0 and a monotone increasing sequence

of natural numbers {mk} and {nk} such that nk > mk,

max
{

dp(xmk , xnk), dp(ymk , ynk)
}
≥ ϵ (27)

and

max
{

dp(xmk , xnk−1), dp(ymk , ynk−1)
}
< ϵ. (28)

From (27) and (28), we obtain

ϵ ≤ max
{

dp(xmk , xnk), dp(ymk , ynk)
}

≤ max
{

dp(xmk , xnk−1), dp(ymk , ynk−1)
}
+ max

{
dp(xnk−1, xnk), dp(ynk−1, ynk)

}
< ϵ + max

{
dp(xnk−1, xnk), dp(ynk−1, ynk)

}
.

Letting k → ∞ and then using 26, we get

lim
k→∞

max
{

dp(xmk , xnk), dp(ymk , ynk)
}
= ϵ. (29)

Hence from the definition of dp and from 25, we get

lim
k→∞

max
{

p(xmk , xnk), p(ymk , ynk)
}
=

ϵ

2
. (30)

Letting k → ∞ and then using 29 and 26 in

∣∣dp(xmk , xnk+1)− dp(xmk , xnk)
∣∣ ≤ dp(xnk+1, xnk),

we get

lim
k→∞

dp(xnk+1, xmk) = ϵ. (31)
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Hence, we have

lim
k→∞

p(xnk+1, xmk) =
ϵ

2
. (32)

Similarly

lim
k→∞

p(ynk+1, ymk) =
ϵ

2
. (33)

Consider

p(xmk , xnk+1) = p
(

H(xmk , ymk , λmk), H(xnk+1, ynk+1, λnk+1)
)

≤ p
(

H(xmk , ymk , λmk), H(xmk , ymk , λnk+1)
)

+ p
(

H(xmk , ymk , λnk+1), H(xnk+1, ynk+1, λnk+1)
)
− p

(
H(xmk , ymk , λnk+1), H(xmk , ymk , λnk+1)

)
≤ M|λmk − λnk+1|+ p

(
H(xmk , ymk , λnk+1), H(xnk+1, ynk+1, λnk+1)

)
.

Since {λn} is Cauchy, letting k → ∞ in the above, we get

ϵ

2
≤ lim

k→∞
p
(

H(xmk , ymk , λnk+1), H(xnk+1, ynk+1, λnk+1)
)
.

Since ψ is continuous and non-decreasing we obtain

ψ

(
ϵ

2

)
≤ lim

k→∞
ψ
(

p
(

H(xmk , ymk , λnk+1), H(xnk+1, ynk+1, λnk+1)
))

≤ lim
k→∞

[
α
(
max

{
p(xmk , xnk+1), p(ymk , ynk+1)

})
− β

(
max

{
p(xmk , xnk+1), p(ymk , ynk+1)

})]
= α

(
ϵ

2

)
− β

(
ϵ

2

)
.

It follows that ϵ ≤ 0, which is a contradiction. Hence {xn} and {yn} are Cauchy sequences in (X, dp)

and

lim
n,m→∞

dp(xn, xm) = 0 = lim
n,m→∞

dp(yn, ym).

By the Definition of dp and (25), we get

lim
n,m→∞

p(xn, xm) = 0 = lim
n,m→∞

p(yn, ym).

From Lemma 1.5, we conclude (a) {xn} and {yn} are Cauchy sequences in (X, p). Since (X, p) is

complete, from Lemma 1.5(b), we conclude there exist u, v ∈ U with

p(u, u) = lim
n→∞

p(xn, u) = lim
n→∞

p(xn+1, u) = lim
n,m→∞

p(xn, xm) = 0, (34)
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p(v, v) = lim
n→∞

p(xn, v) = lim
n→∞

p(xn+1, v) = lim
n,m→∞

p(yn, ym) = 0. (35)

From Lemma 1.6, we get

lim
n→∞

p(xn, H(u, v, λ)) = p(u, H(u, v, λ)).

Now,

p
(

xn, H(u, v, λ)
)
= p

(
H(xn, yn, λn), H(u, v, λ)

)
≤ p

(
H(xn, yn, λn), H(xn, yn, λ)

)
+ p

(
H(xn, yn, λ), H(u, v, λ)

)
− p

(
H(xn, yn, λ), H(xn, yn, λ)

)
≤ M|λn − λ|+ p

(
H(xn, yn, λ), H(u, v, λ)

)
.

Letting n → ∞, we obtain

p
(
u, H(u, v, λ)

)
≤ lim

n→∞
p
(

H(xn, yn, λ), H(u, v, λ)
)
.

