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Abstract

In this paper, we obtain a unique common coupled fixed point theorem by using
(¢, «, B)—contraction in ordered partial metric spaces. We give an application to integral equations

as well as homotopy theory. Also we furnish an example which supports our theorem.

Keywords: coupled fixed point; ordered partial metric space; (¢, «, ) —contraction.

2020 Mathematics Subject Classification: 46540, 47H10, 54H25.

1. Introduction and Preliminaries

The aim of this paper is to study unique common coupled fixed point theorems of Jungck type maps
by using a (¢, a, B)—contraction condition over partially ordered PMSs. First we recall some basic

definitions and lemmas which play a crucial role in the theory of PMSs.

Definition 1.1. A partial metric on a non-empty set X is a function p : X x X — RT such that, for all

x,y,z€X,

() x=y e plxx)=plxy) =plyy)
(p2) = p(x,x) < p(x,y), p(v,y) < p(xy),
(p3) = p(x,y) = p(y,x),

(pa) = p(x,y) < p(x,2) +p(zy) — p(z2).

The pair (X, p) is called a PMS. If p is a partial metric on X, then the function d, : X x X — R™, given by

dp(x,y) = 2p(x,y) — p(x,x) — p(y,y), (1)

is a metric on X.
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Example 1.2. Consider X = [0, 00)withp(x,y) = max{x,y}. Then (X, p) is a PMS. It is clear that p is not a

(usual) metric. Note that in this case dp(x,y) = |x — y|.

Example 1.3. Let X = {[a,b] : a,b € R,a < b} and define p([a, b],[c,d]) = max{b,d} — min{a,c}. Then
(X, p) is a PMS. Each partial metric p on X generates a Ty topology T, on X which has as a base the family of
open p-balls {By(x,¢),x € X,e > 0}, where By(x,e) = {y € X : p(x,y) < p(x,x) + ¢} for all x € X and

e>0.
We now state some basic topological notions (such as convergence, completeness, continuity) on PMSs.
Definition 1.4.

(1) A sequence {x,} in the PMS (X, p) converges to the limit x if and only if p(x, x) = nlgrolo p(x, x,).

(2) A sequence {x,} in the PMS (X, p) is called a Cauchy sequence if n’grgoo p(xn, X ) exists and is finite.

(3) A PMS (X, p) is called complete if every Cauchy sequence {x,} in X converges with respect to T,, to a

point x € X such that p(x,x) = lirgl p(Xn, Xm).

(4) A mapping F : X — X is said to be continuous at xo € X if, for every € > 0, there exists 6 > 0 such that
F(By(x0,0)) € By(Fxo,€).

The following lemma is one of the basic results as regards PMS.
Lemma 1.5.

(1) A sequence {xy} is a Cauchy sequence in the PMS (X, p) if and only if it is a Cauchy sequence in the

metric space (X, d,).

(2) A PMS (X, p) is complete if and only if the metric space (X, d) is complete. Moreover,

im dy(x,x,) =0 & p(x,x) = lim p(x,x,) = Lm p(x,, x). ()

n—co n—00 n,Mm—c0

Next, we give two simple lemmas which will be used in the proofs of our main results. For the proofs

we refer [13].

Lemma 1.6. Assume x, — zasn — oo in a PMS (X, p) such that p(z,z) = 0. Then lijn p(xn,y) = p(z,y)
n—oo
for every y € X.

Lemma 1.7. Let (X, p) be a PMS. Then
(A) ifp(x,y) =0, then x =y,
(B) if x # y, then p(x,y) > 0.

Remark 1.8. If x =y, p(x,y) may not be 0.
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Definition 1.9. Let (X, <) be a partially ordered set and F : X x X — X. Then the map F is said to have mixed
monotone property if F(x,y) is monotone non-decreasing in x and monotone non-increasing in y; that is, for any

x,yeX,

x1 = xp implies F(x1,y) = F(xp,y) forall y € X and

y1 < yo implies F(x,y2) = F(x,y1) forall x € X.
Definition 1.10. An element (x,y) € X x X is called a coupled fixed point of a mapping F : X x X — X if
F(x,y) =xand F(y,x) =y.
Definition 1.11. An element (x,y) € X x X is called
(1) : a coupled coincident point of mappings F : X x X — Xand f : X — X if fx = F(x,y) and fy = F(y, x),

(g2) = a common coupled fixed point of mappings F : X x X — Xand f : X — X if x = fx = F(x,y) and
y = fy=Fy,x).

Definition 1.12. The mappings F : X x X — X and f : X — X are called w— compatible if f(F(x,y)) =
F(fx, fy)and f(F(y,x)) = F(fy, fx) whenever fx = F(x,y) and fy = F(y, x).

Inspired by Definition 2.9, Lakshmikantham and Ciri¢ in [31] introduced the concept of a g-mixed

monotone mapping.

