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Abstract

In this paper we characterize compact composition operator on H2 (D) in terms of kernel function

for H2 (D). We discuss algebraic characterization of composition operators and compactness of

composition operator on H2. This is also provide some contribution to the spectrum of compact

composition operators on H2.
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1. Introduction

In 1968, compactness of composition operators on H2 had been first studied by H. J. Schwarz [1] in

his doctoral thesis and refined the compactness problem by T. Shapiro and P. Taylor [2] in 1973 by

confirming which composition operators belongs to the Hilbert-Schmidt classes. In [2], they proved

that Cφ belong to the Hilbert-Schmidt classes if and only if
∫

∂D(1 − |φ∗|)−1 is finite, where φ∗ is

the boundary value function of φ. Throughout this paper, we denote by D the open unit disc of

the complex plane, i.e., D = {z ∈ C, |z| < 1} and its closure D = {z ∈ C, |z| ≤ 1} and its boundary

B = ∂D = {z ∈ C, |z| = 1} and M be Lebesgue measure on B. Let φ : D → D be an analytic map on

D in to itself. The composition operator Cφ : H2 → H2 is the map f → f oφ i.e., Cφ ( f ) = f oφ, by [2]

that every composition operator on Hardy space H2 in to itself is continuous. We denote the spectrum

and the point spectrum of Cφ by σ
(
Cφ

)
and σp

(
Cφ

)
respectively. For each b ∈ B and 0 < h < 1,

the Carleson window W (b, h) be the set W (b, h) =
{

z ∈ D, |z| ≥ 1 − h and
∣∣∣arg

(
zb
)∣∣∣ ≤ h

}
and every

positive measure Mφ on D, we sets a function µMφ (h) = supb∈BMφ [W (b, h)], we call this function

µMφ
be the Carleson function of Mφ. For each borel set B ⊆ D, Mφ (B) = M ({b ∈ B, φ∗ (b) ∈ B}),

where φ∗ is the boundary values function of analytic map φ. We denote µMφ
by µφ , in this case we

say, µφ is the Cerleson function of φ. For a ≥ 1, we say Mφ is an a−Carleson measure if µMφ (h) ≲ ha

, for a = 1, Mφ is likely to said Carleson measure. By B. Maccluer [3] had proved that composition
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operator Cφ is compact on Hp if and only if µφ (h) = o (h), as h → 0, with condition that |φ∗| < 1 a.e

on B. An operator T on Hilbert space H with finite pth Schatten norm ie ∥T∥P =
[
Tr
(
|T|p

)]1/p
< ∞,

where |T| =
√
(T∗T), is called pth Schatten class

(
Sp
)

operator. We refer to Kelley-Namioka [8] for

notions and properties of compact operators.

2. Preliminaries

Let X be a topological vector space and L (X) be the collection of complex valued functions on X,

which is vector space with the operation of usual addition of function and scalar multiplication over

the field F.

Definition 2.1. Let X be a set. We call a subset H ⊆ L (X, F) is a reproducing kernel Hilbert space (RKHS) on

X over F if it satisfied followings.

(a). H is a vector subspace of L (X, F).

(b). H equipped with inner product ⟨·⟩, making it a Hilbert space such that point wise linear evaluation is

continuous, that is for every y ∈ X, evaluation map Ey : H → F defined by Ey ( f ) = f (y) is continuous.

By the Riesz-representation theorem, for every ∈ X, there exists a unique vector ky ∈ H such that for every

f ∈ H, f (y) =
〈

f , ky
〉
. The function ky is called the reproducing kernel for the point y.

The function K : X × X → F defined by K (x, y) = ky (x) is called the reproducing kernel for H. Then

we have K (x, y) = ky (x) =
〈
ky, kx

〉
and

∥∥Ey
∥∥2

=
∥∥ky
∥∥2

=
〈
ky, ky

〉
= K (y, y). This kernel is said to be

positive definite kernel if

(a). K (x, y) = K (y, x)

(b). for all λ1, λ2, . . . λn ∈ F and x1, x2, . . . xn ∈ X distinct such that ∑
i,j

λiK
(
xi, xj

)
λj ≥ 0.

