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Abstract

In this paper, we introduce a novel definition of the cross-correlation operation for the fractional

Fourier-Laplace transform (FrFLT) and establish its corresponding correlation theorem. We further

explore the application of the FrFLT to generalized wave equations, thereby enriching its theoretical

foundation. Our findings not only enhance the mathematical framework underlying the FrFLT but

also underscore its promising potential in engineering, mathematical physics, and signal processing.
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1. Introduction

Integral transforms are powerful mathematical tools employed to analyze and solve a wide range

of problems in mathematics, physics, engineering, and various scientific fields [1]. By converting

functions from one representation to another, these transforms often reveal hidden structures and

simplify the complexity of differential equations and other advanced problems. A classical example is

the Fourier transform, which decomposes a function into its frequency components, while the Laplace

transform is particularly suited to solving differential equations exhibiting exponential behaviour [1,

2, 3].

Over the past century, mathematicians have significantly extended these classical transforms to tackle

increasingly sophisticated issues-especially those involving singularities, discontinuities, or mixed

physical behaviors [4]. The fractional Fourier transform (FrFT), rigorously introduced by Namias [5]

using eigenfunction methods, extends the classical Fourier transform to fractional orders. The FrFT

provides a continuous interpolation between time and frequency domains by effectively “rotating” the

signal in the time–frequency plane, proving invaluable in optics and nonstationary signal processing

[6, 7, 8, 9]. Similarly, the fractional Laplace transform (FrLT), as formulated by Torre [10], generalizes
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the classical Laplace transform to fractional orders and is particularly effective for solving parabolic

differential equations and modeling quantum mechanical problems involving repulsive oscillators.

To overcome the limitations inherent in applying these fractional transforms individually, mixed

integral transforms have been developed. For instance, the Fourier-Mellin transform (FMT)

introduced in the 1970s combines Fourier’s frequency analysis with Mellin’s scale invariance, proving

robust in digital image registration by effectively resolving translation, rotation, and scaling

mismatches even in noisy environments [11]. Similarly, the double Laplace–Sumudu transform

(DLST) integrates Laplace’s exponential damping with the scaling properties of the Sumudu

transform, offering a powerful tool for solving partial differential equations with mixed boundary

conditions [12]. The triple Laplace–Sumudu transform further extends this concept to

multidimensional initial-boundary value problems, demonstrating success in modeling heat flow and

wave equations [13].

In our earlier works, we introduced the Fractional Fourier-Laplace Transform (FrFLT), a mixed integral

transform that unifies features of both the fractional Fourier transform (FrFT) and the fractional Laplace

transform (FrLT). Across these studies, we proved the convolution theorem for the FrFLT [14], product

theorem for FrFLT [15], derived its operational transform formulae for FrFLT [16], and extended the

framework to the quaternion setting by defining the Quaternion Fractional Fourier-Laplace Transform

(QFrFLT) [17]. In this work, we extend the FrFLT to the space E ′(R2) of distributions with compact

support in R2. We rigorously prove a correlation theorem for the FrFLT and explore an application of

the FrFLT to the generalized wave equation. The remainder of this paper is organized as follows. In

Section 2, we present the necessary preliminaries, including the definition of the Fractional Fourier-

Laplace Transform (FrFLT) and the testing function space E(R2). In Section 3, we extend the FrFLT to

the space E ′(R2) by defining the generalized Fractional Fourier-Laplace Transform. Section 4 develops

a cross-correlation operation for the FrFLT and proves its correlation theorem. Section 5 provides an

application of the FrFLT to the generalized wave equation. Finally, in Section 6, we conclude with a

discussion of our findings and their potential applications.

2. Preliminaries

2.1 The Fractional Fourier-Laplace Transform

The fractional Fourier-Laplace transform (FrFLT) with angle parameters α and θ of f (x, t) is denoted

by FLα,θ { f (x, t)} (u, v) and is defined as

FLα,θ { f (x, t)} (u, v) = Fα,θ (u, v)

=
∫ ∞

−∞

∫ ∞

−∞
f (x, t) Kα,θ (x, u, t, v) dxdt, (1)
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where

