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Abstract

The purpose of this paper, to establish a coupled common fixed point theorem for self-mappings

in dislocated quasi metric space. Moreover, we have an illustrative example to support our results.
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1. Introduction and Preliminaries

In 2001, Hitzler [7] presented the concept of dislocated metric spaces, as a simultaneously generalized

famous Banach contraction principle in dislocated metric space. Later, Zeyada [14] expanded his

approach, and a large number of works addressing fixed point results for a single and a pair of

mappings satisfying various types of contraction criteria are too widely spread, (see, [1,13]). The

fundamental idea of coupled fixed point for non-linear contractions in partially ordered metric spaces

was developed by Bhaskar and Lakshmikantham [10]. After that, coupled coincidence and coupled

common fixed point theorems for nonlinear contractive mappings in a complete partially ordered

metric space were shown by Lakshmikantham and Ciric [10]. Numerous analysts have become

interested in this field of research, and a variety of work has been published in various spaces (see,

[2,6,8,9]). In the setting of a dislocated quasi-metric space, coupled fixed point has also been

discovered by Mohammad et al. [12]. The following definitions and notations are provided initially

and will be used in the main results:

Definition 1.1 ([3]). Let (X, d) be a metric space. A self-map T : X → X is said to be a contraction mapping if

there exists a constant k ∈ [0, 1) called a contraction factor such that d(Tx, Ty) ≤ kd(x, y) for all x, y ∈ X.
*Corresponding author (rajesh.patel@bitdurg.ac.in)
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Definition 1.2 ([3]). Let (X, d) be a metric space and T : X → X be a self-map. We say that x is a fixed point

of T if Tx = x.

Definition 1.3 ([3]). Suppose (X, d) be a complete metric space and T : X → X be a contraction, then T has a

unique fixed point.

Definition 1.4 ([7]). Let X be a non-empty set and let d : X × X → [0, ∞) be a function satisfying the

conditions:

1. d(u, v) = d(v, u) = 0 ⇒ u = v,

2. d(u, v) ≤ d(u, w) + d(w, v) f or all u, v, w ∈ X.

Then d is known as dislocated quasi-metric on X and the pair (X, d) is called a dislocated quasi-metric space.

Definition 1.5 ([14]). A sequence {xn} in a dislocated quasi metric space (X, d) is said to converge to a point

x ∈ X if and only if lim
n→∞

d(xn, x) = lim
n→∞

d(x, xn) = 0.

Definition 1.6 ([14]). A sequence {xn} in a dislocated quasi metric space (X, d) is called a Cauchy sequence,

if for every ϵ > 0, there exists a positive integer n0 such that for m, n > n0, we have d(xn, xm) < ϵ. That is,

limn→∞ d(xn, xm) = 0.

Definition 1.7 ([14]). A dislocated quasi metric space is called complete if every Cauchy sequence converges to

an element in the same metric space.

Definition 1.8 ([4]). An element (x, y) ∈ X × X, where X is any non-empty set, is called a coupled fixed point

of the mapping F : X × X → X if F(x, y) = x and F(y, x) = y.

Definition 1.9 ([10]). An element (x, y) ∈ X × X is called a coupled coincidence point of the mappings

F : X × X → X and g : X → X if F(x, y) = g(x) and F(y, x) = g(y), and (g(x), g(y)) is called coupled point

of coincidence.

Definition 1.10 ([10]). An element (x, y) ∈ X × X, where X is any non-empty set, is called a coupled common

fixed point of the mappings F : X × X → X and g : X → X if F(x, y) = g(x) = x and F(y, x) = g(y) = y.

Definition 1.11 ([10]). The mappings F : X × X → X and g : X → X are called commutative if g(F(x, y)) =

F(gx, gy) for all x, y ∈ X.

Definition 1.12 ([10]). The mappings F : X × X → X and g : X → X are called w-Compatible if g(F(x, y)) =

F(gx, gy) and g(F(y, x)) = F(gy, gx) whenever gx = F(x, y) and gy = F(y, x).

Lemma 1.13 ([11]). If x is a limit of some sequence {xn} in a dislocated quasi-metric space (X, d), then

d(x, x) = 0.
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2. Main Results

In this section, we developed a coupled common fixed theorem for continuous and commutative

mappings in dislocated metric space.

