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Abstract

In 2016 Andreescu and Saul introduced a sandwich type inequality in their book. In this paper we

provided an alternative proof of this inequality by generalizing a problem proposed by Ecker in the

journal MathAMATYC Educator in 2024. We also introduced the geometry of this inequality.
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1. Introduction

Inequality is an important topic in Mathematics. Since Polya first systematically introduced this topic

in [4], there are more and more people studying this topic. Some scholars introduced their studies as a

textbook, like [4] and [5], proving each inequality and then applying them in examples. Some scholars

gathered many problems involving inequalities, and emphasize on techniques of solving them, like [1]

and [2]. In our study, we found one example in [1]. It states:

Example 1.1. Suppose we have n fractions a1
b1

, a2
b2

, a3
b3

, · · · , an
bn

. If m and M are the smallest and largest of these

fractions respectively, show that

m ≤ a1 + a2 + · · ·+ an

b1 + b2 + · · ·+ bn
≤ M.

The proof provided in the book is very neat and take good advantage of the index.

Proof. (by Andreesue and Saul) Since m and M are the smallest and largest of these fractions, we have

m ≤ ai
bi

≤ M, or equivalently mbi ≤ ai ≤ Mbi for every i. Summing these inequalities from i = 1 to

i = n, we have

m (b1 + b2 + · · ·+ bn) ≤ a1 + a2 + · · ·+ an ≤ M (b1 + b2 + · · ·+ bn) ,

which is equivalent to m ≤ a1+a2+···+an
b1+b2+···+bn

≤ M, the claimed inequality.
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In 2024, Ecker proposed a problem in [3].

Example 1.2. (Problem M-3) Let each of q, s, u > 0.

(a). For two fractions p
q ≤ r

s , prove that p
q ≤ p+r

q+s ≤ r
s .

(b). For three fractions p
q ≤ r

s ≤
t
u , prove that p

q ≤ p+r
q+s ≤ p+r+t

q+s+u ≤ r+t
s+u ≤ t

u .

By solving this problem, we realize that we can generalize our proof to solve the problem proposed by

Andreesue and Saul. Therefore, in the next section, we will first introduce our proof to the Problem

M-3 proposed by Ecker. Then we will show our proof to the problem proposed by Andreesue and

Saul. In section 3, we will discuss the geometry of these fractions, and the geometric meaning of the

resulting inequalities.

2. An Alternative Proof

We will start with our proof to Example 1.2.

Proof. Since p
q ≤ r

s , we have ps ≤ qr. Adding pq to both sides and factoring out common factors, we

get p(q + s) ≤ q(p + r), which is equivalent to p
q ≤ p+r

q+s . Instead of pq, this time we add rs to both sides

of ps ≤ qr and factor, we then get s(p + r) ≤ r(q + s), which is equivalent to p+r
q+s ≤ r

s . Combining the

two new inequalities, we then proved part (a).

To prove part (b), we apply the inequality in part (a). Since p
q ≤ r

s ≤
t
u , we immediately get p

q ≤ p+r
q+s ≤

r
s ≤ r+t

s+u ≤ t
u . Considering p

q ≤ r+t
s+u , we have p

q ≤ p+r+t
q+s+u ≤ r+t

s+u . Similarly, considering p+r
q+s ≤ t

u , we

have p+r
q+s ≤ p+r+t

q+s+u ≤ t
u . Combining all the above, we get p

q ≤ p+r
q+s ≤ p+r+t

q+s+u ≤ r+t
s+u ≤ t

u , hence proving

part (b).

The next theorem is a generalization of Example 1.2.

Theorem 2.1. For fractions a1
b1

≤ a2
b2

≤ · · · ≤ an
bn

with denominators all positive, we have

a1

b1
≤ a1 + a2

b1 + b2
≤ · · · ≤ a1 + · · ·+ an

b1 + · · ·+ bn
≤ · · · ≤ an−1 + an

bn−1 + bn
≤ an

bn
.