Due to, N. Aronsza Jn [4], there is an equivalence between positive definite kernels and RKHSs on a

space.

Theorem 2.2. Let X be a set and K be a positive definite kernel on X. Then there exists a unique reproducing

kernel Hilbert space H ⊆ L (X, F) with kernel K.

Example 2.3 ([5]). To construct H2 (D) is a RKHS on D and also compute the kernel.

Let f and g be two complex power series as f =
∞
∑

n=0
αnzn, g =

∞
∑

n=0
βnzn, we define inner product as

⟨ f , g⟩ =
∞
∑

n=0
αnβn, thus we have that ∥ f ∥2 =

∞
∑

n=0
|αn|2. We define a linear inner product preserving

isomorphism map S : H2 (D) → l2 by ( f ) = (α0, α1, . . . ), since l2 is a Hilbert space, then H2 (D) is

also as Hilbert space, hence condition (b) is verified. Since power series define on D agree with vector
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addition and scalar multiplication, so condition (a) is satisfy. Now, we see that every power series in

H2 (D) converges to a function on D. Let w ∈ D then we have,

|Ew ( f )| =
∣∣∣∣∣ ∞

∑
n=0

αnwn

∣∣∣∣∣ ≤ ∞

∑
n=0

|αn| |w|n ≤
(

∞

∑
n=0

|αn|2
)1/2( ∞

∑
n=0

|w|2n

)1/2

= ∥ f ∥ 1√
1 − |w|2

(1)

This implies Ew is bounded ,so it is continuous and ∥Ew∥ ≤ 1√
1−|w|2

, hence H2 (D) is a RKHS on

D. For kernel, let c ∈ D, let g (z) =
∞
∑

n=0
cnzn ∈ H2 (D) and any f (z) =

∞
∑

n=0
αnzn ∈ H2 (D), we have

⟨ f , g⟩ =
∞
∑

n=0
αncn = f (c), thus, g is the reproducing kernel for c ∈ D and so,

K (w, c) = kc (w) = g (w) =
∞

∑
n=0

cnwn =
1

1 − cw
and ∥Ew∥ = K (w, w) =

1√
1 − |w|2

(2)

We recalling the results due to D. Luecking [6], of the composition operators on H2 which belongs to

Hilbert-schmidt classes. Let, an integer m ≥ 1 and 0 ≤ i ≤ 2m − 1, define a set called Luecking set,

Rm,i =

{
w ∈ D, 1 − 2−m ≤ |w| < 1 − 2−m−1 and

iπ
2m−1 ≤ arg w <

(i + 1)π

2m−1

}
(3)

Theorem 2.4 ([6]). For every p > 0, and |φ∗| < 1 a.e on B, the composition operator Cφ belong to the

schatten classes Sp if and only if ∑
m≥0

2mp/2
(

2m−1
∑

i=0

[
Mφ (Rm,i)

]p/2
)
< ∞, where Mφ (Rm,i) by

Mφ

{
W
(

e2−m(2i+1)π, 2−m
)}

≤ µφ (2−m).

Proposition 2.5. Let φ : D → D be analytic map with |φ∗| < 1 a.e on B and Mφ is an a-carleson measure,

with an integer a > 2 then Cφ belongs to Hilbert-schmidt classes (S2).

Proof. Since µφ (h) ≲ ha, we get

∑
m≥0

2m

(
2m−1

∑
i=0

Mφ (Rm,i)

)
≲ ∑

m≥0
2nh (2−na) = ∑

m≥0
2m (1 − (a − 1) h) < ∞

since 1 − (a − 1) < 0.

Proposition 2.6. Let Mφ be a finite positive measure on D and let > 2, then the followings are equivalent, (a)
∞
∑

m=1

2m−1
∑

i=0
2ma(Mφ (Rm,i)

)a
< ∞, (b)

∞
∑

m=1

2m−1
∑

i=0
2ma(Mφ (Wm,i)

)a
< ∞.