Theorem 2.1. Let (X, d) be a complete dislocated quasi-metric space and S, T : X → X are continuous and

commutative mappings such that d(Sx, Ty) ≤ λM(x, y), where

M(x, y) = max


2d(x, y), 2d(x,Sx)d(y,Ty)

d(x,y) ,
[
d(x, Sx) + d(y, Ty)

]
,[

d(x,Ty)+d(y,Sx)
]

2 ,
2
[

d(x,Ty)+d(x,y)
]

3 ,[
d(x, Sx) + d(x, y)

]
,
[
d(y, Ty) + d(x, y)

]
 , ∀ x, y ∈ X (1)

with d(x, y) ̸= 0 and λ ∈
[
0, 1

2

)
. Then S and T has a unique common fixed point in X.

Proof. Assume that S and T verifies (1). Then, we discuss the following different cases.

Case 1 : If M(x, y) = 2d(x,Sx)d(y,Ty)
d(x,y) , then

d(Sx, Ty) ≤ λ
2d(x, Sx)d(y, Ty)

d(x, y)
, ∀ x, y ∈ X.

Taking y = Sx, we have

d(Sx, TSx) ≤ 2λ d(Sx, TSx), ∀ x ∈ X. (2)

Since (1 − 2λ) > 0, we have d(Sx, TSx) = 0, implies that TSx = Sx. Similarly, taking x = Ty, we have

d(STy, Ty) = 0, implies that STy = Ty. By taking x = y, then we have d(STx, Tx) = 0, implies that

STx = Tx. Since S and T are commuting, i.e. TSx = STx, ∀ x ∈ X. Therfore Sx = Tx for some x ∈ X.

Hance x is a coincidence point of S and T. Thus, we conclude that T2x = Tx and S2x = Sx. Therefore

x is a common fixed point of S and T.

Case 2 : If M(x, y) = 2d(x, y), then

d(Sx, Ty) ≤ 2λd(x, y), ∀ x, y ∈ X.

We consider a sequence {xn} in X such that x2n+1 = Tx2n and x2n+2 = Sx2n+1 with x0 ∈ X. We will

show that {xn} is a Cauchy sequence in X. For that, let n ∈ N and using (2), we get

d(x2n+2, x2n+1) = d(Sx2n+1, Tx2n)

≤ 2λd(x2n+1, x2n)

≤ hd(x2n+1, x2n), where h = 2λ.
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Continuing this process we have, d(x2n+2, x2n+1) ≤ h2n+1d(x1, x0) and then, we conclude that

d(x2n, x2m) ≤ d(x2n, x2n+1) + d(x2n+1, x2n+2) + ... + d(x2m−1, x2m)

≤ (h2n + h2n+1 + ... + h2m−1)d(x1, x0)

≤ h2n

1 − h
d(x1, x0). (3)

Since h = 2λ ∈ [0, 1), it follows from (3) that {xn} is a Cauchy sequence in X and therefore, there exist

x∗ ∈ X such that lim
n→∞

xn = x∗ and lim
n→∞

Txn = x∗, lim
n→∞

Sxn = x∗. From (3), we deduce that

d(Sxn, Tx∗) ≤ 2λd(xn, x∗) and d(Sx∗, Txn) ≤ 2λd(x∗, xn), ∀ n ∈ N.

Since S and T both are continuous, we deduce

lim
n→∞

d(Sxn, Tx∗) ≤ 2λ lim
n→∞

d(xn, x∗) and lim
n→∞

d(Sx∗, Txn) ≤ 2λ lim
n→∞

d(x∗, xn),

implies that d(x∗, Tx∗) ≤ 2λd(x∗, x∗) and d(Sx∗, x∗) ≤ 2λd(x∗, x∗). Thus d(x∗, Tx∗) = 0 and

d(Sx∗, x∗) = 0. Therefore, we conclude that Tx∗ = x∗ and Sx∗ = x∗. Hance S and T haav a common

fixed point.

Case 3 : If M(x, y) = [d(x, Sx) + d(y, Ty)], then

d(Sx, Ty) ≤ λ[d(x, Sx) + d(y, Ty)], ∀ x, y ∈ X. (4)

We consider a sequence {xn} in X such that x2n+1 = Tx2n and x2n+2 = Sx2n+1. We will show that {xn}

is a Cauchy sequence in X. For that, let n ∈ N and using (4), we get

d(x2n+2, x2n+1) = d(Sx2n+1, Tx2n)

≤ λ[d(x2n+1, Sx2n+1) + d(x2n, Tx2n)]

≤ λ[d(x2n+1, x2n+2) + d(x2n, x2n+1)], ∀ n ∈ N.