Proof. We prove this theorem by induction. The cases of n = 2 and n = 3 are part (a) and part (b) in

Example 1.2, which have been proved earlier. Assume that the inequality is true when n = k, a fixed

random positive integer. That means, for fractions a1
b1

≤ a2
b2

≤ · · · ≤ ak
bk

, we have

a1

b1
≤ a1 + a2

b1 + b2
≤ · · · ≤ a1 + · · ·+ ak

b1 + · · ·+ bk
≤ · · · ≤ ak−1 + ak

bk−1 + bk
≤ ak

bk
.

Since a1+···+ak
b1+···+bk

≤ ak
bk

≤ ak+1
bk+1

, applying part (a) in Example 1.2 on a1+···+ak
b1+···+bk

≤ ak+1
bk+1

we have a1+···+ak
b1+···+bk

≤
a1+···+ak+1
b1+···+bk+1

≤ ak+1
bk+1

.
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According to the assumption again, for fractions a2
b2

≤ a3
b3

≤ · · · ≤ ak+1
bk+1

, we have

a2

b2
≤ a2 + a3

b2 + b3
≤ · · · ≤ a2 + · · ·+ ak+1

b2 + · · ·+ bk+1
≤ · · · ≤ ak + ak+1

bk + bk+1
≤ ak+1

bk+1
.

Since a1
b1

≤ a2
b2

≤ a2+···+ak+1
b2+···+bk+1

, applying part (a) in Example 1.2 on a1
b1

≤ a2+···+ak+1
b2+···+bk+1

we have a1
b1

≤
a1+a2+···+ak+1
b1+b2+···+bk+1

≤ a2+···+ak+1
b2+···+bk+1

. Summing all the above we therefore have

a1

b1
≤ a1 + a2

b1 + b2
≤ · · · ≤ a1 + · · ·+ ak

b1 + · · ·+ bk
≤ a1 + · · ·+ ak+1

b1 + · · ·+ bk+1
≤ a2 + · · ·+ ak+1

b2 + · · ·+ bk+1
≤ · · · ≤ ak + ak+1

bk + bk+1
≤ ak+1

bk+1
.

This shows that the case of n = k + 1 is also true. Therefore, according to the principle of mathematical

induction, the inequality is true for any integer n ≥ 2.

Apparently this theorem implies Example 1.1. It also shows more detail between the minimum, the

fraction a1+a2+···+an
b1+b2+···+bn

, and the maximum.

3. Geometry of the Inequality

While Andreesue, Saul, and we all use algebraic method to prove this inequality, the geometry of these

fractions and the geometric meaning of the inequality is quite interesting.

In a Cartesian plane, consider a random point at the right half plane (not including the y-axis) with

coordinates (x0, y0). Its position vector is ⟨x0, y0⟩, and the slope of this position vector is y0
x0

. Please be

aware that, with this setting, x0 will never be 0 since y-axis is not considered. Also, different points

may relate to a same slope, like (1, 2) and (2, 4), whose associated slopes are all 2. Now we consider

two points (x1, y1) and (x2, y2), with position vectors ⟨x1, y1⟩ and ⟨x2, y2⟩. Apparently, the sum of

these two vectors, ⟨x1 + x2, y1 + y2⟩, will fall in between of ⟨x1, y1⟩ and ⟨x2, y2⟩. Therefore the slope of

⟨x1 + x2, y1 + y2⟩ will be between of the two slopes formed by ⟨x1, y1⟩ and ⟨x2, y2⟩. This provides the

geometric explanation of part (a) in Example 1.2.

If we have n points, namely (x1, y1) , · · · , (xn, yn), still at the right half plane, their centroid would

be
(

x1+···+xn
n , y1+···+yn

n

)
. Then, the slope of

〈
x1+···+xn

n , y1+···+yn
n

〉
is y1+···+yn

x1+···+xn
, which will apparently fall

between the largest slope and the smallest slope associated to these points. This also provides a

geometric explanation of Example 1.1.
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