Theorem 2.7. Let φ : D → D be analytic map with |φ∗| < 1 a.e on B. The composition operator Cφ : H2 → H2

belong to Hilbert-Schmidt classes if as h goes to 0, µφ (h) = o
(

h
(
log 1

h

)−1
)

.

Proof. By the Luecking’s characterization and the equivalency in Proposition 2.5, we have for finite

positive measure Mφ,
∞

∑
m=1

2m−1

∑
i=0

2ma (Mφ (Wm,i)
)
< ∞ (4)
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We have, if h = 2−m, every window W (b, h) is contained in the union of at most three of the Wm,i’s

hence, µφ (2−n) ≤ max
0≤i≤2m−1

Mφ (Wm,i) ≤ 3
2m−1

∑
i=0

(
Mφ (Wm,i)

)
and (4) gives,

∞
∑

m=1

(
µφ (2−m)

)
2m < ∞, then

we setting ϑm = ∑
m
2 ≤k≤m

(
µφ

(
2−k)) 2k and we get

logm→∞ ϑm = 0 (5)

For a constant c > 0, such that for k ≤ m, cµφ

(
2−k) ≥ 2m−kµφ (2−m) and so,

cϑm ≥
(m

2

)(µφ (2−m)

2−m

)
(6)

We consider, for each h ∈
(
0, 1

2

)
, the integer m such that 2−m−1 < h ≤ 2−m, then by (5) and (6), we get,

lim
h→0

(
µφ(h)

h

)
log
( 1

h

)
= 0, hence, we say that Cφ is compact.

3. Characterizations and Results

Let H2 (D), be the Hardy space of analytic function f on D = (w ∈ C, |w| < 1) with norm of f ,

∥ f ∥2 = sup
|w|<1

[
1

2π

∫ 2π
0 | f (w)|2dθ

]1/2
< ∞, where θ = arg (w), and φ be an analytic map on D in to

itself and φ induces a composition operator Cφ : H2 → H2 defined by Cφ f = f oφ for all f ∈ H2

and Cφ is bounded with
∥∥Cφ

∥∥ ≤
(

1+|φ(0)|
1−|φ(0)|

)1/2
. Let L

(
H2 (D)

)
be the algebra of linear and bounded

operator on H2 (D). Clearly, the linearity is trivial and boundedness follows from the definition of

weak operator topology. An algebra homomorphism T : H2 (D) → H2 (D) is a linear map satisfying

T ( f .g) = T ( f ) .T (g) for all f , g ∈ H2 (D).

Lemma 3.1 ([6]). Let S : H2 (D) → C be a continuous algebra homomorphism, S ̸= 0, then there exists a point

w0 ∈ D such that Sg = g (w0) for all g ∈ H2 (D).

Proposition 3.2. Let T : H2 (D) → H2 (D) be a linear operator, then the following assertions are equivalent,

(a). there exists a analytic map φ : D → D such that = Cφ,

(b). T is not trivial algebra homomorphism, ie T ̸= 0,

(c). T is bounded and T (gn) = (Tg)n, for all n ∈ N0.

Proof. We define gn ∈ H2 (D) by gn (w) = wn for all w ∈ D and all n ∈ N0. Since (a) ⇒ (c) is trivial.

For (c) ⇒ (b), we follows from (c) that T ( f .g) = T ( f ) .T (g), if f and g are polynomials. Since the set

of polynomials is dense subset in H2 (D) and the multiplication is continuous, so bounded, hence (b)

establish. Lastly for (b) ⇒ (a), since T ̸= 0, and by Lemma 3.1, that T (g0) = g0, let w ∈ D, then by

existence S (g) = (Tg) (w) is an algebra homomorphism and S (g0) = 1, then there exists φ (w) ∈ D

such that (T f )w = f (φ (w)) for all f ∈ H2 (D), and hence φ = T (g1) ∈ H2 (D), and (a) derived.

