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Abstract

This research paper presents a novel approach to solving ordinary differential equations (ODEs)

using the Saxena & Gupta transform, a recently introduced mathematical tool with promising

applications in differential equation solving. We apply this transform to various types of ODEs

and analyze its effectiveness and give the graphs for different values using Mathematica (version-

12.0). The results demonstrate that the Saxena & Gupta transform provides an efficient and accurate

technique for solving ODEs. This research enhances the mathematical framework for solving ODEs

and has potential applications in engineering, physics, and applied mathematics.
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1. Introduction

Integral transforms have become a crucial tool across various fields of science and engineering,

particularly in mathematical physics, optics, engineering mathematics, cryptography, and image

processing [1–10]. Their significance lies in their ability to simplify complex problems by

transforming them from one space to another, making solutions more accessible or reducing the

number of independent variables involved. Over time, numerous integral transforms have been

developed and widely applied to both theoretical and practical problems. Some of the most

extensively used transforms include the Laplace [11,12], Fourier [2], Sumudu [13,14], Elzaki [15–17],

Aboodh [18], Natural, and Z transforms [19], each contributing uniquely to solving diverse problems

in these fields. This research investigates the application of the Saxena & Gupta transform [20] in

solving first-order, first-degree differential equations and give the graphs also. An analysis

demonstrates that this transform yields accurate analytical solutions with potentially simpler

calculations. Graphical representations using Mathematica (version-12.0), validate the results,

highlighting its applicability in engineering, physics, and applied mathematics. This study

contributes to the development of integral transforms for solving differential equations efficiently.
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1.1 Some Definitions

Definition 1.1. A first-order first-degree differential equation is a differential equation that involves the first

derivative of the unknown function and the equation is of the first degree. The general form of such an equation

is:

F
(

x, y,
dy
dx

)
= 0 (1)

y = f (x) is the unknown function, and the highest derivative that appears is the first derivative dy
dx .

Definition 1.2. For all real numbers t > 0, the transform of see in [20]

F(v) = Z[ f (t)] =
1
v

∫ ∞

0
f (vt)e−tdt. (2)

Definition 1.3 ([20]). First Derivative:

Z
[
F′ (t)

]
=

F (v)
v

− f (0)
v2 , (3)

Second Derivative:

Z
[

F
′′
(t)

]
=

F (v)
v2 − f (0)

v3 − f ′ (0)
v2 , (4)

Nth Derivative:

Z [Fn (t)] =
F (v)

vn −
n−1

∑
k=0

f k (0)
vn+1−k . (5)

Definition 1.4 ([20]).

S. No. Function f (t) Laplace transform L[ f (t)] Saxena and Gupta transform Z[ f (t)]
1 1 1

v
1
v

2 t 1
v2 1

3 t2 2!
v3 2v

4 tn n!
sn+1

vn−1

τ(n+1)

5 eat 1
s−a

1
v(1−av)

6 sinat a
a2+s2

a
1+a2 v2

7 cosat s
a2+s2

1
v(1+a2v2)

8 sinhat a
s2−a2

a
1−a2v2

9 coshat s
s2−a2

1
v(1−a2v2)

2. Main Results

We consider some ordinary differential equations (ODEs) and solve using with Saxena & Gupta

transform also include the graphs by plotting them using Mathematica (version-12.0).

Example 2.1. Solve
d2y
dx2 + y = 0, (6)



Applications of Saxena and Gupta Transform in Solving... / Bharat Mewara, Hemlata Saxena, Pulkit Gahlot 37

where y (0) = 1 and dy
dx = −1 at x = 0.

Solution. By taking Saxena & Gupta transform on both side of given equation (6), we get

Z{y”(x)}+ Z{y(x)} = Z{0}
F (v)

v2 − f (0)
v3 − f ′ (0)

v2 + F (v) = 0

F (v)
v2 − 1

v3 − (−1)
v2 + F (v) = 0

F (v)
(

1
v2 + 1

)
=

1
v3 − 1

v2

F (v) =
1 − v

v(1 + v2)

F (v) =
1

v (1 + v2)
− 1

1 + v2

Now, taking inverse of Saxena & Gupta transform we obtain the required solution

y (x) = cos x − sin x.

Figure 1: Plot the function y (x) = cos x − sin x with respect to x over the range [−3π, 3π]

Example 2.2. Solve
dy
dx

+ y = 1, (7)

given that y = 2 and when x = 0, y (0) = 2.