Definition 1.13. Let (X, <) be a partially ordered set, F : X x X — X and g : X — X be mappings. Then
the map F is said to have a mixed g—monotone property if F(x,y) is monotone g-non-decreasing in x as well as

monotone g—non-increasing in y; that is, for any x,y € X,

gx1 = gxp implies F(x1,y) = F(x2,y) forall y € X and

gy1 = gy implies F(x,y2) = F(x,y1) forall x € X.
Now we prove our main results.

2. Results and Discussions

Definition 2.1. Lef (X, p) bea PMS, let F : X x X — X and g : X — X be mappings. We say that F satisfies
a (, o, B)—contraction with respect to g if there exist P, a, B : [0,00) — [0, 00) satisfying the following:

(2.1.1): ¢ is continuous and monotonically non-decreasing, « is continuous and B is lower semi continuous,
(2.1.2): ¢(t) = 0ifand only if t = 0,a(0) = B(0) =0,

(2.1.3): (t) —a(t)+ B(t) > 0fort >0,
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(2.1.49): ¢(p(F(x,y),F(u,v))) < a(M(x,y,u,v)) — B(M(x,y,u,0)),Vx,y,u,v € X,gx < gu,gy = gv and

M(x,y,u,0)

p(gx F(xy))p(gy,F(y,x)) p(gu,F(u,0))p(gv,F(v,u))
1+p(gx,gu)+p(gy.gv)+p(F(xy),F(uv))’ 1+p(gx,gu)+p(gy.gv)+p(F(xy),F(u))

max{ p(gx, gu), p(gy, gv), p(gx, F(x,y)), r(gy, F(y,x)), p(gu, F(u,v)), p(gv, F(v,u)), }

Theorem 2.2. Let (X, <) be a partially ordered set and p be a partial metric such that (X, p) is a PMS. Let
F:XxX— Xand g: X — X be such that

(2.2.1): F satisfies a (¢, w, B)—contraction with respect to g,
(2.2.2): F(X x X) C g(X) and g(X) is a complete subspace of X,
(2.2.3): F has a mixed g-monotone property,

(2.2.4):  (a) if a non-decreasing sequence {x,} — x, then x, = x for all n,

(b) if a non-increasing sequence {y,} — y, then y <y, for all n.

If there exist xo, yo € X such that gxo = F(xo,y0) and gyo = F(yo, Xo), then F and g have a coupled coincidence
point in X x X.

Proof. Let xg,y0 € X be such that gxo < F(xo,y0) and gyo = F(yo,Xo). Since F(X x X) C g(X), we
choose x1,11 € X such that gxg < F(xo,y0) = gx1 and gyo = F(yo,x0) = gy1 and choose x2,1» € X
such that gxo = F(x1,y1) and gy2 = F(y1, x1). Since F has the mixed g— monotone property, we obtain
gx0 < gx1 = gxp and gyo = gy1 = gy». Continuing this process, we construct the sequences {x,} and

{yn} in X such that gx,, 11 = F(x,, y») and gyn+1 = F(Yn, xx), n =0,1,2,... with

®)

gxo 2 gx1 2 gxp X--- and
Yo = Y1 = 8Y2 = -+ .

Case (a): Ifgxy = gxm+y1 and gy = gYm+1 for some m, then (x,, y) is a coupled coincidence point
in X x X.

Case (b): Assume gx, # gXn+1 OF §Yn # §Yn+1 for all n. Since gx, = gx,11andgy, > Qyn4+1, from
(2.2.1), we obtain

IP(P(gxn/gan)) = ’ab(P(F(xn—l/yn—l)/F(xn/yn)))
< a(M(Xu—1,Yn—1,%n,Yn)) — B(M(Xn—1, Yn—1, Xn, Yn)),

p(8Xn-1,8%n), P(8Yn—1,8Yn), P(§Xn—1,8%n),

P(8Yn—1,8Yn), P(8%n, §Xn+1), P(SYn, §Yn+1),
P(§Xn-1,8%n) P(8Yn—1,8Yn)
1+p(8xn-1,8%n)+P(8Yn-1,8Yn) +P(8Xn,gXn+1)’
P(8%n,8%n11) P(8Yn,8Yn+1)
1+p(8%n—1,8%n) +P(8Yn—1,8Yn) +p(8%n,8%n+1) J

M(xn—lz Yn—1,Xn, yn) = maX
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(8%n,8%n11), P(&Yn, §Yn+1)