Corollary 3.3. Let X = H2 and φ is analytic self map on D, then the followings are equivalents;
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(a). Cφ is invertible in L (X)

(b). φ is an automorphism of D.

Proof. (a) ⇒ (b) Let Cφ be invertible and A = C−1
φ , then A is an algebra homomorphism, by

Proposition 3.2, there exist an analytic map ω : D → D such that A = Cω, then,

g1 = Cφ (Cωg1) = ωoφ and g1 = Cω

(
Cφg1

)
= φoω, hence φ is an automorphism and ω = φ−1.

(b) ⇒ (a), it is clear, since, C−1
φ Cφ = CφC−1

φ = I.

Let X be a separable Hilbert space. A linear operator A : X → X be compact if there exist a

neighbourhood NO of O such that ANO is relatively compact. Since compact linear operator is always

continuous. Since NO is neighbourhood of O then there exist a compact subset C ⊂ D and ε > 0 such

that NCε =
{

f ∈ H2 : | f (w)| < ε, f or all w ∈ C
}
⊂ NO.

Theorem 3.4. Let φ : D → D be analytic. Then the followings are equivalents;

(a). Cφ is compact operator from H2 (D) and H2 (D)

(b). sup
w∈D

|φ (w)| < 1.

Proof. (a) ⇒ (b), we assume that φ (D) is not subset of tD for all 0 < t < 1 and NO be a neighbourhood

of O, then we show that Cφ (NO) is not relatively compact, there exist 0 < ϵ < 1 and 0 < t0 <

1 such that Nϵ =
{

f ∈ H2 (D) : | f (w)| < ϵ f or all w ∈ t0D
}

⊂ NO, for this, we have sufficient to

prove that Cφ (Nϵ) is not relatively compact. Then by assumption, that there exist z0 ∈ D such that

w0 = φ (z0) /∈ t0D, then there exist t0 < t1 < 1 and h > 0 such that t1D ∩ D (w0, h) = ∅. Then

the set M = t0D ∪ (w0) is compact and C/M is connected. Let n ∈ N0 and define ln by, ln (z) =

0 i f z ∈ t1D and ln (z) = n + 1 i f z ∈ D (w0, h); set L = t1D ∪ D (w0, h) then M ⊂ L and ln :

L → C is homomorphic. By Runge Theorem [8], there exist a polynomial Pn : C → C such that

|Pn (m)− ln (m)| < ε for all m ∈ M. This show that Pn/D ∈ Nϵ and |Pn (w0)| ≥ n, hence the sequence(
CφPn

)
n∈N0

has no convergent subsequence. For (b) ⇒ (a), we assume that sup
z∈D

|φ (z)| = t0 < 1, the

set N0 =
{

f ∈ H2 (D) : | f (z)| < 1 i f |z| ≤ t0
}

is a neighbourhood of O in H2 (D). Let g ∈ N0, since

φ (D) ⊂ t0D, then | f (φ (z))| < 1 for all z ∈ D. We apply Montel Theorem [8], that Cφ (N0) is relatively

compact in H2. Hence (a) established.

The reproducing kernel for H2 (D), Kc (w) = 1
1−cw , where c ∈ D, has a property that for f ∈ H2 (D),

⟨ f , kc⟩ = f (c). The function kc is itself on H2 (D) function, has a norm 1√
1−|c|2

. We characterize Cφ

among operator on H2 in terms of kernel function Kc.

Theorem 3.5. Let T be an operator on H2. Then T is a composition operator if and only if the set (kc : c ∈ D)

is invariant under T∗. In this case T = Cφ, where φ and T has a relation T∗ (kc) = Kφ(c).