Kα,θ (x, u, t, v) =



C (α, θ) ei[a(α)(x2+u2)−p(α)xu]e[b(θ)(t
2+v2)−q(θ)tv], if α, θ /∈ {kπ : k ∈ Z}

C1 (α) δ (t − v) ei[a(α)(x2+u2)−p(α)xu], if α ̸= mπ and θ = 2nπ

C1 (α) δ (t + v) ei[a(α)(x2+u2)−p(α)xu], if α ̸= mπ and θ = (2n − 1)π

C2 (θ) δ (x − u) e[b(θ)(t
2+v2)−q(θ)tv], if α = 2mπand θ ̸= nπ

C2 (θ) δ (x + u) e[b(θ)(t
2+v2)−q(θ)tv], if α = (2m − 1)π and θ ̸= nπ

δ (x − u) δ (t − v) , if α, θ ∈ {2kπ : k ∈ Z}

δ (x − u) δ (t + v) , if α = 2mπand θ = (2n − 1)π

δ (x + u) δ (t − v) , if α = (2m − 1)π and θ = 2nπ

δ (x + u) δ (t + v) , if α, θ ∈ {(2k − 1)π : k ∈ Z}

(2)

With

C1 (α) =

√
1 − icotα

2π
, C2 (θ) =

√
1 − icotθ

2πi
, C (α, θ) = C1 (α)C2 (θ) ,

a (α) =
cotα

2
, b (θ) =

cotθ
2

, p (α) = cscα q (θ) = cscθ ,

and δ denotes the Dirac delta function. Throughout this paper the constants C1(α), C2 (θ), C (α, θ),

a (α), b (θ), p (α) and q (θ) will denote these values and for simplicity we may write them as C1, C2,

C, a, b, p and q respectively. Based on the analysis of FrFLT for different parameter values of α and

θ in [16], FrFLT reduces to different well-known transforms (such as identity transform, reflection

transforms, Fractional Fourier transform, Fractional Laplace transform and Fourier-Laplace transform

if at least one of α, θ is integral multiple of π. Hence, as in [16] we confined our attention to Fα,θ for

α, θ /∈ {kπ : k ∈ Z}. In this case the kernel of FrFLT is:

Kα,θ (x, u, t, v) = C (α, θ) ei[a(x2+u2)−pxu]e[b(t
2+v2)−qtv] (3)

that is,

Kα,θ (x, u, t, v) =

√
1 − icot α

2π

√
1 − icot θ

2πi
e

i
2sin α [(x2+u2)cos α−2xu]e

1
2sin θ [(t2+v2)cos θ−2tv] (4)

2.2 Testing function space

The space E(R2) is a space of all complex valued smooth functions on R2. There is no restriction

imposed on growth of any function ϕ (x, t) ∈ E(R2). It is a multinormed space by assigning to it the

following topology: For each compact subset K of R2 and each non-negative integer k = (l, m) ∈ R2,

the seminorm is defined by

γE,k (ϕ) = sup
(x,t)∈K

∣∣∣Dl
xDm

t ϕ(x, t)
∣∣∣ (5)

A function ϕ belongs to E(R2) if for every compact subset K of R2 and each non-negative integer

k = (l, m) ∈ R2, the seminorm γE,k (ϕ) < ∞. The dual space E ′(R2) of E(R2), is the space of all
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distributions with compact support in R2 (Zemanian [18]). Moreover, we say that f is a Fractional

Fourier-Laplace transformable if it is a member of E ′, the dual space of E .

3. Generalized Fractional Fourier-Laplace Transform

The generalized (distributional) fractional Fourier-Laplace transform of f (x, t) ∈ E ′(R2) is defined by

FLα,θ{ f (x, t)} (u, v) = Fα,θ (u, v) = ⟨ f (x, t) , Kα,θ (x, u, t, v)⟩ , (6)

where Kα,θ (x, u, t, v) is as given in the equation (4). The R.H.S. of equation (6) is meaningful because

one can easily show that, Kα,θ (x, u, t, v) ∈ E(R2) for α, θ /∈ {kπ : k ∈ Z}.

4. Correlation theorem for FrFLT

In this section, we have first defined cross correlation operation ⊚ for FrFLT and then proved the

correlation theorem for FrFLT.

4.1 Cross correlation operation for FrFLT

Definition 4.1. For any two functions f (x, t) , g(x, t) ∈ L1(R2), the 2D cross-correlation operation ⊛ is

defined as follows:

f (x, t)⊛ g (x, t) = f (−x,−t) ∗ g (x, t) ,

where ∗ denotes the usual convolution operation of two 2-dimensional functions and hence it follows that,