But
p(8%n-1,8%n) P(8Yn-1,8Yn) <
max Xy—1,9%n), Xn, QX
1+ p(8xu-1,8%n) + P(8Yn—1,8Yn) + P(§%n, §Xns1) — {plgxa-1,gxa) p(gtn gni1) }
and
p(8%n, §Xn+1)P(8Yn, 8Yn+1) <
1+ p(8%n1,8%n) + P(8Yn1,8Yn) + P(8%n 8Fur1) — | (89 gYn1):
Therefore
M(Xy 1,y 1, %, Yn) — max P(8%n-1,8%n), P(8Yn-1,8Yn), |
p(8%n, 8Xn+1), P(Yn, &Yn+1)
Hence
x?’l— 7 xi’l 7 —17 n)r
(p(gn gxs1)) < | max p(8§Xn-1,8%n), P(§Yn—1,8Yn)
p(8Xn, §%n+1), P(8Yn, &Yn+1)
p(8Xn-1,8%n), P(&Yn—1,8Yn),
— B | max .
p(8Xn, §%n+1), P(&Yn, &Yn+1)
Similarly
p(§Xn—1,8%n), P(&Yn—1,8Yn),
¥ (p(gYn, gYni1)) < a | max ! "
p(8Xn, §%n+1), P(&Yn, 8Yn+1)

P(8Xn—1,8%n), P(8Yn—1,8Yn),
— B | max
p

Put R, = max{p(gxn, §xn+1), P(§Yn, §Yn+1)}. Let us suppose that
R, #0 foralln>1.
Let, if possible, for some 1, R,_1 < R,,. Now

P(Ry) = p(max{p(gxn, §Xnt1), P(&Yn,&Yn+1)})
= max{(p(gxn, &%n+1)), Y (P(&Yn,&Yn+1)) }

- p(8Xn-1,8%n), P(§Yn—1,8Yn), p(8%n-1,8%n), P(§Yn—1,8Yn),
< a | max — B | max
p(8&xn, §%n+1), P(§Yn, &Yn+1)

p(8%n, §Xn+1), P(8Yn, &Yn-+1)
= a(max{R,_1,Rn}) — B(max{R,_1,Ry})
a(Ry) — B(Rn).

From (2.1.2) and (2.1.3), it follows that R,, = 0, a contradiction. Hence

Ry SRn—l-

(4)

)

©)

Thus {R,} is a non-increasing sequence of non-negative real numbers and must converge to a real
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number r > 0. Also ¥(R,) < a(R,—1) — B(Ry—1). Letting n — oo, we get ¢(r) < a(r) — B(r). From
(3.1.2) and (3.1.3), we get r = 0. Thus

lim max{p(gxu, §xn+1), P(8Yn, gYn+1)} =0, ©
lim p(gxu, %u11) =0 = lm p(gyn, §Ynt1)-

n—o0

Hence from (p,), we have

lim p(gxy, gxn) =0 = Hm p(gYn, g¥n)- (7)

n—oo n—oo

From 6 and 7 and by the definition of d,, we get

lim dy(gxn, gxn11) = 0= lim dp(gYn, gYn+1)- ®)

n—oo

Now we prove that {gx,} and {gy,} are Cauchy sequences. To the contrary, suppose that {gx,}
or {gy,} is not Cauchy. This implies that d,(gxu,gxx) # 0 or dp(§Ym,gyn) 7 0 as n,m — co.
Consequently max{dp(gxm,gxn),dp(gym,gyn)} # 0 as n,m — oo. Then there exist an ¢ > 0 and

monotone increasing sequences of natural numbers {m;} and {n;} such that ny > m; > k. We have

max{d, (g%, §%n, ), dp(&Ym, &Yn) } > € and )
max{dp (§Xm, §%n—1), Ap(§Ym, §Ym—1)} < €. (10)

From (9) and (10), we have

€ S max{dp(gxmk/gxnk)/dp(gymk’gynk)}
< max{dp(gxmkrgxnkfl)/dp(gymk'gynkfl)} + max{dp(gx”kfl’gxnk)’dp(gynkfl'gynk)}
<e+ max{dp(gxnkq,gxnk), dp(gynkfllgynk) }

Letting k — oo and using 8, we get

lim max{d),(gxm, §xn,), dp(8Ym. §Yn,) } = €. (11)

k— 00

By the definition of d,, and using 7 we get

. €
Jim max{p (8, 8%n,), P(8Yms 8Yni) } = 5- (12)
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From (9), we have

e < max{d,(gxm,, §xn,), dp(8Ym, §Yn;) }
< max{dp(8%m., §%m—1), Ap(§Ymyr §Yme—1) } + max{dp(§xXm,—1,8%n,), dp(8Yme—1,8Yn,) } (13)
< 2max{d, (§xXm,, §%m,—1), Ap(§Ymys §Ymp—1) } +max{dy(gXm, §%n,), dp(§Ymer §Yn) }-

Letting k — oo, using (8), (11) and (13), we get

Jim max{d) (81, 8%m.), dp(8Ym—1,8Yn.) } = €. (14)
Hence, we get
. €
lim max{p(gxm,—1,8%nc), P(§Ym—1,8Yn) } = 5- (15)