Proof. If T = Cφ is a composition operator, then for each f , ⟨T∗ (kc) , f ⟩ = kc (T f ) = kc ( f oφ) =

f (φ (c)) = Kφ(c) ( f ). So T∗ (kc) = Kφ(c) and the set of point evaluation linear functionals is invariant

under T∗.
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Conversely, if the set of point evaluation linear functional is invariant under T∗, then if f ∈ H2 (D),

(T f ) (c) = ⟨T f , kc⟩ = ⟨ f , T∗kc⟩ =
〈

f , Kφ(c)

〉
= f (φ (c)), by taking f be the identity function f (c) = c,

then φ is analytic and T = Cφ.

Corollary 3.6. If φ is an analytic map on unit disk in to itself such that φ (0) = 0 and f is in H2 (D) then∥∥Cφ

∥∥
2 ≤ ∥ f ∥2.

Proof. If f is analytic, then H = | f |2 is subharmonic and
∥∥Cφ

∥∥
2 ≤ ∥ f oφ∥2 and ∥ f ∥2 are the square

roots of the integrals in the theorem.

Proposition 3.7. If f is in H2 (D) and φ is an analytic map of unit disk in to itself, then
(
Cφ f

)∗
= f ∗oφ∗

almost everywhere.

Proof. Since all function belongs to H2 (D) is a quotient of two H∞ (D) functions. So it is sufficient to

prove this results for f in H∞ (D). Let such an f there is a set A which is subset of boundary of D

with full measure such that ( f oφ) and φ have radial limits at each point of A. We write A = A1 ∪ A2,

where φ has radial limits of modulus one on A1 and modulus less than one on A2. For c in A2 we

have clearly ( f oφ)∗ = f ∗oφ∗ and by continuity of f in D. And for c in A1, by definition of A satisfy

that f has a limit along the arcφ (rc), where 0 < r < 1. Then by Lindelof’s theorem, f has radial limit

at φ∗ (c) equal to ( f oφ)∗ (c) and hence f ∗ (φ∗ (c)) = ( f oφ)∗ (c) =
(
Cφ f

)∗
(c).

Proposition 3.8. Let H2 (D) be a RKHS on the set D with kernel K, then the linear span of the function,

ky (.) = K (., y) is dense in H2 (D).

Proof. Since any function f ∈ H2 is orthogonal to the span of the function
(
ky : y ∈ D

)
if and only if〈

f , ky
〉
= f (y) = 0 for every y ∈ D, which is if and only if f = 0.

Lemma 3.9. Let H2 (D) be RKHS on D and let (gn) ⊆ H2 (D), if Lim ∥gn − g∥ = 0 then g (x) =

Limn→∞gn (x) for each x ∈ D.

Proof. It is easy to satisfy, since

|gn (x)− g (x)| = |⟨gn − g, kx⟩| ≤ ∥gn − g∥ ∥kx∥ → 0 (7)

Proposition 3.10. Let A and B are two RKHS on D having same kernel then both are equals and ∥ f ∥A = ∥ f ∥B

for every f .

Proof. Let K (x, y) be the kernel of A and B and let WA = span (kx : x ∈ D) and WB = span
(
ky : y ∈ D

)
,

then by Proposition 3.8, WA and WB is dense in A and B respectively. For any f ∈ WA, then f (x) =

∑
i

aikxi (x) and its value as function are independent of whether we having it as in WA or WB and such

f , ∥ f ∥2
A = ∑

i,j
aiaj

〈
kxi , kxj

〉
= ∑

i,j
aiajK

(
xj, xi

)
= ∥ f ∥2

B. Thus ∥ f ∥A = ∥ f ∥B for all f ∈ WA = WB.
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Now, if g ∈ A, then there exist a sequence {gn} ⊆ WA with ∥gn − g∥A → 0, since {gn} is Cauchy in WA,

it is also Cauchy in WB, so there exist f ∈ B with ∥ f − gn∥ → 0, by Lemma 3.9, g (x) = lim
n→∞

gn (x) =

f (x), thus every g ∈ A is also in B and every f ∈ B is in A, Hence, A = B. Since ∥g∥A = ∥g∥B for each

g in a dense subset WA and WB and hence that the norms are equal for every g.

