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Abstract

In this paper, we introduce the two-sided Quaternion Fractional Fourier-Laplace Transform
(QFrFLT), an extension of the classical Fractional Fourier-Laplace Transform into the quaternion
framework. We rigorously define the QFrFLT and establish its reversibility property, as well as
develop an associated convolution structure along with a convolution theorem. These results not
only advance the theoretical foundation of hypercomplex transforms but also demonstrate the

potential of the QFrFLT for applications in multidimensional signal analysis, image processing.
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1. Introduction

Quaternions were first introduced by Hamilton in 1843 [1] and have since served as a powerful
extension of complex numbers for representing multidimensional signals. Over the years, a number
of quaternionic integral transforms have been developed, including the quaternion Fourier Transform
(QFT) [2, 3] and its fractional counterpart, the fractional quaternion Fourier Transform (FRQFT) [4].
These transforms have proven particularly useful in applications such as color image processing,
multidimensional signal analysis, and pattern recognition, due to their ability to encode both
amplitude and directional (phase) information in a hypercomplex framework [2, 5, 6].

Traditional quaternionic transforms have primarily focused on extending the Fourier analysis
framework to the quaternion domain. However, with the growing need to address signals and
systems exhibiting both oscillatory and damping behaviour, a unified transform that incorporates the
advantages of both the fractional Fourier transform (FrFT) and the fractional Laplace transforms
(FrLT) is highly desirable. In this context, the Fractional Fourier-Laplace Transform (FrFLT) has
recently emerged as a versatile tool, unifying features of both FrFT and FrLT [7, 8, 9]. Building on this

idea, we introduce the Quaternion Fractional Fourier-Laplace Transform (QFrFLT) in this paper.
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In our work, we define the QFrFLT as a natural extension of the classical FrFLT to the quaternion
setting. We rigorously establish its reversibility property (i.e. the inversion formula) and develop
a convolution structure for the QFrFLT. These theoretical results extend the quaternionic transform
framework and provide a solid mathematical foundation for practical applications in multidimensional
and color image processing.

The remainder of this paper is organized as follows. In Section 2 we present the necessary
preliminaries, including the definition of the fractional Fourier-Laplace transform (FrFLT), which
serves as the basis for our subsequent extension to the quaternion setting. In Section 3, we introduce
the definition of the QFrFLT and prove its reversibility. In Section 4, we develop a convolution
structure tailored to the QFrFLT and derive the associated convolution theorem. Finally, in the last

section, Section 6, we conclude with a discussion of our findings and their potential applications.

2. Preliminaries

2.1 The quaternion algebra

Quaternions were introduced by Hamilton in 1843 as a natural extension of the complex numbers. A
quaternion is expressed in the form
q = a+ bi+cj+dk, (1)

where a,b,c and d are real numbers and i,j,k are symbols that can be interpreted as unit-vectors

pointing along three spatial axes and hence satisfies

P=pP=K=-1ij=kjk=iki=jji=—kkji=—iik=—j.

The conjugate of g is given by
g=a—bi—cj—dk

and its norm is defined as

gl = Va2 + b2+ 2 +d2 = /g5

This norm satisfies the multiplicative property ||pgq|| = ||p| |||l for any quaternions p and g, and
— 4

gl
form a four-dimensional vector space over R with the basis {1,i, ], k} and obey a multiplication law in

every nonzero quaternion has an inverse given by g! . The set of quaternions denoted by IH
which the order of factors is significant, i.e. in general, pg # gp. Although the multiplication is non-
commutative, the associative law holds, so that (pq)r = p (qr) for all quaternions p, g, and r. These
features provide a robust numerical framework for extending classical analysis to higher dimensions

and underpin the theoretical development of quaternion-based transforms.
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2.2 Fractional Fourier-Laplace transform

The fractional Fourier-Laplace transform (FrFLT) with angle parameters a and 6 of f(x,t) is denoted

by FLyo {f (x,t)} (u,v) and is defined as [9]

FLog{f (x,8)} (u,0) = Fup (u,0)