From (10), we have

e < max{dy(gxm,, §¥n,), dp(8Ym., §Yn,) }
< max{dp(§Xm,, §%m 1), Ap(§Yme §Yme—1) } + max{dp(§xm -1, 8%n, 1), dp (Y1, 8Yme+1) }
+max{d,(gxn,11,8%n,), dp(8Yn,+1,8Yn,) } (16)
< 2max{dy(8xm, §%m 1), dp(8Ym, &Ym—1) } + max{dp(gxm,, §xn), dp(8Ym, &Yn,) }
+ 2max{dy (g%, §Xn,+1), Ap(§Ynyr §Yme+1) }-

Letting k — oo, using (8), (11) and (16), we get

kh_l;ilo max{dp(gxmkfll gxnk+1)z dp (g]/mkflr g]/nk+1) } = €. (17)
Hence, we have
. €
Lim max{p (g1, 8¥mc+1), P(&Ymi—1,8Yn+1) } = 5- (18)

Now from (9), we have

e < max{dy(gXm., &¥n,), dp(8Ymy, §Yn,) }
< max{dp(gxmk'gxnkJrl)ldp(gymk'gyﬂkJrl)} + max{dp(gxnk+lrgxnk)/ dp(gynk+1/gy2nk)}-
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Letting k — oo and using (8), we obtain

e < lim max{dp(g¥m;, &¥mc+1),dp(8Ymys &Yme+1) } + 0

k—o0

2p(8%my, 8Xm+1) — P(8%my 8Xmy) — (X1, 8Xm+1), }

< lim max {
2p(8Ymyr 8Yne+1) — P(&Ymyr §Ymy) — P(§Yne+1, 8Yme+1)

= 2 lim max{p(gxm, &¥nc+1), P(8Ymes &Yme1) },  from (6).

Thus,
€ .
5 < lim max{p(gxu,, 8%n+1), P (Y Y1) }-

T k—oo

By the properties of 1,

y @ < Jim  (max{p(gxme, 8%n,+1), P(8Ymes 8Yne+1)}) (19)

= lim max{ ¢ (p(gxm,, §%n.+1)), Y (P(8Ymys &Ynmi 1)) }-

k— o0

Now

¥ (p(8%my, §%n+1)) = (P (F(Xm—1, Ymy—1), F(Xns Yn,)) )
< ‘X(M<xmk*1' ymkfllxﬂklyﬂk)) - ,B(M(xmkflz Yme—1, xnk/ynk))

P(8%m—1,8%n.), P(8Yme—1,8Yny)r P(&Xm—1,8%Xmy.),
P(&Ym—1, 8Ymy ), P(§%mer 8Xne+1), P(&Ynr §Ynp+1),

=& [ max P(8%m, —1,8%m ) P(8Ymy —1,8Ym;)

1+p(8%my—1,8%m )P (§Ymy—1,8Yny. )+ P (8% s8Xm11)
P(8%n; 8%n+1)P(8Ynys8Ym+1)

TP (8%my—1,8%ny ) P (8Ymy—1,8Ymy )+ P(Xmy 8%y +1)

(

P(&%m—1,8%n. ), P(8Ym—1, §Yne)s P(&Xm—1, 8§%Xmy. ),

P(&Ym—1, 8Ymy)r P(&%ns §Xme+1), P(§Ynes 8Ymit1),

— B | max P(8%my—1,8%m ) P(8Ymy —1,8Ym;)

14+p (8% —1,8%m )P (§Ymy—1,8Ymy. )+ P(8Xmy X 11)”
(8%, 8%ny+1)P(8Yny s &Yy +1)

14+p(gxmy—1,8%n;. ) P (8Ymy—1,8Ymy ) +P(§Xmy ,§%my +1)

Letting k — oo, we have
. € €
]}ggo¢(P(8xmkf8xnk+1)) < “(2> - 5<2)-

Similarly, we obtain

Lim o (p(Ymer &Yme11)) < a<;> . ﬁ(;)

(z)=+(z) -#(3)

From (3.1.2) and (3.1.3), we get § = 0, a contradiction. Hence {gx,} and {gy,} are Cauchy sequences