Which implies d(x2n+2, x2n+1) ≤ λ
1−λ d(x2n, x2n+1), ∀ n ∈ N. Since h = λ

1−λ ∈ [0, 1), then {xn} is a

Cauchy sequence in X. Therefore, there exist x∗ ∈ X such that lim
n→∞

xn = x∗ and lim
n→∞

Txn = x∗,

lim
n→∞

Sxn = x∗. From (4), we deduce that

d(Sxn, Tx∗) ≤ λ[d(xn, Sxn) + d(x∗, Tx∗)]

≤ λ[d(xn, x∗) + d(x∗, Sxn) + d(x∗, Tx∗)], ∀ n ∈ N.

Then, by passing to limit for in the above inequality, we find d(x∗, Tx∗) ≤ 2λ
1−λ d(x∗, x∗). Similarly,

d(Sx∗, x∗) ≤ 2λ
1−λ d(x∗, x∗). Thus d(x∗, Tx∗) = 0 and d(Sx∗, x∗) = 0. Therefore, we conclude that
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Tx∗ = x∗ and Sx∗ = x∗. Hance S and T have a common fixed point.

Case 4 : If M(x, y) = d(x,Ty)+d(y,Sx)
2 , then

d(Sx, Ty) ≤ λ

2
[d(x, Ty) + d(y, Sx)], ∀ x, y ∈ X. (5)

We consider a sequence {xn} in X such that x2n+1 = Tx2n and x2n+2 = Sx2n+1 with x0 ∈ X. We will

show that {xn} is a Cauchy sequence in X. For that, let n ∈ N and using (5), we get

d(x2n+2, x2n+1) = d(Sx2n+1, Tx2n)

≤ λ

2
[d(x2n+1, Tx2n) + d(x2n, Sx2n+1)]

≤ λ

2
[d(x2n+1, x2n+1) + d(x2n, x2n+2)]

≤ λ

2
d(x2n, x2n+2), ∀ n ∈ N.

We can easily see that h = λ
2 ∈ [0, 1), then {xn} is a Cauchy sequence in X. Therefore, there exist

x∗ ∈ X such that lim
n→∞

xn = x∗ and lim
n→∞

Txn = x∗, lim
n→∞

Sxn = x∗. From (5), we deduce that

d(Sxn, Tx∗) ≤ λ

2
[d(xn, Tx∗) + d(x∗, Sxn)].

Since S is continuous, we have

lim
n→∞

d(Sxn, Tx∗) ≤ λ

2
lim
n→∞

[d(xn, Tx∗) + d(x∗, Sxn)].

Implies d(x∗, Tx∗) ≤ λ
2 [d(x∗, Tx∗) + d(x∗, x∗)]. Similarly d(Sx∗, x∗) ≤ λ

2 [d(x∗, x∗) + d(Sx∗, x∗)]. Thus,(
1− λ

2

)
d(x∗, Tx∗) ≤ 0 and

(
1− λ

2

)
dS(x∗, x∗) ≤ 0. Implies d(x∗, Tx∗) = 0 and d(Sx∗, x∗) = 0. Therefore,

we conclude that Tx∗ = x∗ and Sx∗ = x∗. Hance S and T have a common fixed point.

Case 5 : If M(x, y) = d(x, Sx) + d(x, y), then

d(Sx, Ty) ≤ λ[d(x, Sx) + d(x, y)], ∀ x, y ∈ X. (6)

We define a sequence {xn} in X such that x2n+1 = Tx2n and x2n+2 = Sx2n+1. We will show that {xn} is

a Cauchy sequence in X. For that, let n ∈ N and using (7), we get

d(x2n+1, x2n+2) = d(Sx2n, Tx2n+1)

≤ λ[d(x2n, Sx2n) + d(x2n, x2n+2)]

≤ λ[d(x2n, x2n+1) + d(x2n, x2n+2)]

≤ λd(x2n+1, x2n+2), ∀ n ∈ N.
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Since 1 − λ ∈ [0, 1), then {xn} is a Cauchy sequence in X. Therefore, there exist x∗ ∈ X such that

lim
n→∞

xn = x∗ and lim
n→∞

Txn = x∗, lim
n→∞

Sxn = x∗. From (7), we deduce that

d(Sxn, Tx∗) ≤ λ[d(xn, Sxn) + d(xn, x∗)].

Since S is continuous, we have

lim
n→∞

d(Sxn, Tx∗) ≤ λ lim
n→∞

[d(xn, Sxn) + d(xn, x∗)].

Implies d(x∗, Tx∗) ≤ λ[d(x∗, x∗) + d(x∗, x∗)]. Similarly d(Sx∗, x∗) ≤ λ[d(x∗, x∗) + d(x∗, x∗)]. Therefore,

we conclude that Tx∗ = x∗ and Sx∗ = x∗. Hance S and T have a common fixed point.

