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Abstract

In the present paper, extending the notion of difference sequence spaces of Kizmaz [8], we avail an
opportunity to have null Cesaro summable difference sequence spaces C°(A) where C? is the spaces

of all null (C,1) summable sequences. It is observed that C°(A) is a separable space.
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1. Introduction

Kizmaz [8] in 1981, initiated the theory of difference sequence spaces E(A) as follows

E(A) = {(Cx) €5: (Ak) = (Ck — Ck+1) € E}, E € {{w, ¢, co}

where s, ¢y, c and {. denotes the spaces of all, null, convergent and bounded scalar sequences.
Since then, a huge amount of work has been carried out by many mathematicians regarding various
generalizations of difference sequence spaces, one may refer to [1,4,10,12,14,15]. In the present paper
we introduce a new difference sequence space C°(A), where C? is space of null (C, 1) summable scalar
sequence defined as follows:

A sequence ¢ = ({y) of complex numbers is said to be null (C, 1) summable (or Cesaro Summable to
0) if limyo, = 0, where 0} = % il Z;. By C° we shall denote the linear space of all null (C,1) summable

1=
sequences of complex numbers over C, i.e.,

0 1 &
C :{(?:(Ck)655 (kZCz) GCO}-
i=1

In the present work, we take the opportunity to introduce a difference sequence space with underlying

space as C°. We observe that
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M C°Zco(d) as ((~1)F) € CObut ((—1)F) £ co(A),
(ii) co(A) € CYas (&) = (1,1,1,,...) € co(A) but (&) ¢ C° and
(iii) co C co(A) N CO.

Thus the sequence spaces C’ and co(A) overlap but do not contain each other. Similarly, C° and /«
also overlap without containing each other as is clear from the fact that C° ¢ /&, /(o € C° and
co C C%N Le. Note that the sequence ((—1)~1v/k) is null (C,1) summable but not bounded whereas

the sequence ¢ = () given by ¢; = 1,8, = 0 and

: 1, if 271 <k <3(217%), (i=23,...);
k pum—

0, otherwise.

is bounded but not null (C,1) summable. This has motivated the authors to look for a new sequence

space which properly includes the spaces C°, ¢g(A) and /.

We now introduce a sequence space C°(A), Cesaro summable difference sequence space, as follows:

A) = {&= (&) €s: (A&) € C°}

{c (&) € ( ZA@)eco}
={€=<€k)e <§1 k§k+l> ecO}
fo-wees(¥)<a)

The definitions given below may be conveniently found in [4-7,10]. A complete metric linear space is
called a Fréchet space. Let E be a linear subspace of s such that E is a Frechet space with continuous
coordinate projections. Then we say that E is an FK space. If the metric of an FK space is given by a
complete norm then we say that E is a BK space. We say that an FK space E has AK, or has the AK

property, if (e;), the sequence of unit vectors, is a Schauder basis for E. A sequence space E is
(i) perfectif E** = E.
(i) Solid(normal) if (17x) € E whenever |1 < |G|, k > 1, for () € E

The study of sequence spaces is considered to be incomplete without computation of dual. The

introduction of dual spaces is due to Kothe and Toeplitz [9] and for a sequence space E, the following

E* = {(ak) €s5: ) |mli] <oo V&= (%) EE}
=1
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and

EF = {(ﬂk)GSI iak§k<°° VCZ(@k)GE}
k=1

are called a— and B—duals spaces of E respectively. Also for E C F, we have F® C E® for © € {a, B}.
For more detailed account of duals spaces one may refer to [2,3,6,11,13] where many more references

can be found.

2. Algebraic and Topological Properties of C°(A).

In this section, we establish that C°(A) along with BK space, is also a separable space. Apart from this,

schauder basis and various inclusion relations are established for this space.
Theorem 2.1. {o, C C°(A), the inclusion being strict.