Solution. By taking Saxena & Gupta transform on both side of equation (7), we obtain

Z
{

y′ (x)
}
+ z {y (x)} = Z{1}

F (v)
v

− y (0)
v2 + F (v) = Z{1}

F (v)
v

− 2
v2 + F (v) =

1
v
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F (v)
(

1
v
+ 1

)
=

1
v
+

2
v2

F (v) =
v + 2

v (1 + v)

F (v) =
v + 1 + 1
v (1 + v)

Z {y (x)} =
1
v
+

1
v (1 + v)

Now, taking inverse transform of Saxena & Gupta method, we get the required solution.

y (x) = 1 + e−x.

Figure 2: Plot the function y (x) = 1 + e−x with respect to x over the range [0, 10]

Example 2.3. Solve
d2y
dx2 + y = 0, (8)

where y (0) = 1, y′ (0) = 0.

Solution. By taking Saxena & Gupta transform on both side of equation (8), we get

Z{y”(x)}+ Z{y(x)} = Z{0}
F (v)

v2 − y (0)
v3 − y′ (0)

v2 + F(v) = 0

F (v)
(

1
v2 + 1

)
− 1

v3 = 0

F (v)
(

1 + v2

v2

)
=

1
v3

Z {y (x)} =
1

v (1 + v2)

Now, taking inverse of Saxena & Gupta transform we obtain the require solution

y (x) = cos x.



Applications of Saxena and Gupta Transform in Solving... / Bharat Mewara, Hemlata Saxena, Pulkit Gahlot 39

Figure 3: Plot the function y(x) = cos x with respect to x over the range [−2π, 2π]

Example 2.4. Solve
dy
dx

+ y = 0, (9)

where y (0) = 2.

Solution. By taking Saxena & Gupta transform on both side of equation (9), we get

Z
{

y′ (x)
}
+ Z {y (x)} = Z{0}

F (v)
v

− y (0)
v2 + F (v) = 0

F (v)
(

1
v
+ 1

)
=

2
v2

F (v)
(

1 + v
v

)
=

2
v2

Z {y (x)} =
2

v (1 + v)

Now, taking inverse of Saxena & Gupta transform we obtain the require solution

y (x) = 2e−x.

Figure 4: Plot the function y (x) = 2e−x with respect to x over the range [0, 10]
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Example 2.5. Solve
d2y
dx2 + 4y = 0, (10)

where y (0) = −1, dy
dx (0) = 0.

Solution. By taking Saxena & Gupta transform on both sides of equation (10), we get

Z{y”(x)}+ 4 Z{y(x)} = z{0}
F (v)

v2 − y (0)
v3 − y′ (0)

v2 + 4F (v) = 0

F (v)
(

1
v2 + 4

)
−

(
− 1

v3

)
= 0

F (v)
(

1 + 4v2

v2

)
= − 1

v3

Z {y (x)} = − 1
v (1 + 4v2)

Now, taking inverse of Saxena & Gupta transform we obtain the require solution

y (x) = −cos(2x).

Figure 5: Plot the function y (x) = −cos(2x) with respect to x over the range [−2π, 2π]

Example 2.6. Solve
dy
dx

− 2y = 0, (11)

where y (0) = 4.

Solution. By taking Saxena & Gupta transform on both sides of equation (11), we get

Z
{

y′ (x)
}
− 2 Z {y (x)} = Z{0}

F (v)
v

− y (0)
v2 − 2 F (v) = 0

F (v)
(

1
v
− 2

)
− 4

v2 = 0
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F (v)
(

1 − 2v
v

)
=

4
v2

Z {y (x)} =
4

v (1 − 2v)

Now, taking inverse of Saxena & Gupta transform we obtain the require solution

y (x) = 4e2x.

Figure 6: Plot the function y (x) = 4e2x with respect to x over the range [0, 10]

3. Conclusion

The Saxena and Gupta transform Method presents a powerful alternative for solving differential

equations. Its unique features and applications make it a significant advancement in the field of

mathematical analysis. Additionally, it has been successfully applied in fields such as mathematical

physics, engineering mathematics, and control systems. Its capability to solve problems involving

exponential, trigonometric, and polynomial functions enhances its applicability, making it a valuable

advancement in modern mathematical analysis and applied sciences. Finally, plot solutions of

first-order, first-degree differential equations using the Saxena and Gupta transform in Mathematica

(version-12.0).
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