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Abstract

In this study, we introduce the neighborhood elliptic Sombor and modified neighborhood elliptic
Sombor indices and their corresponding exponentials of a graph. Furthermore, we compute these
newly defined neighborhood elliptic Sombor indices and their corresponding exponentials for

certain nanostructures of chemical importance like nanocones and dendrimers.
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1. Introduction

Let G be a finite, simple, connected graph with vertex set V(G) and edge set E(G). The degree
dg(u) of a vertex u is the number of vertices adjacent to u. Let 6(G) denote the minimum degree
among the vertices of G. We refer [1] for undefined notations and terminologies. A graph index
is a numerical parameter mathematically derived from the graph structure. Several graph indices
have been considered in Theoretical Chemistry and many graph indices were defined by using vertex
degree concept [2]. The Zagreb, Sombor, Nirmala, Dharwad, Gourava indices are the most degree
based graph indices in Chemical Graph Theory, see [3-20]. Graph indices have their applications in
various disciplines in Science and Technology [21,22]. The elliptic Sombor index [23] of a graph G is

defined as

ESO(G)Z Z (dG +dG \/dG +dG )
uv€E(G)

Recently, some elliptic indices were studied in [24-28]. The neighborhood elliptic Sombor index of a

molecular graph G is defined as

NESO (G) = Z (Sg (1) + Sg (v \/SG + Sc (v )
uveE(G)
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Considering the neighborhood elliptic Sombor index, we introduce the neighborhood elliptic Sombor

exponential of a graph G and defined it as

NESO(G,x) = Y x(ct+Sc@)Vss(w)’+Se(o)
uve€E(G)

We define the modified neighborhood elliptic Sombor index of a graph G as

"NESO (G) =

uv€E(G) (SG )+ Sg (v \/SG —|- SG )

Considering the modified neighborhood elliptic Sombor index, we introduce the modified

neighborhood elliptic Sombor exponential of a graph G and defined it as

1
mNESO (G, x) — Z x (Sc(u)%—sc(v))\/Sc(u)2+SC(v)2
uveE(G)

Recently, some neighborhood indices were studied in [29-35]. In this work, we determine the
neighborhood elliptic Sombor and modified neighborhood elliptic Sombor indices and their

exponentials for certain families of nanocones and dendrimers.

2. Results For Nanocones Cj, k]

In this section, we consider nanocones Cy[k]. The molecular structure of C4 [2] is shown in Figure 1.

Figure 1: The molecular structure of C4 [2]

Let G be the molecular structure of C,[k]. By calculation, G has n(k + 1) vertices and § (k+ 1) (3k + 2)
edges. Also by calculation, we obtain that G has five types of edges based on Sg(u#) and Sg(v) the

degrees of end vertices of each edge as given in Table 1.

Sg(u),Sg(v)\uv € E(G) | Number of edges
(5, 5) n
(5,7) 2n
6,7) 2(k—1)n
7,9) nk
9,9) % (Gk—1)

Table 1: Edge partition of C,[k]| based on Sg(u), Sg(v)
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In the following theorem, we compute the neighborhood elliptic Sombor index and its exponential of

Cnk].

Theorem 2.1. Let C,[k] be the family of nanocones. Then
(i) NESO (G) = (243V2) nk® + (26+/85 + 161/130 — 81v/2) nk + (50v/2 + 24/74 — 26/85 )
(ii) NESO (G,x) = nxd0vV2 4 opx12V74 4 9 (k—1) nx13v85 4 iy 16V130 %k (3k—1) 1622,

Proof. Let G be the molecular graph of C,[k]. By using the definitions and Table 1, we deduce

(i) NESO (G) = Z (Sg (u) 4+ Sg (v \/SG + Sg (v )
uveE(G)

=(5+4+5)V5*+5n+(5+7)V52+72n+ (6+7) V62 +722(k—1)n
+(7+9) V72 +9%nk+ (949) V92 +92 nk (Bk—1).

After simplification, we get the desired result.

(i) NESO (G,x) = Z x(5c(u)+5¢(0)) Se(u)*+5¢(v)?
uveE(G)

— pxGHOIVERT L 0y (AT | ok _ 1)y (6+7)WVEHT
4 kg THOVTTR lek (3k — 1) x(9+9)VO+P
= nx®0V2 4 opx12V74 4 9 (k—1) nx13VE5 | 1k 16VI30 4 nzk (3k—1) x162v2,

O]

In the following theorem, we compute the modified neighborhood elliptic Sombor index and its

exponential of C, [k].