Proof. Let { = (k) € lw. Then there exists M > 0 such that |3 — k1| < M for all k > 1 and
k

SO %121 A& — 0 as k — oo. For strict inclusion, take (&) = (0, —v/1,0, —v/2,0, —V/3, ...) then
=

(M%) = (V1, =vV1, V2, —V2,...) € C% i, (&) € CO(A) but (&) € leo. 0

Theorem 2.2. C° C C%(A), the inclusion being strict.

k

Proof. For & = (&) € C° we have lim; %Ck =0 and so % Y A& — 0 as k — oo. For strict inclusion, take
i=1

(&) =1(1,1,1,1,...) € CO%A) but (&) ¢ C° O

Theorem 2.3. ¢o(A) C C°(A), the inclusion being strict.

Proof. Inclusion is obvious since ¢¢ C C°. For inclusion is strict, consider the sequence (&) =
(0/ _\/Ir 0/ —\/E, 0/ _\/g, ~..) then (Agk) = (\/I, —\/T, \/EI _\/5, . .) c CO, i.e.’ (gk) c CO(A). But
(ACk) & co, i-e., (Ck) & co(A). -

Theorem 2.4. Let X and Y be sequence spaces. If X € Y, then X(A) € Y(A).

Proof. Since X ¢ Y, there is a sequence { = (&) € X such that { ¢ Y. Consider the sequence
n= (77]() = (0, —(:1, —51 — éz,—gl — (;‘2 — 63,. . ) Then n S X(A) but n Qé Y(A). L]

Remark 2.5. We have already observed that C° ¢ loo and le ¢ CY, so, neither CO(A) C loo(A) nor loo(A) C
CO%(A). Also we have co(A) C CO(A) N Lle(A). In view of this and Theorem 2.3, we can say that CO(A)
strictly includes co(A) but overlaps with {e(A).

Theorem 2.6. C°(A) is a BK space normed by

I€lla = 161] +supey [YAG], &= (&) € CA).

k
Y A%
i=1

Proof. The proof is a routine verification by using ‘standard” techniques and hence is omitted. O



Null Cesaro Summable Difference Sequence Space / Sandeep Gupta, Manoj Kumar, Ritu

158

Theorem 2.7. Sequence space (CO(A), || - ||a) is separable.

Proof. Let D ={n = (k) :qx € Q for 1 <k <mnand ny =0 for k > n, n € N}. Then D is countable.

Now

D Ccy C co(A) C CYA)

i.e., D is a subset of C’(A). We prove that D is dense in (C°(A), || - |a). Let & = (&) € C°(A) and & > 0.

Then G kékﬂ — 0 as k — oo. So there exists p € IN such that
G1—Ck| _ ¢
— > p.
‘ < 6 Vk>p
Let m be a natural number such that ‘él‘ g Take t = max {p, m}. Then
€17 i < g Vk>t and &1 <%

kK Tt

Since Q is dense in R, so there are rational numbers 7, 1 < k < t such that |{; —

ik =0 for all k > t. Let # = (#x). Then 7 € D. We claim that ||§ — 77||a» < &. Now

¢ —nlla= 11— ’71\+SUP [1(61—11) = (Sks1 — 1) ]

Now for1 <k <t-—1,

1 - J—
21— ) @ — )] < 0y e e

=

_E,E_ & _¢
— 6k 6k 3k 3

Fork >t

1
(81— 1m1) — (Ckg1 — Mi41) | = 7 181 — 11 — Crsa]

161 —ml| |Gkl
<
=T Tk

€ 1 1
< @+E’€k+l_‘§l|+E|‘§l|

==

e e e ¢
-6 6 6 2

It follows that

& &
H§_77HA:6+§<5'

This implies D is dense in C°(A).

Theorem 2.8. C°(A) has Schauder basis namely {e ey, e, ....}, where e =

ex =(0,0,0,...,1,0,0,...), 1is in the k" place and 0 elsewhere fork =1, 2, ...

k| < g We set

(1,1,1, ..

O]

.) and
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Theorem 2.9. The sequence space ({w, || - ||a) is separable.