( f ⊛ g)(x, t) =
∫ ∞

−∞

∫ ∞

−∞
f (−r,−s)g (x − r, t − s) drds

Letting r′ = −r, s′ = s ⇒ dr′ = −dr, ds′ = −ds, so above is equivalent to

( f ⊛ g)(x, t) =
∫ ∞

−∞

∫ ∞

−∞
f (r′, s′)g

(
x + r′, t + s′

)
dr′ds′ =

∫ ∞

−∞

∫ ∞

−∞
f (r, s)g (x + r, t + s) drds

Definition 4.2. For any two integrable functions f (x, t) and g (x, t) we define cross-correlation operation ⊚

for FrFLT as follows:

h (x, t) = ( f ⊚ g)(x, t) = Ce−i(ax2−ibt2)( f̃ ⊛ g̃)(x, t) (7)

Theorem 4.3 (Correlation Theorem). Let h(x, t) = ( f ⊚ g) (x, t) and Fα,θ , Gα,θ and Hα,θ denotes the fractional

Fourier-Laplace transform (FrFLT) of f , g and h respectively. Then

Hα,θ (u, v) = ei(au2+ibv2)Fα,θ (u,−v)Gα,θ(u, v) (8)
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Proof. By definition of FrFLT we have,

Hα,θ (u, v) =
∫ ∞

−∞

∫ ∞

−∞
h (x, t) Kα,θ (x, u, t, v) dxdt

= C
∫ ∞

−∞

∫ ∞

−∞
( f ⊚ g) (x, t) ei[a(x2+u2)−pxu]e[b(t

2+v2)−qtv]dxdt

= CC
∫ ∞

−∞

∫ ∞

−∞
e−i(ax2−ibt2) ( f̃ ⊛ g̃

)
(x, t) ei[a(x2+u2)−pxu]e[b(t

2+v2)−qtv]dxdt

= CC
∫ ∞

−∞

∫ ∞

−∞
e−i(ax2−ibt2)

{∫ ∞

−∞

∫ ∞

−∞
f̃ (r, s)g̃ (x + r, t + s) drds

}
× ei[a(x2+u2)−pxu]e[b(t

2+v2)−qtv]dxdt

= CC
∫ ∞

−∞

∫ ∞

−∞
e−i(ax2−ibt2)

×
{∫ ∞

−∞

∫ ∞

−∞
f (r, s) ei(ar2−ibs2)g (x + r, t + s) ei(a(x+r)2−ib(s+t)2

drds
}

× ei[a(x2+u2)−pxu]e[b(t
2+v2)−qtv]dxdt

Letting x + r = m, s + t = n ⇒ dx = dm, dt = dn above becomes,

Hα,θ (u, v) = CC
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f (r, s)g (m, n)e−i(a(m−r)2−ib(n−s)2)e−iar2+bs2

ei(am2−ibn2)

× ei[a((m−r)2+u2)−p(m−r)u]e[b((n−s)2+v2)−q(n−s)v]drdsdmdn

= Ceiau2
e−bv2

∫ ∞

−∞

∫ ∞

−∞
f (r, s)e−i[a(r2+u2)−pru]e[b(s

2+(−v)2)−qs(−v)] drds

× C
∫ ∞

−∞

∫ ∞

−∞
g (m, n) ei[a(m2+u2)−pmu]e[b(n2+v2)−qnv]dmdn

= Ceiau2
e−bv2

∫ ∞

−∞

∫ ∞

−∞
f (r, s)ei[a(r2+u2)−pru]e[b(s

2+(−v)2)−qs(−v)]drds

× C
∫ ∞

−∞

∫ ∞

−∞
g (m, n) ei[a(m2+u2)−pmu]e[b(n2+v2)−qnv]dmdn

= ei(au2+ibv2)FLα,θ { f (r, s)} (u,−v)FLα,θ{g (m, n)}(u, v)

= ei(au2+ibv2)Fα,θ (u,−v)Gα,θ(u, v)

This completes the proof.

5. Application of FrFLT to Generalized Wave Equation

Using the fractional Fourier-Laplace transform we investigate the solution of the generalized wave

equation associated with FrFLT.