Theorem 2.2. Let Cy,[k] be the family of nanocones. Then

(i) "NESO (G) = (515 + 12 1k,

2 2 1
50v2 | 12v74 13@) n+ (13\/% + 16/130 324[) nk +

324[

(ii) "NESO (G, x) = nxﬁ —|—2nx1217¢ﬁ +2(k—-1) nxl#g + nkxm + ”71‘ (3k—1) xﬁﬁ.

Proof. Let G be the molecular graph of C,[k]. By using the definitions and Table 1, we deduce

(i) "NESO (G) = )|
weE(S) (Sg () + Sg (v \/SG 2 1 56 (0)?
B n 2(k—1)n
"@+5M@TF¥+{5+nv@fﬁﬁ+(6+my@fﬁﬁ
+ nk + ! K 3k —1)
(74+9)V72+92  (949)V/92+92 2
__" 2n +2(k—1)n+ nk n 1 nk
502  124/74 1385 161130 1622 2

After simplification, we get the desired result.

(3k—1).
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1
(i) "NESO (G,x) = Y. x(ctrsctvscuice?
uve€E(G)
1 1 1
= px (5+5)V52+52 + 2nx (5+7)V/52+72 +2 (k _ 1) nx 6+7)Ve62+72
1

I S I S
+ nkx 7+OV72+92 %k (3k _ 1) x (9+9)V/92+92

After simplification, we obtain the desired result.

3. Results for NS;[n] Dendrimers

In this section, we focus on the class of NS;[n] dendrimers with n > 1. The graph of NS;,[3] is shown

in Figure 2.

Figure 2: The graph of NS, [3]

Let G be the graph of NSy[n]. By calculation, G has 16 x 2" — 4 vertices and 18 x 2" — 5 edges. Also
by calculation, we obtain that G has seven types of edges based on S;(u), Sg(v) the degrees of end

vertices of each edge as given in Table 2.

Sg(u),Sg(v)\uv € E(G) | (4,4) | 5,4) 5, 5) 6,6) | (7,7)| (5,7) (6, 6)
Number of edges 2x2" | 2x2" | 2x2" 42 | 6 x 2" 1 4 6 x2"—12

Table 2: Edge partition of NSy[n]| based on Sg(u) and Sg(v)

In the following theorem, we compute the neighborhood elliptic Sombor index and its exponential of

NSZ [ﬂ] .
Theorem 3.1. Let NSy[n] be the family of dendrimers. Then
(i) NESO(G) = (596\ﬁ + 18V/41 + 66\/67) 2" 4+ 112v/2 4 48+/74.

(i) NESO(G, x) = 2 x 2"x3V2 42 % 2129V41 4 (2 x 2 4-2)x%0V2 6 x 2y 1YL 4 1598V2 4 4o 12V74 4
(6 x 2" —12)x72V2,

Proof. Let G be the molecular graph of NS, [n]. By using the definitions and Table 2, we deduce
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(i) NESO (G) = 2 (Sg (u —|— SG \/SG + Sc ( )
uv€E(G)

= (4+4) V42 +422 x 2" + (544) /52 +422 x 2" + (5 +5) /52 +52(2 x 2" 4 2)
+(5+4+6)V52+626x2"+ (7+7)V7>+ 7214 (5+7) V5% + 724
+(64+6) V62 +62(6 x 2" —12).

After simplification, we obtain the desired result.

(i) NESO(G,x)= Y x(c(+5c(®) Sc(u)*+56(v)?
uveE(G)

—2x an(4+4 \/4 +42 _|_2 % an(5+4)\/52+42 4 (2 % 211 +2)x(5+5)\/52+52
46X znx(5+6)\/52+6z + 1x(7+7)\/72+72 + 4x(5+7)\/52+72
+ (6 x 2" — 12)x(6+OIVEHE,

After simplification, we obtain the desired result.

O

In the following theorem, we compute the modified neighborhood elliptic Sombor index and its

exponential of NSy[n].

Theorem 3.2. Let NSy[n| be the family of dendrimers. Then

. _ 1 1 1 11 4 1
(@) mNESO(G> o (16\/§ + 252 + 12ﬁ 9\ﬁ + 11\F) 2"+ 25[ 98v2  6V2 + 374
(ii) "NESO (G,x) = 2 x 2"x®V3 1+ 2 x 2Uxoil 4+ (2 x 2" + 2)x50V3 4 6 x 2"x VAl | 1x5VE + 4y i 4+
(6 x 2" — 12)x73,

Proof. Let G be the molecular graph of NS;[n]. By using the definitions and Table 2, we deduce

(i) "NESO (G) = Z
uv€E(G) (SG + SG \/SG —|— SG )

_ 2 x 2" n 2 x 2" n 2x2"42 n 6 x 2"
(4+4)V42+42 (5+4)V52+42  (5+45)vV52+52  (5+46)V52+62

1 4 6 x 2" —12
+ + + :
(7+7)V72+72  (5+7)V52+72  (6+6)V6:+62

After simplification, we obtain the desired result.