Proposition 3.11. Let φ : D → D and K be a kernel function on H2 (D) then CφK = Koφ is a kernel function

on D.

Proof. Let z1, z2 . . . , zn ∈ D and β1, β2, . . . , βn be scalar and let

(
x1, x2, . . . , xp

)
= (φ (z1) , φ (z2) , . . . , φ (zn))

so that p ≤ n. Set LK = {i : φ (zi) = xK} and MK = ∑i∈LK
βi, then

∑
i,j

βiβjK
(

φ (zi) , φ
(
zj
))

= ∑
k,l

∑
i∈Lk

∑
j∈Ll

βiβjK (zk, zl) = ∑
k,l

Mk MlK (zk, zl) ≥ 0

Hence, CφK = Koφ is a kernel function on D.

Theorem 3.12. Let φ : D → D be analytic on D and K : H2 (D)× H2 (D) → C be positive definite then

H (Koφ) =
(

f oφ : f ∈ H2 (D)
)

and for h ∈ H (Koφ) then ∥h∥H = in f {∥ f ∥H2 : h = f oφ}.

Proof. Let f ∈ H2 (D) with ∥ f ∥H2 = d then f (a) f (b) < c2K (a, b) in sense of positive definite order

for all a, b ∈ D. Since this inequality same as a inequality of matrices over finite sets. So we get

that f oφ (x) f oφ (y) ≤ d2K (φ (x) , φ (y)) this implies, f oφ ∈ H (Koφ) having norm ∥ f oφ∥H ≤ d, this

explanation imply there exist a contractive linear map Cφ : H2 (D) → H (Koφ) given by Cφ f = f oφ.

We consider gx (y) = K (φ (y) , φ (x)) so that this is the kernel function for H (Koφ). Since for any set

of points and scalar βi, if u = ∑
i

βigxi then ∥u∥H =

∥∥∥∥∑
i

βiKφ(xi)

∥∥∥∥
H2

it follows that there is well defined

isometry as L : H → H2 such that L (gx) = Kφ(x), hence that CφoL is the identity on H (Koφ) and

proved the results.

Theorem 3.13. Let Di, i = 1, 2 be set and φ : D1 → D2 be analytic and Ki : Di × Di → C, i = 1, 2

kernel function, then the following are equivalent; (a). Cφ : H (K2) → H (K1) is bounded linear operator; (b).

( f oφ : f ∈ H (K2)) ⊆ H (K1); (c). there exist a constant d > 0 such that K2oφ ≤ d2K1.

Proof. (a) ⇒ (b) is clearly. To prove (c) implies (a), let f ∈ H (K2) with ∥ f ∥ = c then f (s) f (t) ≤

c2K2 (s, t) which satisfy that f (φ (s)) f (φ (t)) ≤ c2K2 (φ (s) , φ (t)) ≤ c2d2K1 (s, t) thus, it follows that

Cφ ( f ) = f oφ ∈ H (K1) having norm
∥∥Cφ f

∥∥
1 ≤ d∥ f ∥2 hence Cφ is bounded and

∥∥Cφ

∥∥ ≤ d. Lastly,

(b) ⇒ (c) it is equivalent to the H (K2oφ) ⊆ H (K1) which is equivalent to the kernel inequality, by

Theorem 3.12, hence (b) implies (c) establish.

Now, since Cφ ∈ ∁
(

H2) collection of all composition operator on H2 and Cφ is compact so Cφ ∈ K
(

H2)
then there exist a sequence of operator

(
Cφ

)
n ∈ ∁

(
H2) having a limiting value Cφ as n → ∞, in the



Compact composition operators and RKHS / Awadh Bihari Yadav 24

sense of norm topology on ∁
(

H2). The spectra of compact composition operator Cφ ∈ K
(

H2) depends

on location and nature of the fixed point of the function. This means φ is linear fractional mapping

from disk into itself. General form of φ be (z) = aZ+b
cZ+d , where a, b, c, d ∈ C, maps the unit disk D

into itself. Let φ : D → D be analytic map on D having fixed point a ∈ D that is φ (a) = a and that