Hence from 19, we have

in the metric space (X, d,). Hence we have n}%rgoo dp(gxn,gxm) = 0 = ngrgloo dy(8Yn, gYm). Now from
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the definition of dp and from 7, we have

lim p(gxy, gxm) = 0= lim p(gyn, &Ym)- (20)

n—oo n—oo

Suppose ¢(X) is a complete subspace of X. Since {gx, } and {gy,} are Cauchy sequences in a complete
metric space (g(X),dp). Then {gx,} and {gy,} converges to some u and v in g(X) respectively. Thus

lim d,(gx,,u) =0

n—00

lim d,(gyn,v) =0

n—o0

for some u and v in g(X). Since u,v € g(X), there exist x,y € X such that u = gx and v = gy. Since
{gx,} and {gy,} are Cauchy sequences, gx, — 1, gYn — v, §Xp41 — # and gy, +1 — v. From Lemma
1.5, (2) and (20), we obtain

p(u,u) = lim p(gx,, u) = p(v,v) = lim p(gys,v) = 0. (21)

n—oo n—oo

Now we prove that li_r>n p(F(x,y),8%n) = p(F(x,y),u). By definition of d,

dp(F(x,y),8%n) = 2p(F(x,y),8%u) — p(F(x,y), E(x,y)) — p(8Xn, §Xn)-

Letting n — oo, we have

dp(F(x,y),u) =2 lim p(F(x,y),8xx) — p(F(x,y), F(x,y)) — 0, from 7 .

n—oo

By Definition of d, and 20, we have

lim p(F(x,y),8%:) = p(F(x,y),u).

n—o0

Similarly,
lim p(F(y, x),gyn) = p(F(y,x),0).

n—oo

From (p4), we have
p(u, F(x,y)) < p(u, gxni1) + p(8%ni1, F(x, ) — p(8Xn11,§%ns1)
= p(u, gxns1) + p(g¥ns1, F(x,y)).

Letting n — oo, we have

p(u, F(x,y)) <0+ lim p(F(xu,ya), F(x,y)).

Also from (2.2.4), we get gx, =< gx and gy, >~ gy. Since ¥ is a continuous and non-decreasing function,
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we get
P(p(w Fx,y)) < lim (p(F(xn, yn), F(x,y)))
< ,1115210 [a(M(xn, yn, x,y)) — B(M(xn, Yy, x,y))],
p(gxn, 1), p(8Yn,v), P(8%n, §Xn+1),
M(xn, g %, y) = max P(8Yn, &Yn+1), p(u, F(x,y)), p(v, Fy, x)),
no s X Y) = P(8%n,8%n+1) P (Y 8Yn11)
1+p(gxn,u)+p(gyn0)+p(gxns1,F(xy))’
p(u,F(xy))p(v,F(y,x))
1+p(gxn,u)+p(gyno)+p(gxn+1,F(xy)) Y
— max{p(u,F(x,y)),p(v,F(y,x))} asn — oo.
Therefore

p(u, F(x,y)), p(u, F(x,y)),
Y(p(u,F(x,y))) <a [ max — B | max .
(Pl Fzy))) ( { p(o, F(y,x)) }) ( { p(o, F(y,x)) })
Similarly,

p(u, F(x,y)), p(u, F(x,y)),
P LF(y,x))) < max — B | max .
(Pl Fw20)) ( { p(o, (3, %)) }) ( { p(o, F(y, %)) })

¢(max{p(u,F(X,y)),P(U/F(y/x)) })
= max{¢(p(u,F(x,y))),¢(P(U/F(y/x)))}

y ( {p(u,F(x,y)), }) ( {p(u,P<x,y>>, })
< a | max B | max .
p(v, E(y,x)) p(o, E(y,x))

It follows that max{p(u, F(x,y)),p(v,F(y,x))} = 0. So F(x,y) = u and F(y,x) = v. Hence F(x,y) =

Hence

¢x =u and F(y,x) = gy = v. Hence F and g have a coincidence point in X x X. O

Theorem 2.3. In addition to the hypothesis of Theorem 2.2, we suppose that for every (x,y), (x},y!) € X x X
there exists (u,v) € X x X such that (F(u,v),F(v,u)) is comparable to (F(x,y),F(y,x)) and
(F(x', yY), F(y', a)). If (x,y) and (x',y') are coupled coincidence points of F and g, then

F(x,y) = gx =gx' =F(x',y") and
T(y,x) =gy =gy' = F(y",x').
Moreover, if (F,g) is w -compatible, then F and g have a unique common coupled fixed point in X x X.
Proof. The proof follows from Theorem 2.2 and the definition of comparability. O

Theorem 2.4. Let (X, =) be a partially ordered set and p be a partial metric such that (X, p) is a complete
PMS. Let F : X x X — X be such that
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(B.41): ¢(p(F(x,y),F(u,v))) < a(max{p(x,u),p(y,v)}) — B(max{p(x,u), p(y,v)}), V x,y,u,v € X,
x 2 uandy > v, where §, « and P are defined in Definition 2.1 and
(3.4.2): (a) If a non-decreasing sequence {x,} — x, then x, = x for all n, and
(b) If a non-increasing sequence {y,} — y, then y <y, for all n.

If there exist xo,yo € X such that xo = F(xo,Yy0) and yo > F(yo, x0), then F has a unique coupled fixed point
in X x X.