= /O; /O;f (x,t) Kyp (x,u,t,0) dx dt, ()
where
¢ c (DCIQ)ei[u(ac)(xzﬁLuz)fp(a)xu]e[b(e)(tervz)fq(B)tv]/ ifa,6¢ {kn ke Z}
Ci(a)d(t—0) eila@ ()= pa)xu] if « # mmand 6 =2n7m
C1(a)6 (t+0) ¢ila@) () —plaru] ifoa #mmand 6 = (2n —1)n
Ca(0)6(x—u) PO+ —a(O)r0] if« =2mmand 6 # nn
Kup (x,u,t,0) =9 Co(0)6 (x +u) PO (40 —q(O)10] ifo=02m—1)rand 0 #nw  (3)
d(x—u)o(t—mo), ifa,0 € {2kt :keZ}
d(x—u)é(t+0), ifao =2mmand 6 = 2n—1)7
O(x+u)é(t—mo), ifa =(2m—1)mand 6 =2nm
k&(x%—u)é(t—i—v), ifa,0 e {2k—1)m:keZ}
With

1 —icota /1 —icotf
C1 (0() = T, C2 (9) = 277_(1,, C (0(, 9) = C] (0() C2 (9) ,

(@)= b (0) =%, p(a) =csea, q(6) = csch,

and ¢ denotes the Dirac delta function. Throughout this paper the constants Cy(«), C (6), C («,0),
a(a), b(0), p(x) and q(0) will denote these values and for simplicity we may write them as C;,
Cy, C, a, b, p and g respectively. Based on the analysis of FrFLT for different parameter values of
« and 6 in [9], FrFLT reduces to different well-known transforms (such as identity transform, reflection
transforms, Fractional Fourier transform, Fractional Laplace transform and Fourier-Laplace transform
if at least one of a, 0 is integral multiple of 7r. Hence, as in [9] we confined our attention to F,y for

a,0 & {krt :k € Z}. In this case the kernel of FrFLT is:
Ky p (X, u,t, Z)) —C (DC, 9) ei[a(xz—i-uz)_pxu]e[b(t2+v2)_qtv] (4)

that is,

Kyo (x,u,t,0) = \/1 _Zi:-[Ota \/1 _zii?tg eﬁm[<x2+112)cosa72xu]625.1w[(t2+vz)c05972tv] (5)
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3. Quaternion Fractional Fourier-Laplace Transform

For any quaternion signal

f(x1, t, %0, t2) = fr (%1, t1, Xo, t2) +ifi (%1, t1, Xo, ta) + jfj (X1, t1, X2, t2) + kf (%1, 11, X2, £2)

where f,, fi, fi, and fi are real valued, the quaternion fractional Fourier-Laplace transform of f is

defined as

]:‘62]1,91%2,92 {f(xl'tl'XZ' tz)} <”1'Z’1f”2f UZ) = Fozcllj,el, 2,07 (”1,01,142, 02)

00 ) © co | .
:/ / / / K}, o, (x1,u1,t1,01) f (x1, X2, b1, 02) Kl (%2, Uz, ta, 02) dxydtydxadty (6)
—00 J—00J—00J—00 4 2,02

where

7

; 1 — icotay 1—icothy _i_ [(x24+u2 ) 1 (242
i o cosay —2x1U1]| 5 [(#+v7 )costy —2t1v1]
Ka1/91 (J’Cl, Uy, tlrzl) - \/ ; e ( ! 1) g 2sinfy ( ! 1)

27T 2711
K]' , (xz I, by Uz) _ 1 —jCOttXl 1 —jC0t91 eZSh{az [(x%-i—u%)cosaz —szllz]eﬁ [(t%-}—v%)cos@z —2t1y)
/g AT V 27 \/ 27j

for wq,601,a2,6, ¢ {krt : k € Z}. Further for simplicity, let us denote

. |1 —icota . [1—icott j |1 —jcotay i |1— jcott
N T TN T T T T T

cotuq
@ =— b

cotb; cotwo b
pr— pr— 2

. _cotb
) s 2 > s -

2 4

and

p1 = cscay , g1 = cschy , pa = cscap , g2 = cschy

then Kt’;‘l,ol (x,u,t,v) and Kiz,ez (x,u,t,v) takes the form
by (1, 1,0) = Cl, G ellntamd)—np ol (o) =toia ] )
K], (2,14,t,0) = Cl,C} el msatapa] olta(615) ~tatare] ®)

Theorem 3.1 (Reversibility Property). If F o 0100, U (X1, 81, %2, t2) } (11, 2,01, 02)

a1,

— i

101 a0 (u1,up,v1,02), then it is possible to reconstruct quaternion signal f(x1,t1,xa,t2) from the

quaternion fractional Fourier-Laplace transform F.y o (u1,12,01,02).