∂2ϕ(x, t, τ)

∂τ2 =
[(

∆′
x
)2

+
(
∆′

x
)2
]

ϕ (x, t, τ) , (x, t) ∈ R2, τ > 0 (9)

where

∆′
x = −

(
d

dx
+ ixcotα

)
and ∆′

t = i
(

d
dt

− tcotθ
)
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with initial conditions

ϕ (x, t, 0) = f (x, t) ,−∞ < x < ∞,−∞ < t < ∞ (10)

and [
∂ϕ (x, t, τ)

∂τ

]
τ=0

= g (x, t) ,−∞ < x < ∞,−∞ < t < ∞ (11)

Applying the FrFLT to both sides of (9), we get

∂2Φ (u, v, τ)

∂τ2 +
[
u2csc2α + v2csc2θ

]
Φ (u, v, τ) = 0, (12)

where

Φ (u, v, τ) = FLα,θ {ϕ (x, t, τ)}

The equation (12) is a second-order ordinary differential equation (ODE) in τ for each fixed (u, v). It

can be written as
∂2Φ (u, v, τ)

∂τ2 + γ2Φ (u, v, τ) = 0,

where

γ2 = u2csc2α + v2csc2θ

Hence, the general solution of this ODE is of form

Φ (u, v, τ) = A (u, v) cos (γτ) + B(u, v)sin (γτ) (13)

Now, to determine the constants A (u, v) and B(u, v), we use the initial conditions at τ = 0 we have,

Φ (u, v, 0) = FLα,θ {ϕ (x, t, 0)}

= FLα,θ { f (x, t)} (u, v)

and equation (13) at τ = 0 gives

Φ (u, v, 0) = A (u, v)

⇒ A (u, v) = FLα,θ { f (x, t)} (u, v)

Now, by the initial condition (11), we have

[
∂Φ (u, v, τ)

∂τ

]
τ=0

= FLα,θ

{
∂ϕ (x, t, τ)

∂τ

}
(u, v) = FLα,θ {g (x, t)} (u, v) (14)

and from (13), we have

∂Φ (u, v, τ)

∂τ
= −γA (u, v) sin (γτ) + γB(u, v)cos (γτ)
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Setting τ = 0 above gives [
∂Φ (u, v, τ)

∂τ

]
τ=0

= γB(u, v)

Therefore using (14) above gives

γB (u, v) = FLα,θ {g (x, t)} (u, v)

⇒ B (u, v) =
1
γ
FLα,θ {g (x, t)} (u, v)

Thus, the complete transform–domain solution is

Φ (u, v, τ) = FLα,θ { f (x, t)} (u, v)cos (γτ) +
1
γ
FLα,θ {g (x, t)} (u, v)sin (γτ) (15)

To recover the solution ϕ (x, t, τ) in the physical domain, we now apply the inverse FrFLT:

ϕ (x, t, τ) =
∫ ∞

−∞

∫ ∞

−∞

{
FLα,θ { f (x, t)} (u, v)cos (γτ) +

1
γ
FLα,θ {g (x, t)} (u, v)sin (γτ)

}
K̃α,θ (x, u, t, v) dudv (16)

Example 5.1. Solve

∂2ϕ(x, t, τ)

∂τ2 =
[(

∆′
x
)2

+
(
∆′

x
)2
]

ϕ (x, t, τ) , (x, t) ∈ R2, τ > 0 (17)

where

∆′
x = −

(
d

dx
+ ixcotα

)
and ∆′

t = i
(

d
dt

− tcotθ
)

with initial conditions

ϕ (x, t, 0) = f (x, t) = e−x2−t2
,−∞ < x < ∞,−∞ < t < ∞ (18)

and [
∂ϕ (x, t, τ)

∂τ

]
τ=0

= g (x, t) = 0,−∞ < x < ∞,−∞ < t < ∞ (19)

In this case (15) takes the form

Φ (u, v, τ) = FLα,θ

{
e−x2−t2

}
(u, v)cos

(√
u2csc2α + v2csc2θτ

)
and thus (16) takes the form

ϕ (x, t, τ) =
∫ ∞

−∞

∫ ∞

−∞

{
FLα,θ

{
e−x2−t2

}
(u, v)

}
cos

(√
u2csc2α + v2csc2θτ

)}
K̃α,θ (x, u, t, v) dudv
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For α = θ = π, this gives

ϕ (x, t, τ) =
∫ ∞

−∞

∫ ∞

−∞

{
e−u2−v2

cos τ
}

δ (x + u) δ (t + v) dudv

= cos τ
∫ ∞

−∞

∫ ∞

−∞
e−u2−v2

δ (x + u) δ (t + v) dudv

= e−x2−t2
cos τ

Following Figure 1, shows the plot of ϕ (x, t, τ) for τ = 2.

Figure 1:

6. Conclusion

In conclusion, this work extends the theory of the Fractional Fourier-Laplace Transform (FrFLT) by

applying it to distributions and proving a cross-correlation theorem. The use of FrFLT in generalized

wave equations shows its practical value in solving complex problems. These results lay a clear

foundation for future research in this area. Further studies can build on these findings to explore

additional applications and deepen our understanding of the transform.
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