Proof. As e C C°(A) and subspace of a separable metric space is separable, so (¢, || - ||a) is separable.

O]

Remark 2.10. Because (Yoo, || - ||oo) is not separable so || - ||a and ||.||c where ||E]|c0 = sup{|Ck| : k > 1} on

the space {«, are not equivalent.
Theorem 2.11. C°(A) is normal or solid.

Proof. Let (1;) be such that || < |&| for some (&) € C°(A). We prove that (17;) € C%(A). Let e > 0 be

given. Then there is some natural number p such that G k§k+1 ‘ < g, for all k > p. Let m be a natural
number such that Eﬂ g Let t = max{p,m}. Then % < 6 for all k > t and |€tl| g
Now for all k > ¢,
M = Mkt @ k41
P2
[Cal [kl
STk Tk
e |Gk — ¢l | 6]
R
SR
6 6 6 '
This implies (77;) € C°(A). Thus C°(A) is normal space. O

Theorem 2.12. C°(A) does not have AK property.

Proof. As sequence of unit vectors {ej, e, ...} is not a Schauder basis for C°(A), so C°(A) does not

have AK property. ]

3. Kothe-Toeplitz Duals and Matrix Maps

In this section we compute the Kéthe-Toeplitz duals of C’(A) and show that C°(A) is not perfect.
Before proceeding in this section, we recall about matrix map.

Let X and Y be any two sequence spaces and let A = (a,) (n,k = 1, 2, ...) be an infinite matrix of
complex numbers. We write Ax = (A, (x)) if An(x) = Y aux; converges for each n. If x = (x;) € X
implies that Ax = (A,(x)) € Y, then we say that A define a matrix transformation from X into Y and
we denote it by A : X — Y. The sequence Ax is called the A transformation of x. By (X, Y) we
shall denote the set of all matrices A which map (or transform) X into Y. A good account of matrix

transformations in sequence spaces can be found in [5,10].

Theorem 3.1.

[CO(A)]* = {a = (ax) : Y Klay| < oo} — D,
k
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Proof. Let a = (ay) € Dy. For any ¢ = (&) € C°(A), we have Sk € ¢o, and so there exists some M > 0

k
Sk < M for k > 1 and hence sup k~1|&;| < oo which implies that
k

such that .

Y laxdl = Y- (k lax]) (k71 [&]) < .

k k

Thus a = (a;) € [CO(A)]*.
Conversely, let a = (a;) € [C°(A)]*. Then ¥ |axx| < oo for all & = (&) € C%(A). To prove ¥_k|ay| < co.
k k

Let if possible, ) k|ax| = oo, we can determine a sequence of integer 17 < 1y < n3 < ... such that
k

n 1y Np+1
2k|ak| >21, Z k|ak| >22,..., Z k|ak| >2P+1
k=1 k=ni+1 k=ny+1

Take
zp%/ if np +1 < k < np+1/ for all p > 1

Gk =

0, otherwise.

Then & = (&) € co(A) C C°(A) and

v kel
Z |akgk’: Z W>1 forallle
k=np+1 k=n,+1
This implies ) |axlx| = o0, a contradiction. -
k

Theorem 3.2.
[CO(A)]* = {a = (ay) : supk Y ay| < oo} = D,.
k

Proof. Taking m =1 and X = c in Theorem 2.13 of [6], we have
[CO(A)]* = {a = (ay) : supkay| < oo}
k

and so [c(A)]* = [CO(A)]* O
Corollary 3.3. C%(A) is not perfect.

Proof. The proof follows at once when we observe that the sequence (k) € [C°(A)]** but does not

belong to C°(A). O

Theorem 3.4.