Proof. By definition of quaternion fractional Fourier-Laplace transform we have,

i,j i,j
‘F'C*Mﬁf)lﬁtxzﬁf)z {Fal,elr a0, (1,01, 13, 02)}

[e3) () [e9) <) . ij

— 1 ’

= / / / / K., —o, (u1,y1,01,21) By g g, (11,01, 12, 02)
—00 —00 —o0 —00
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X K] —y,—6, (uz,yz, 02,22) duldvlduzdvz

_/ / / / K—le —6; M1,y1,01,21 {/oo /40 /700 /700K,i1,91 (x1,M1,t1,01)

f(x1, t,x2, tz)Ka 0, (X2,u2, £, vz)dxldtldxzdtz}K’_(,‘z,_e2 (u2,Y2,v2,22) durdvidusdo,

—/ / / / K, g (u1,y1,01,21) {/ / / / K o (x1,u1,t1,01) [fr (1, t1, %0, t2)

+ifi (x1, t, X0, t2) +jfj (31, b, X, t2) + ki (x1, 01, %0, 02)] K (2,12, t2,02) dxy dty dx dtz}

x K —y,— 6 (uz,yz, Uz,Zz)du1dvldu2dvz

= / / / fr(x1, t1, 22, t2) { [/ [ K.y, (u1,y1,01,21) Kl g, (x1, 1, 11,01) duy doy ]

X —zxz —6, uz, Y2,02, 22) KZX 6y (xZ/ up, to, 02) dupdo, } dxdt1dxopdts

/ / fi (x1, t1, x5, t2) {[/ / Ky g (u1,y1,01,21) K o (x1,u1,t1,01) duy dvl]

/ —042 —6, uz, Y2,02, Zz) KLZ/GZ (X2, us, ty, Uz) duzd’l)z } dxldtldedtz

_|_

/ / fi (x1,t1, X2, 12) {[/ / K_{Xl o, M1,y1,01,Zl)K,§(1,el (x1,u1,t1,01) duy dvl}

,az g, (U2,2, vy, 22) K, L0, (X2, U2, fz,vz)duzdvz]}dx1dt1dx2dt2

+i /
x [ I/
+k[ - [ L fre (x1, 11, %2, 12) {[/ / K’ g (u1,y1,01,21) Ky g (x1, 11, t1,01) duy d01:|

(o] [ee] . .
X |:/oo /700 K]—az,—ﬁz (u2,Y2,v2,22) K{hﬁz (x2, 12, t2,02) du2d02:| } dxy dt; dxp dtp

Using properties of kernel of FrFLT, right hand side of above expression becomes

- /,o; /,Z /j; /j;fr (x1,t1, %2, 12) {6 (x1 — 1) 6 (t1 — 21) 6 (x2 — y2) 6 (t2 — 20) } dxy dty dxp dby
+l~/°° /°° /°° /°° fi (x1,t1, %0, t2) {0 (x1 —y1) 0 (t1 — 21) 6 (x2 — y2) O (ta — z2) } dxy dty dxp dts
4—]/0o /Oo /oo/ fi(x1,t1, %0, 12) {6 (x1 —y1) 6 (b — 21) 8 (x2 — y2) & (t2 — 22) } dx1 dty dxo dby
+k/oo/oo/o:o O:ofk (x1,t1, %0, t2) {0 (x1 —y1) 0 (f1 — 21) 6 (x2 — y2) O (t2 — 22) } dx1 dty dxp dty
— /j; /Oo /Oo /Oo Lfr Cer by xa t2) o ifi (o, b3, t2) o+ fy (31, o b) K (1, 0,202, )]

x {8 (x1—y1) 8 (hh — 21) 8 (x2 — y2) O (t2 — 22) } dxydtydicadty

-/. / ) / A f tx)d (=i, = 2% = Yo b — 22) dxidhdxadts

[e9) e}

= f(x1,t1,%2,t2) (By using the Sifting property of Dirac delta)
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4. Convolution Structure of QFrFLT