Example 2.5. Let X = [0,1], let < be partially ordered on X by x =y & x > y. The mapping
F: X x X — X defined by F(x,y) = (x+y+1)
partial metric on X. Define ,a, B : [0,00) — [0,00) by (t) = t, a(t) = & and B(t) = §. We have

and p: X x X — [0,00) by p(x,y) = max{x,y} is a complete

x? 12 42
p(F(x,y),F(u,0)) = max{s( +y + }

x—l—y+1) 8(u+v+1)

_1 max u? + max yz C
T4 x+y+1 u+v+1 x+y+1luto+l
1 y v
<Z
=3 max{x+1 u+1}+max{y+1'v+1}]
1 u Yy v
<=
—g_m‘”‘{ 1 u+1}+max{y+1'v+1}]
g% [max{x, u} +max{y, v}]
1
g[p(x u) +p(y,v)]
1
gzmax{p(X,U)/P(yrU)}

—a (max{p(x,u), ply, ) }) — B(max{p(x,u), p(y,2)}).

Hence all conditions of Theorem 2.2 hold. From Theorem 2.4, (0,0) is a unique coupled fixed point of F in X x X.

3. Application to Integral Equations

In this section, we study the existence of a unique solution to an initial value problem, as an application

to Theorem 2.2. Consider the initial value problem

xM(t) = f(t,x(t),x(t)), tel=][0,1],
x(0) = xo,

(22)

Theorem 3.1. Consider the initial value problem 22 with f € C(I x [3,00) x [3,00)) and



Applications and Common Coupled Fixed Point Results in Ordered Partial Metric Spaces / Sanju Patel, R. N. Yadava 12

Then there exists a unique solution in C(I,[7,

Proof. The integral equation corresponding

x(t) = xo + /Otf(s,x(s),x(s)) ds.
Let X = C(I, [}, )) and p(x,y) = max{x — 2,y — 3} for x,y € X. Define ¢, a, : [0,c0) —
¥(t) =t a(t) = 3t and B(t) = }t. Define F: X x X — X by
F(x,y)(t) =xo + Otf(s,x(s),y(s)) ds.
Now
p(F (3, )(0),F(0,0)(0)) = max{ F(x,) = 2, Fluo) 3 |
_ max{34x° + /tf(s,x(s),y(s)) ds, % + /Otf(s,u(s),v(s)) ds}
550 max { i £G5,x(), x(6)) ds — 5, }
< max I (5 y(s),y(s) ds — 52
55 4 { LIy s u(s),u(s)) ds = %2, }
§Jo f(s,0(5), 0(s) ds —
max {& ooy &}
— max 4 167 4 16 [ 7/
B {max{u(f)x()v(f)m} }
4 167 4 16
= gmax{max{x(t) = 3, u(0 - 2 b max{ ) - %00 -
i max{p(x,u),p(y,v) }
= a(max{p(x,u),p(y,v)}) — B(max{p(x,u),p(y,v)}).

o)) for the initial value problem 22.

to initial value problem 22 is

(23)

[0, 0) by

Thus F satisfies the condition (3.4.1) of Theorem 2.4. From Theorem 2.4, we conclude that F has a

unique coupled fixed point (x,y) with x = y. In particular x(t) is the unique solution of the integral

equation 23.

4. Application to Homotopy

In this section, we study the existence of a unique solution to homotopy theory.

O]

Theorem 4.1. Let (X, p) be a complete PMS, U be an open subset of X and U be a closed subset of X such that

U C U. Suppose H : U x U x [0,1] — X is an operator such that the following conditions are satisfied:

(i) x # H(x,y,A) and y # H(y,x, A) for each x,y € oU and A € [0,1] (here OU denotes the boundary of U

in X),
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(i) $(p(H(x,y,A), H(w,0,A))) < a(max{p(x,y), p(,0)}) — B(max{p(x, ), p(uw,0)}) ¥x,y € U and
A € [0,1], where i, a : [0,00) — [0,00) is continuous and non-decreasing and p : [0,00) — [0,00) is

lower semi continuous with y(t) — a(t) + p(t) > 0 for t > 0,
(iii) there exists M > 0 such that p(H(x,y,A), H(x,y, 1)) < M|A — | for every x € U and A, u € [0,1].
Then H(-,0) has a coupled fixed point if and only if H(-,1) has a coupled fixed point.

Proof. Consider the set
A={Ae[0,1]:(x,y) = H(x,y,A) for some x,y € U}.