1
(i) "NESO (G,x) = ) x (56005620 /56 (02 +56 ()2
uveE(G)
0 X 2 WV 4 x 2y GV (2% 2" 42)x( CIVET 4 6 x 2 CrVEE

1

+ 1x(7+7>\/72+72 + 4x (5+7>\/52+72 + (6 x 2" — 12)x (6+0) V62462

After simplification, we obtain the desired result.
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Sc(u),Sg(v)\uv € E(G) | 4,4) | 5,4 | (5,7) 6,7) (7,7)
Number of edges 3x2" | 3x2" | 3x2" | 9x2"-12 | 3x2" -3

Table 3: Edge partition of NS3[n| based on Sg(u) and Sg(v)

4. Results for NS3[N] Dendrimers

In this section, we focus on another type of dendrimers NS3[n| with n > 1. The molecular structure of

NS3[2] is presented in Figure 3.
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Figure 3: The structure of NS3[2]

Let G be the molecular graph of NS3[n|. By calculation, we obtain that G has 18 x 2" — 12 vertices
and 21 x 2" — 15 edges. Also by calculation, we get that G has five types of edges based on S¢ (1) and
Sg(v) the degrees of end vertices of each edge as given in Table 3.

In the following theorem, we compute the neighborhood elliptic Sombor index and its exponential of

NS;[n].
Theorem 4.1. Let NS3[n| be the family of dendrimers. Then
(i) NESO(G) = (390\@ 4 27V/AT + 36174 + 117\/@ 2" — 294y/2 — 1561/85.
(i) NESO(G,x) = 3 x 2"x32V2 13 x 21x9VAL 4 43 5 onx12V74 4 (9 5 2n — 12)x13V85 | (3 x 21 — 3)x98V2,

Proof. Let G be the molecular graph of NS3[n]. By using the definitions and Table 3, we deduce

(i) NESO (G) = Z (Sg (u) 4+ Sg (v \/SG 2y Sg (v )
uveE(G)

=(4+4) Va2 +423x2"+ (5+4) V52 +423x2"+ (5+7) V5> + 723 x 2"
+(6+7)V62+72(9x2"—=12) 4+ (74+7) V7> +7>(3 x 2" = 3).

After simplification, we obtain the desired result.
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(i) NESO(G,x)= Y x(5c()+5c(®) Sc(u)*+5c(v)?
uv€E(G)

=3 x an(4+4)\/42+4 + 3 % znx(5+4)\/52+42 + 3 x 2nx(5+7)\/52+72
4 (9 % 27’1 _ 12)x(6+7)\/ 62472 + (3 X 211 _ 3)x(7+7)\/ 72+72.
After simplification, we obtain the desired result.

O]

In the following theorem, we compute the modified neighborhood elliptic Sombor index and its

exponential of NS3[n].

Theorem 4.2. Let NS3[n] be the family of dendrimers. Then

n 3 12

3 3 3 9 3
<32ﬁ + 941 + 12/74 + 13./85 + 98\@> 2" - 98v2  13/85°

(i) "NESO(G) =
(ii) "NESO (G, x) = 3 x 21XV 43 x 21Xl +3 x 21y It 4 (9 x 27 — 12) XV + (3 x 2 — 3)x 3,

Proof. Let G be the molecular graph of NS3[n]. By using the definitions and Table 3, we deduce

(i) "NESO (G) =
woeE(G) (Sg (1) + Sg (v \/SG —|—SG )

_ 3 x2" n 3 x2" n 3 x2"
(4+4)V42+42 (5+4)V52+42  (5+47)V52+72
9x2"—12 3x2"-3

- + .
6+ VE+72  (T+7)V72+ 72

After simplification, we obtain the desired result.

1
(11) mNESO (G, x) — Z x (SG<U)+SG(U))\/Sc(z¢)2+SG(v)2
uveE(G)

1 1 1
= 3 X M x @V e+ | 3 x DMy (5+4)V52 442 3 % DMy (547) V52472

1

+ (9 x 2" —12)x! 6+7\/62+7 + (3 x 2" —3)x( TR

After simplification, we obtain the desired result.

5. Conclusion

In this work, we have determined the neighborhood elliptic Sombor and modified neighborhood

elliptic Sombor indices and their exponentials for certain families of nanocones and dendrimers.
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