[CO(A)]f = {a = (ay) : ;kmk\ < oo} — Ds.
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k
Proof. Leta = (a;) € D3 and ¢ = (&) € C°(A). Then <,1 v A§i> € cg. For n € N, we have
i=1

k—1 n
Y ale=—) (k—1)a (kil ZMH‘) +81 ) a.
- i=1 P

k-1
Because (a) € D3 so (ai), ((k—1)ax) € ¢1. We define 7 = (1) by 71 = 0 and 1, = 55 ¥ Ag; for all
i=1

00 k—1
k > 2. Then 17 € cg and since ¢ = /1, the series Y (k —1)a; (kil Yy A§i> converges absolutely.
k=2 i=1

Conversely, if a = (a;) € [C°(A)]?, then Zakgk converges for all ¢ = (&) € C°(A). In particular, taking

k=1
¢x = 1 for all k, we have Zak converges and so Z (k—1)ay <k11 Y ACi> converges for all ¢ = () €
k=2 i=1

co(A). Since & = (&) € C%(A) if and only if 7 = <k v A@‘i> € cg, we have ((k—1)ay) € [co]* =4,. O
i=1
Theorem 3.5. A € (C%(A), le) if and only zfsup Z( —1)|auk| < oco.

Proof. Suppose that sup OZOj (k—1)|a| < coand & = (&) € C°(A). Proceeding as in Theorem 3.4, we
n k=2

00 k—1
have Y |a, Y A&j| < co. Form € N,
k=2 i=1

m m k—1 m
Yoamle=— Y (Y AZ)+ 81 ) am
=1 = =1 =1

This yields Y |a,xCx| < oo, for each n € IN and finally we have,
k

< |sup
k>2

< oo for all n € IN.

) (suPZ -1 Iank|> + ClSZP;(k_l)Wnk‘

nok=2

1 k—1
P
=

which yields (A,&) = AZ € le. Thus A € (CY(A), le).
Conversely, let A € (C°(A), le). For all ¢ = (&) € C°(A), we have

(©)] < sup|An(&)] = | A¢ll < lATIE]la, ey

for eachn € N and & = (&) € C%(A).
Choose any n € IN and any r € IN and define

(k—1)sgnay, ifl<k<r;
Sk =

0, otherwise.
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Then & = (&) € co C C°(A) with ||&||a = 1. Inserting this value of & = (&) in (1) , we have

r

Y (k= Dlaw| < [IA]l 2
k=2
Letting r — oo and noting that (2) holds for every n € IN, we are through. O

Theorem 3.6. A € (C°(A),co) if and only if
(i) sup Y (k—1)|au| < oo,
n k=2
(ii) limay, = O for each k,
(iii) limY a,; = 0.
nok

k
Proof. Let the conditions (i)-(iii) hold and suppose that ¢ = (&) € C°(A) with liin T LA =0. Itis
i=1

00 k—1
implicitin (i) that, foreach n € N, }_(k —1)|a,x| converges. It follows that Y (k—1)a,; <k11 Y AQ)
k k=2 i=1
converges, hence

Yl = — i( 1)auk < Z Agi— ) + 1) ank. 3)
k %

k=2

k
Let 0y = 1 21 Ag;, H =sup|ox| and M = sup%(k —1)|a,k|. Then for any p € IN, we have
1= k n

Z( - 1)ank0'k—1

B (i)

=2
p

<Y (k= 1) |aw] |ore—a| + E k—1)|ank| |o%-1]
k=2 k=p+1

< HZ —1)|auk| + Msup |ox_1|
k>p

and hence

lim sup < M sup |o}_1].

k>p

0 1 k—1
N s L

k—1

Letting p — oo, we have Z (k—1)au (kll Y A§i> — 0 as n — co. Making use of this and (iii) in
k=2 i=1

(3) we get the result.

Conversely, let A € (C°(A),c0). Then (Zankék) € ¢ for all x = (&) € C°A). By the
k nclN

same argument as in Theorem 3.5, we have sup ¥ (k — 1)|ax| < oo. Taking x = ¢ € C%(A), we
n k=2
get (auk),cn € co with lima,, = 0 for each k. Finally x = (1,1,1,...) € C%(A) yields lim Y a, = 0. O
n nok
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