Since H(+,0) has a coupled fixed point in U, we have 0 € A, so that A is a non-empty set. We will
show that A is both open and closed in [0, 1] so by the connectedness we have A = [0,1]. As a result,
H(-,1) has a fixed point in U. First we show that A is closed in [0, 1]. To see this let {A,}?° ; C A with
Ay — A € [0,1] as n — co. We must show that A € A. Since A, € A forn = 1,2,3,..., there exist

Xn, Yn € U with u, = (x4, yn) = H(xy, yuAn). Consider

P(xn/ xn+1) = P(H(Xn, Yn, /\n)/ H(xn+1z Yn+1, /\n+1))
< P(H(xn;]/n//\n)/ H<xn+1z]/n+1)\n))
+ P (H(Xp11, Yns1, An ), H(Xns1, Ynsr, Ang1)) — P (H (X1, Yns1, An), H(Xn41, Y1, An))

S P(H(xl’l/yi’l/ /\I’l)/ H(xn—i-l/ yI’H—l/AVl)) + M’/\I’l - )\n+1|-

Letting n — co, we get

lim p(xn,xn+1) < JEQOP(H(xn/ Yn, /\n)/ H(xn+1/yn+1/ /\n)) +0.

n—o00

Since ¢ is continuous and non-decreasing we obtain

lim lP(P(xn/ xn—l—l)) < gg{}olp(P(H(xn/ym /\n)/ H(xn-i-lz Yn+1, )\n)))

< lim [ (max{p(xu xui1), p(Yn Y1) }) = B(max{p(xn, Xns1), P(Yn, yni1) })]-

n—o0

Similarly

lim o (p(yn, yni1)) < lim [a(max{p(xn, %us1), p(Yn, Yus1) }) — Bmax{p(xn, xui1), P(Y Yn11) })]

n—o0

It follows that

lim p(xy, xp41) =0 = Hm p(yn, Yui1)- (24)

n—oo n—o00
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From (p2),

lim p(xy,x,) = 0= lm p(yn, yn). (25)

n—oo n—oo

By the definition of d,, we obtain

lim dp(xn, X411) = 0= lim dp(Yn, Yns1)- (26)

n—oo n—oo

Now we prove that {x,} and {y,} are Cauchy sequences in (X,d,). Contrary to this hypothesis,
suppose that {x,} or {s,} is not Cauchy. There exists an € > 0 and a monotone increasing sequence

of natural numbers {m;} and {n;} such that n;, > my,
max{dp(xmwxnk)/dp(ymk/ynk)} > € (27)
and
max{dy, (X, Xn—1), dp(Ymy, Yn,—1) } < €. (28)
From (27) and (28), we obtain

e < max{dp(xmk,xnk),dp(ymkrl/nk)}
< max{dy (Xme, Xn—1), Ap (Ymgs Yne—1) } + max{dp(xu,—1, %), dp (Y1, Y, ) }

< e+max{d,(xp,—1,%n.), dp(Yne—1,Yn,) }-

Letting k — oo and then using 26, we get

lim max{d,(Xm,, Xn, ), dp(Yme, Y, ) } = €. (29)

k—o0

Hence from the definition of d, and from 25, we get

. €
Jim max{p(xm, xu), p Yo Yn) } = 5- (30)
Letting k — oo and then using 29 and 26 in

’dp(xmk/ xnk+1) - dp(xmk/ xi’lk) | S dp(xnk+1/ xl’lk)/

we get

klgilo dp(Xn, 1, Xm,) = €. (31)
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Hence, we have

€
klgn p(xnk+1/xmk) = E (32)
Similarly
) €
Hm p (e, Ym ) = 5. (33)
Consider

p(xmk/xnk-H) = p( (xmk’ymk’ ) (xnk—i-l, y”k+1’/\”k+1))
S p( (xmk,]/mk, ) (xmk/ymk/ i’lk+1))
+ p(H(Xmy Y A1), H(Xn1, Y1, Ang+1)) — P(H Xy Y Angt1)s HXmy, Y A1)

< M|Amk - Ank+1’ + p(H(xmk’ Ymys Ank+1)/H(xnk+1/ynk+l’Ank+1>)'

Since {A, } is Cauchy, letting k — co in the above, we get

< lim P( (xrnkfl/mk/)\nk+1)/H(xnk+11ynk+1r)\nk+1))~

T k—oo

N\m

Since ¢ is continuous and non-decreasing we obtain

1P<2) < hm IIJ( ( (xmk/ymk/Ank+l)/H(xnk+1/ynk+l/Ank+l)))

k—o0

< lim [a(max{p (¥me Y1), P Yo Yner1) }) = Bmax{ p (o, Xne1), P Yn+1) })]
“s(5)#(3)

It follows that € < 0, which is a contradiction. Hence {x,} and {y,} are Cauchy sequences in (X,d,)
and