0 < |φ′ (a)| < 1, let λn = (φ′ (a))n, n ∈ N0. Let σ
(
Cφ

)
and σp

(
Cφ

)
be denote the spectrum and point

spectrum of Cφ respectively. Since φ /∈ Aut (D) and since 0 is limit point of eigen value of Cφ ∈ K
(

H2)
that is 0 ∈ σ

(
Cφ

)
, By Koenigs’s Theorem [10] that, σp

(
Cφ

)
=
{
(φ′ (a))n : n ∈ N0

}
, we prove that the

whole spectrum σ
(
Cφ

)
is equal to σp

(
Cφ

)
∪ {0}.

Lemma 3.14. Let φ : D → D be analytic and φ is not automorphism with φ (0) = 0, let f ∈ H2 and

λ ∈ C − (0). Suppose that there exist 0 < r < 1 and g ∈ H2 such that λg − goφ = f on rD then g has en

extension g ∈ H2 such that λg − goφ = f on D.

Proof. Let δ = sup {ρ ∈ [r, 1] : g has an analytic extension on ρD}, we prove that δ = 1. Suppose that

δ < 1, there exist g ∈ H2 (δD) an analytic extension of g, having property λg − goφ = f on rD. Since

both side are analytic, then by uniqueness theorem, this identity is true for δD. And by Schwarz’s

Lemma φ (ρD) < ρD for all 0 < ρ < 1 and also follows from the Schwarz Lemma that there exist

δ < δ < 1 such that φ (δD) < δD. Now we taking subsequence (xn)n ∈ D such that xn → x and then

|x| = δ and |φ (x)| ≥ δ which is not possible, since φ /∈ Aut (D). Now since λg = goφ + f , on δD

and since φ (δD) < δD, hence it follows, g has an analytic extension g on δD, which contradict to the

choice of δ. Hence proved.

Corollary 3.15. Let Pk ∈ ∁
(

H2) and mapping Qn =
n
∑

k=0
Pk are projections commuting with Cφ. Moreover

{km : m = 0, 1, 2, . . . n} is a basis of rg(Qn) and ker (Qn) = H2
n (a), thus we have the decomposition

H2 (D) = span (km : m = 0, 1, 2, . . . n)
⊕

H2
n (a) into two subspaces which are invariant by Cφ, where

Pk ( f ) = 1
k! f (k) (a) km.

Theorem 3.16. Let Cφ ∈ K
(

H2) then

σ
(
Cφ

)
=
{
(φ (a))n : n ∈ N0

}
∪ {0} (8)

Proof. For this it is sufficient to prove the surjectivity of
(
Cφ − λn I

)
on H2 (D) for a complex number

λn /∈ {0} ∪
{
(φ (a))n : n ∈ N0

}
, we use Lemma 3.14,

Case 1: We take fix point of φ is 0, that means a = 0. Let λn ∈ C and λn /∈ {0} ∪
{
(φ (0))n : n ∈ N0

}
,

from Koening’s Theorem [10], we know that λn I − Cφ is injective. Then we only have to prove the

surjectivity. Let f ∈ H2 and we choose n ∈ N0 such that |λn+1| < |λn|, by Corollary 3.15, H2 (D) =

rg (Qn)
⊕

H2
n (0), we write f = f1 + f2, where f1 ∈ rg (Qn) and f2 ∈ H2

n (0).