To obtain the convolution structure of quaternion fractional Fourier-Laplace transform (QFrFLT), we

have introduced the following definitions:

Definition 4.1. The convolution of two, four-dimensional functions f(x1,t1,x2,t2) and g(x1,t1,x2,t2) is

defined by

(f xg) (x1,t1,x2,12) = / / / / f(r1,51,12,52) § (x1 — 11, t1 — 51, X2 — 1, tp — sp)dridsqdrads,
)

Definition 4.2. For any quaternion function f (x1,t1,x2,t2),8 (x1,t1, X2, t2) we define f (x1,t1,x2,t2) and

g (xll tl/ X2, tZ) by

f(x1,t,x0,t2) = f(x1,t1, %2, tz)Ei(alx%_iblt%)€j(u2x%_jb2t%),

5 (x1, 1, %2, b)) = ¢ (31, b, X, £y ) € (a3~ 01 i (0223 —jbat3)
g(X1,11,X2,12 g(X1,11,X2,12 ’

where ay = a1 («), a1 = a (), by = by (0), and by = by (0) are as given in the definition of kernel of QFrFLT.
Then we define the convolution operation x for QFrFLT by

h(x1,t1,x0,t2) = (f*xg) (x1,t1, X2, £2)

= CVle i) (3708 (fx g) (1,30, 1), (10)
where * is the convolution operation given in (9) and
C' = C' (1,01, 22,02) = C., Cj Ch,C,,

where the individual constants C! C(ih’ CZQ, and Céz comes from the definitions of the kernel of QFrFLT. Thus,

o7/

equation (10) gives the convolution structure of the QFrFLT.

Note: Since, f, g, and h are quaternions and hence they can be written as
h(x1,t1,x2,02) = hy (x1,t1, %, t2) + ihi (x1, t1, X2, t2) + jhj (x1,t1, X0, t2) + Ky (%1, 11, X2, 12)

where h;, h;, hj, and hy are real valued functions. Similarly, f (x1,t1,x2,t2) and g (x1,t1, x2,t2) can also

be written in above form. Thus, equation (10) gives

hy (x1,t1,x2,t2) = Ciig=i(mat=itif}) g=j(a3—jba}) (fz * g~z> (x1,t1,x2,£2)

_ Ci,je—i(a1x§—ib1t{)e—j(azxg—jbztg)

e} [} oo o __ "
X / / / / f1(r1,51,12,52) 81 (x1 — 11,1 — S1, X2 — 19, ko — 52) dridsqdrads,
-0 J—00 J—00 J—00
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_Cz,]e (alxl zblt )8 ](u2x2 ]bztz)

0 e *© i i(u r2—ib 52) '(a r2—ib 52)
></ / / / fi (r1,81,72,82) e\ JARITIR) 0y (21 — 71, t — 81, X0 — 12, t2 — 52))
—00J—00J—00J—0

R (R IS P, a

where I € {r,i,],k}.

Theorem 4.3 (Convolution theorem). Let h(xq,t,x2,t2) = (f*g) (x1,t1,x2,t2) and

i,j
a1,61, @02

fractional Fourier-Laplace transforms (QFrFLT) of f,g and h respectively. Then

ij ,
(u1,v1,12,02), Gl o o (1,01, 1,03) and H/

w61, 220n (u1,v1,u2,v9) denotes the quaternion

y o,
O 0y (11,01, 112,03) = ¢ (o) (i jhas)

[ w161, 2,0, (u1,01,u2,02) © Ga1 01, a0, (111,01, Uz, V)

where © is the componentise product.