Lim dp(xp, xp) =0= Lm dp(yn, Ym)-

n,m—s00 n,m—o0

By the Definition of dp and (25), we get

im p(xp,x,) =0= lm p(Yn, Ym)-

n,nm—00 n,m—o0
From Lemma 1.5, we conclude (a) {x,} and {y,} are Cauchy sequences in (X, p). Since (X, p) is

complete, from Lemma 1.5(b), we conclude there exist u,v € U with

p(u,u) = lim p(x,,u) = im p(x,41,u) = lim p(x,, x,) =0, (34)

n—oo n—oo n,m—o0
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p(v,0) = lim p(xy,0) = im p(xui1,0) = Tim p(yu ym) = 0. (35)

n—00 n,Mm—c0

From Lemma 1.6, we get

lim p(x,, H(u,v,A)) = p(u, H(u,v,A)).

n—00

Now,

p(xn, H(u,0,A)) (H(xn, Yn, An), H(u,0,A))

=p(H
< p(H(xn, Y, An), H(xn, Y, A)) + p(H(xu, yn, A), H(u, 0, 1))
— p(H(xu, yu, A), H(xu, Y, A))
< M|Ay — A+ p(H(xp,yn, A), H(u, v, A)).
Letting n — oo, we obtain

p(u,H(u,v,A)) < lim p(H(xu,yn,A), H(u,0,A)).

n—o0

Since ¢ is continuous and non-decreasing, we obtain

$(p (1, H(w,0,1))) < Tim ¢(p(H (5,90, ), H(w,0,1)) )

n—o0

< lim [a(max{p(xn, u), p(yn,v) }) — B(max{p(xn, 1), p(yn,v)})]

n— o0

=0.

It follows that p(u, H(u,v,A)) = 0. Thus u = H(u,v,A). Similarly v = H(v,u,A). Thus A € A. Hence
A is closed in [0,1]. Let Ay € A. Then there exist xo, o € U with xo = H(xo, o, Ao) . Since U is open,

there exists r > 0 such that B,(xo,r) C U. Choose A € (Ao — €, Ag + €) such that |A — Ag| < 1 < €.
Then x € By(xo,7) = {x € X/p(x,x0) < 1+ p(x0,%0)}. We have

p(H(x,y,A),x0) = p(H(x,y,A), H(x0, X0, Ao))
< p(H(x,y,A),H(x,y,A0)) + p(H(x,y,Ao), H(x0,¥0,A0)) — p(H(x,, Ao), H(x,y, Ao))
< M|A — Aol + p(H(x,y,A0), H(x0,¥0, Ao))

<

1
Mn—1 + p(H(X, Y AO)/H(XO/]/O/ /\O))

Letting n — oo, we obtain p(H(x,y,A),x0) < p(H(x,y,A0), H(x0,Y0,A0)). Since ¢ is continuous and

non-decreasing, we have

Y(p(H(x,y,A),%0)) < ¢(p(H(x,y,A0), H(x0,y0,A0)))

< a(max{p(x,x0), p(¥,¥0) }) — ¢ (max{p(x,x0), p(y,¥0) } )-
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Similarly

P(p(H(y,x,A),y0)) < a(max{p(x,x0), p(y,y0)}) — ¢ (max{p(x, x0), p(y, y0)})-

Thus

p(max{p(H(x,y,A),x0), p(H(y,x,A),y0) }) < a(max{p(x,x0), p(y,y0) }) — ¢ (max{p(x, x0), p(y, y0) })
< y(max{p(x, x0), p(v,40) })-
Since 1 is non-decreasing, we have
max{p(H(x,y,A),x0), p(H(y,x,A),y0) } <max{p(x,x0),p(y,y0)}
< max{r+ p(xo,x0),7 + p(yo,v0) }-

Thus for each fixed

A€ (Ao—e€Ao+€),H(-,A): By(xo,7) = Bp(xo,7).

Since also (ii) holds and ¢ and « are continuous and non-decreasing and f is continuous with ¢ () —
a(t) 4+ B(t) > 0 for t > 0, all conditions of Theorem 2.4 are satisfied. Thus we deduce that H(:, A) has
a coupled fixed point in U. But this coupled fixed point must be in U since (i) holds. Thus A € A for
any A € (Ag —€,Ap+€). Hence (Mg —€,A¢g +€) C A and therefore A is open in [0, 1]. For the reverse

implication, we use the same strategy. O

Corollary 4.2. Let (X, p) be a complete PMS, U be an open subset of X and H : U x U x [0,1] — X with the

following properties:

(1) x # H(x,y,t) and y # H(y, x,t) for each x,y € oU and each A € [0,1] (here OU denotes the boundary
of Uin X ),

(2) there  exist x,y € U and A € 0,1],L € [0,1), such  that
p(H(x,y,A), H(u,0,p)) < Lmax{p(x,u),p(y,0)},

(3) there exists M > 0, such that p(H(x,A), H(x,u)) < M- |A — | forall x € Uand A, u € [0,1].
If H(-,0) has a fixed point in U, then H(-,1) has a fixed point in U.

Proof. The proof follows by taking ¢(x) = x, ¢(x) = x — Lx with L € [0,1) in Theorem 4.1. O
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