Case 6 : If M(x, y) = d(y, Ty) + d(x, y), then

d(Sx, Ty) ≤ λ[d(y, Ty) + d(x, y)], ∀ x, y ∈ X. (7)

We define a sequence {xn} in X such that x2n+1 = Tx2n and x2n+2 = Sx2n+1. We will show that {xn} is

a Cauchy sequence in X. For that, let n ∈ N and using (7), we get

d(x2n+1, x2n+2) = d(Sx2n, Tx2n+1)

≤ λ[d(x2n+1, Tx2n+1) + d(x2n, x2n+1)]

≤ λ[d(x2n+1, x2n+2) + d(x2n, x2n+1)]

≤ λ

1 − λ
d(x2n, x2n+1), ∀ n ∈ N.

Since h = λ
1−λ ∈ [0, 1), we conclude that

d(x2n+1, x2n+2) ≤ hd(x2n, x2n+1), ∀ n ∈ N.

Therefore, {xn} is a Cauchy sequence in X and then x∗ ∈ X such that lim
n→∞

xn = x∗ and lim
n→∞

Txn = x∗,

lim
n→∞

Sxn = x∗. Furthermore, we have

d(Sx∗, Txn) ≤ λ[d(xn, Txn) + d(x∗, xn)], implies

lim
n→∞

d(Sx∗, Txn) ≤ λ lim
n→∞

[d(xn, Txn) + d(x∗, xn)].

Since T is continuous, we have d(Sx∗, x∗) ≤ λ[d(x∗, x∗) + d(x∗, x∗)]. Similarly,

d(x∗, Tx∗) ≤ λ[d(x∗, x∗) + d(x∗, x∗)]. Therefore, d(Sx∗, x∗) = 0 and d(x∗, Tx∗) = 0. Finally, we

conclude that Tx∗ = x∗ and Sx∗ = x∗. Hance S and T have a common fixed point.
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Case 7 : If M(x, y) = 2
3 [d(x, Ty) + d(x, y)], then

d(Sx, Ty) ≤ 2λ

3
[d(x, Ty) + d(x, y)], ∀ x, y ∈ X. (8)

We define a sequence {xn} in X such that x2n+1 = Tx2n and x2n+2 = Sx2n+1. We will show that {xn} is

a Cauchy sequence in X. For that, let n ∈ N and use (8), we get

d(x2n+1, x2n+2) = d(Sx2n, Tx2n+1)

≤ 2λ

3
[d(x2n, Tx2n+1) + d(x2n, x2n+1)]

≤ 2λ

3
[d(x2n, x2n+2) + d(x2n, x2n+1)]

≤ 2λ

3
[d(x2n, x2n+1) + d(x2n+1, x2n+2) + d(x2n, x2n+1)], ∀ n ∈ N,

or

d(Sx2n, Tx2n+1) ≤
4λ

3 − 2λ
d(x2n, x2n+1), ∀ x, y ∈ X and n ∈ N.

Since h = 4λ
3−2λ ∈ [0, 1), the above inequality implies that {xn} is a Cauchy sequence in X and then in

x∗ ∈ X such that lim
n→∞

xn = x∗ and lim
n→∞

Txn = x∗, lim
n→∞

Sxn = x∗. Furthermore, we have

lim
n→∞

d(Sxn, Tx∗) ≤ 2λ

3
lim
n→∞

[d(xn, Tx∗) + d(xn, x∗].

Implies, d(x∗, Tx∗) ≤ 2λ
3 [d(x∗, x∗) + d(x∗, x∗]. Similarly d(Sx∗, x∗) ≤ 2λ

3 [d(x∗, x∗) + d(x∗, x∗]. Therefore,

d(Sx∗, x∗) = 0 and d(x∗, Tx∗) = 0. Finally, we conclude that Tx∗ = x∗ and Sx∗ = x∗. Hance S and T

have a common fixed point.

For Uniqueness: We consider two common fixed points x∗, y∗ ∈ X of self-mappings S and T. Then

from (1), we have

d(Sx∗, Ty∗) ≤ λ max


2d(x∗, y∗), 2d(x∗,Sx∗)d(y∗,Ty∗)

d(x∗,y∗) ,
[
d(x∗, Sx∗) + d(y∗, Ty∗)

]
,[

d(x∗,Ty∗)+d(y∗,Sx∗)
]

2 ,
2
[

d(x∗,Ty∗)+d(x∗,y∗)
]

3 ,[
d(x∗, Sx∗) + d(x∗, y∗)

]
,
[
d(y∗, Ty∗) + d(x∗, y∗)

]
 ,

where λ ∈ [0, 1
2 ), we deduce the following results for distinguish cases.