Proof. By the definition of QFrFLT we have,

i,j
H"‘l,elr‘ereZ (ull 01, U2, 02)

= / / / / KL, g, (x1,11, 01,01k (x1, %2, 11, 82) K)o (X2, Uz, b2, 02) dxydtydxydty

[eS) . .
/ Ky 0, (x1,u1, 11, 01)he (31, X2, £, £2) KLZ,QZ (x2, U, b2, 02) dx1dtrdxrdts

1,01

+k/ / / / K. g, (x1,u1,t1,01)hi (x1, X2, tl/tZ)le 0, (X2, 12, 12, 02) dx1dtrdxodty
By using equation (11) we have, for each I € {r,i,j,k}

o0 0 1) 0o .
/ / / / Kiy o, (x1,11,81,00) by (x1, %2, b1, 02) Ky (X2, U, £, 02) dxydtydxadts
—o0 J— —00 J —0
=Y /OO /oo /Oo /oo K. o (x1,u1,t1,01) {e*i(”lx%’”’lt%)e*f(”z"%*sztg)
—00J—00 J—c0 J—00
X / / / / fl (7’1/51/ s, 52) el(ulr%—zblsf)e](uzrg—]bzs%)
—c0 J—00J—00 J—00

g (x1 —r1,t1 —s1,x2 —12,t2 —S2) € g(mn=—ny=ibiti=a)) j(a(n-r) ~a(t=s)")

d7’1d81d1’2d52} Kﬁéz,f’z (Xz, Us, tz, Uz) dx1dt1dx2dt2

Substituting x1 —r; =my, t; —s1 =ny, Xo—1p=my, tp —Sp =Ny = x1 =my +11,t; =1y +51x =

my + 1, t) = ny + s in above and after simplifying we can write right hand side as

<) <) (=) 0o . .
= / / / / Ki o, (11,11,81,01) fi (11,81,72,82) K)o (r2, 12,52, 02) dridsidrads,
—0o0 oo —0o0
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—iau? fjuzuz —b10? —by03? 0 Oo oo * i
e e 27101272 K, 0, (my,uy,n1,01)
—00 —0o0 —00 —00

x g1 (my,ny,ma, ny) foz o, (M2, U2, 12, 02) dmydnydmadn,

= €7i(”1u17iblvl)€7j(a2uf]b2“%)Fl (u1,v1,u2,v2) Gy (11,01, U, 0) (12)

where

Fy (u1,v1,u2,02) = FL, b L0y, any L1} (11,01, u2,02),

G (u1,v1,u2,02) = ]:ﬁ,,i 61, any 181} (11,01, U2,02)

i.e. F; and G; are the QFrFLT of f; and g; respectively. Since equation (12) holds for each I € {r,1,j,k}.
Hence, by using equation (12) we can write equation (12) as
i

Hy 0, 00, (11,01, U2, 02) = e F (u1,01,u2,02) Gy (41,01, U2, 02)

+ i (e —ibiod) g (e —jbars Fi (u1,v1, u2,v2) Gi (11,01, U, 02)

+ je i (m =t 2 F; (u1, 01, 2,02) Gj (11,01, 2, 02)

\_/ \./
(\
\.
X —~
)
S
=
N
&
S
N
:

i(au?—ibyv? ayud—jbru?
+ ke (ad=et) =i (@B =28 F (41,01, u5,00) Gy (1,01, 42, 02)

_ efi(alu%fihlv%)efj(azugfjbzug)
X {F, (u1,v1,u2,v2) Gy (u1,01,u,v2) + iF; (U1, 01, u2,v2) Gi (u1,v1,u2,02)

+jF; (11,01, u2,02) Gj (u1,v1,uz,02) + kFy (11,01, 2, v2) Gy (1,01, u2,02) }

_ e—i(alu%—iblv%)e—j(azu%—jbzu%)

i,j
X [F,,q,@l, 2,0, (H1,01,12,02) ®G,,(1 61, 60 (ul,vl,uz,vz)]

This completes the proof. O

5. Conclusion

This paper presents a comprehensive development of the two-sided Quaternion Fractional Fourier—
Laplace Transform (QFrFLT). We rigorously defined the QFrFLT, established its inversion formula, and
proved its convolution theorem. Our results demonstrate that the QFrFLT effectively generalizes the
fractional Fourier-Laplace transform to the quaternion setting. The theoretical findings offer a solid
foundation for further research in hypercomplex signal processing, and the QFrFLT shows significant
potential for practical applications in image processing, optics, and fractional dynamics. Future work
will focus on algorithmic developments and the exploration of additional applications in engineering

and mathematical physics.
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