Since ψ is continuous and non-decreasing, we obtain

ψ
(

p
(
u, H(u, v, λ)

))
≤ lim

n→∞
ψ
(

p
(

H(xn, yn, λ), H(u, v, λ)
))

≤ lim
n→∞

[
α
(
max

{
p(xn, u), p(yn, v)

})
− β

(
max

{
p(xn, u), p(yn, v)

})]
= 0.

It follows that p(u, H(u, v, λ)) = 0. Thus u = H(u, v, λ). Similarly v = H(v, u, λ). Thus λ ∈ A. Hence

A is closed in [0, 1]. Let λ0 ∈ A. Then there exist x0, y0 ∈ U with x0 = H(x0, y0, λ0) . Since U is open,

there exists r > 0 such that Bp(x0, r) ⊆ U. Choose λ ∈ (λ0 − ϵ, λ0 + ϵ) such that |λ − λ0| ≤ 1
Mn < ϵ.

Then x ∈ Bp(x0, r) = {x ∈ X/p(x, x0) ≤ r + p(x0, x0)}. We have

p
(

H(x, y, λ), x0
)
= p

(
H(x, y, λ), H(x0, x0, λ0)

)
≤ p

(
H(x, y, λ), H(x, y, λ0)

)
+ p

(
H(x, y, λ0), H(x0, y0, λ0)

)
− p

(
H(x, y, λ0), H(x, y, λ0)

)
≤ M|λ − λ0|+ p

(
H(x, y, λ0), H(x0, y0, λ0)

)
≤ 1

Mn−1 + p
(

H(x, y, λ0), H(x0, y0, λ0)
)
.

Letting n → ∞, we obtain p
(

H(x, y, λ), x0
)
≤ p

(
H(x, y, λ0), H(x0, y0, λ0)

)
. Since ψ is continuous and

non-decreasing, we have

ψ
(

p
(

H(x, y, λ), x0
))

≤ ψ
(

p
(

H(x, y, λ0), H(x0, y0, λ0)
))

≤ α
(
max

{
p(x, x0), p(y, y0)

})
− ϕ

(
max

{
p(x, x0), p(y, y0)

})
.
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Similarly

ψ
(

p
(

H(y, x, λ), y0
))

≤ α
(
max

{
p(x, x0), p(y, y0)

})
− ϕ

(
max

{
p(x, x0), p(y, y0)

})
.

Thus

ψ
(
max

{
p
(

H(x, y, λ), x0
)
, p

(
H(y, x, λ), y0

)})
≤ α

(
max

{
p(x, x0), p(y, y0)

})
− ϕ

(
max

{
p(x, x0), p(y, y0)

})
≤ ψ

(
max

{
p(x, x0), p(y, y0)

})
.

Since ψ is non-decreasing, we have

max
{

p
(

H(x, y, λ), x0
)
, p

(
H(y, x, λ), y0

)}
≤ max

{
p(x, x0), p(y, y0)

}
≤ max

{
r + p(x0, x0), r + p(y0, y0)

}
.

Thus for each fixed

λ ∈ (λ0 − ϵ, λ0 + ϵ), H(·, λ) : Bp(x0, r) → Bp(x0, r).

Since also (ii) holds and ψ and α are continuous and non-decreasing and β is continuous with ψ(t)−

α(t) + β(t) > 0 for t > 0, all conditions of Theorem 2.4 are satisfied. Thus we deduce that H(·, λ) has

a coupled fixed point in U. But this coupled fixed point must be in U since (i) holds. Thus λ ∈ A for

any λ ∈ (λ0 − ϵ, λ0 + ϵ). Hence (λ0 − ϵ, λ0 + ϵ) ⊆ A and therefore A is open in [0, 1]. For the reverse

implication, we use the same strategy.

Corollary 4.2. Let (X, p) be a complete PMS, U be an open subset of X and H : U × U × [0, 1] → X with the

following properties:

(1) x ̸= H(x, y, t) and y ̸= H(y, x, t) for each x, y ∈ ∂U and each λ ∈ [0, 1] (here ∂U denotes the boundary

of U in X ),

(2) there exist x, y ∈ U and λ ∈ [0, 1], L ∈ [0, 1), such that

p
(

H(x, y, λ), H(u, v, µ)
)
≤ L max

{
p(x, u), p(y, v)

}
,

(3) there exists M ≥ 0, such that p
(

H(x, λ), H(x, µ)
)
≤ M · |λ − µ| for all x ∈ U and λ, µ ∈ [0, 1].

If H(·, 0) has a fixed point in U, then H(·, 1) has a fixed point in U.

Proof. The proof follows by taking ψ(x) = x, ϕ(x) = x − Lx with L ∈ [0, 1) in Theorem 4.1.
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