Since Cφ|rgQn is a diagonal operator and λn /∈ σ
(
Cφ/rgQn

)
, then there exist g1 ∈ rg (Qn) such that

λng1 − g1oφ = f1, now for f2, we choose |λ1| < p < 1 such that pn+1 < |λn|. Since lim
x→0

φ(x)
x = λ1, there
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exist 0 < r ≤ 1such that |φ (x)| ≤ p |x| for |x| < r. We take iteration φn = φoφo . . . . . . .oφ (n times) of φ,

then |φn (x)| ≤ pn |x| ≤ pnr for |x| < r, since f2 ∈ H2
n (0), there exist M ≥ 0 such that | f2 (x)| ≤ M|x|n+1

for |x| < r, Now for r ∈ N0, |x| < r, we have,

∣∣∣∣ f2 (φn (x))
λn+1

n

∣∣∣∣ ≤ 1
|λn|

M
|φn (x)|n+1

|λn|n
≤ 1

|λn|
M

pn(n+1)r
|λn|n

≤ Mr

|λn|

(
pn+1

|λn|

)n

(9)

Since, pn+1

|λn| < 1, then g0 (x) =
∞
∑

n=0

g2(φn(x))
λn+1 converges uniformly on rD and we define a function

g0 ∈ H2 (rD), moreover since φ (rD) ⊂ rD.

g0 (φ (x)) =
∞

∑
n=0

f2 (φn (x))
λn+1

n
= λn

∞

∑
n=1

f2 (φn (x))
λn+1

n
= λng0 (x)− f2 (x) on rD. (10)

Now from Lemma 3.14 that g0 is analytic extension of g ∈ H2 (D) satisfying λng − goφ = f2. Thus

implies λn /∈ σ
(
Cφ

)
in this case a = 0.

Case 2: Let fixed point a ∈ D and a ̸= 0, we consider a fractional linear transformation θa : D → D

by θa (x) = a−x
1−ax then θa (0) = a and it is self inverse mapping that means θaoθa = I. Then φ : θaoφoθa

map D into D such that φ (0) = 0. Now since, Cφ = Cθa Cφ Cθa = Cθa Cφ C−1
θa

, then the linear operator

Cφ and Cφ are similar. Similarly follows as Case 1, we deduce that

σ
(
Cφ

)
/{0} = σ

(
Cφ

)
/{0} = σρ

(
Cφ

)
/{0} = σρ

(
Cφ

)
/{0} = {λn : n ∈ N0} (11)

And hence,

σ
(
Cφ

)
= {λn : n ∈ N0} ∪ {0} =

{
(φ (a))n : n ∈ N0

}
∪ {0} (12)

For example, let Cφ ∈ K
(

H2) and we take φ (w) = −1
3 w, then fixed point a = 0 and φ (0) = −1

3 and

σ
(
Cφ

)
=
{(−1

3

)n
: n = 0, 1, 2, 3, . . .

}
∪ {0}.

Theorem 3.17. Let β = (βn) be a sequence define as βn = (n + 1)1−t, where t ≥ 1, and φ is a parabolic

automorphism of D and Cφ acting on H2
β (D) then each point of the unit circle is an eigen value of Cφ with

infinite multiplicity and the spectrum and essential spectrum of Cφ are the unit circle.

Proof. Clearly, βn ≥ 0. If α is fixed point of, then φ (α) = 1. So by Lemma 8.3 in [10], that the

spectrum of Cφ is contained in the disk (λ : |λ| ≤ 1 ), since C−1
φ = Cφ−1 has also spectrum contained

in the closed unit disk, the spectrum of Cφ is contained in the unit circle. We assume that either

φ1 (w) = (1+i)w−1
w+i−1 or, φ2 (w) = (1−i)w−1

w−i−1 , as Cφ is same as a composition operator with symbol φ1 or

φ2. In this case, let f (w) = e
α(w+1)

w−1 , where α ≥ 0, then f is bounded analytic function and f ∈ H2
β.

Moreover f (φ1 (w)) = e−2iα f (w). So f is an eigen vector with eigen value e−2iα, where α ≥ 0 and

f (φ2 (w)) = e2iα f (w), so f is also an eigen vector with eigen value e2iα, where α ≥ 0. Then both cases

has infinitely many values like as every points of the unit circle and in each case, every point of the

unit circle is an eigenvalue of infinite multiplicity. Hence the spectrum and the essential spectrum of
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Cφ are each equal to the unit circle.
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