Case 1 : We have

d(x∗, y∗) = d(Sx∗, Ty∗) ≤ 2λ
d(x∗, Sx∗)d(y∗, Ty∗)

d(x∗, y∗)

≤ 2λ
d(x∗, x∗)d(y∗, y∗)

d(x∗, y∗)
.
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Thus d(x∗, y∗) = 0.

Case 2 : We have

d(x∗, y∗) = d(Sx∗, Ty∗) ≤ 2λd(x∗, y∗),

implies (1 − 2λ)d(x∗, y∗) ≤ 0. Thus d(x∗, y∗) = 0.

Case 3 : We have

d(x∗, y∗) = d(Sx∗, Ty∗) ≤ λ
[
d(x∗, Sx∗) + d(y∗, Ty∗)

]
≤ λ

[
d(x∗, x∗) + d(y∗, y∗)

]
,

Thus d(x∗, y∗) = 0.

Case 4 : We have

d(x∗, y∗) = d(Sx∗, Ty∗) ≤ λ

[
d(x∗, Ty∗) + d(y∗, Sx∗)

]
2

≤ λ

[
d(x∗, y∗) + d(y∗, x∗)

]
2

,

or

d(x∗, y∗) ≤
λ
2

1 − λ
2

d(y∗, x∗)

≤
( λ

2

1 − λ
2

)2
d(x∗, y∗).

Since
( λ

2
1− λ

2

)
∈ [0, 1). Thus d(x∗, y∗) = 0.

Case 5 : We have

d(x∗, y∗) = d(Sx∗, Ty∗) ≤ λ
[
d(x∗, Sx∗) + d(x∗, y∗)

]
≤ λ

[
d(x∗, x∗) + d(x∗, y∗)

]
,

implies (1 − λ)d(x∗, y∗) ≤ 0. Thus d(x∗, y∗) = 0.

Case 6 : We have

d(x∗, y∗) = d(Sx∗, Ty∗) ≤ λ
[
d(y∗, Ty∗) + d(x∗, y∗)

]
≤ λ

[
d(y∗, y∗) + d(x∗, y∗)

]
,

implies (1 − λ)d(x∗, y∗) ≤ 0. Thus d(x∗, y∗) = 0.
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Case 7 : We have

d(x∗, y∗) = d(Sx∗, Ty∗) ≤ λ
2
[
d(x∗, Ty∗) + d(x∗, y∗)

]
3

≤ λ
2
[
d(x∗, y∗) + d(x∗, y∗)

]
3

,

implies
(

1 − 4λ
3

)
d(x∗, y∗) ≤ 0. Thus d(x∗, y∗) = 0.

Hence, in all cases d(x∗, y∗) = 0. Therefore, we conclude that x∗ = y∗.

Example 2.2. Assume the set X = {0, 1
7 , 1

5 , 10} and d : X × X → R+ be defined by d(x, y) = 2x+ y, ∀ x, y ∈

X. Then (X, d) is dislocated quasi-metric space. We define the mappings S, T : X → X by T(0) = 0, T( 1
7 ) = 0,

T( 1
5 ) =

1
7 , T(10) = 1

5 and S(0) = 0, S( 1
7 ) =

1
5 , S( 1

5 ) = 0, S(10) = 1
7 . For λ = 1

3 , we can easily see that all

the assumptions of Theorem 2.1 are satisfied and 0 is the unique common fixed point of S and T.

As a consequence of Theorem 2.1, if S = T, we state the following corollary.

Corollary 2.3. [11] Let (X, d) be a complete dislocated quasi-metric space and T : X → X is a self-mappings

such that d(Tx, Ty) ≤ λM(x, y), where

M(x, y) = max


2d(x, y), 2d(x,Tx)d(y,Ty)

d(x,y) ,
[
d(x, Tx) + d(y, Ty)

]
,[

d(x,Ty)+d(y,Tx)
]

2 ,
2
[

d(x,Ty)+d(x,y)
]

3 ,[
d(x, Tx) + d(x, y)

]
,
[
d(y, Ty) + d(x, y)

]
 , ∀ x, y ∈ X

with d(x, y) ̸= 0 and λ ∈ [0, 1
2 ). Then T has a unique fixed point in X.

Remark 2.4. In particular corollary 2.3 if S = T in Theorm 2.1, we get Theorem 3.2 of Mhanna et al. [11].

3. Application

We provide an application for dislocated quasi-metric spaces of integral type.

3.1 Existence and Uniqueness theorem for the integral type

In this section, we establishing the existence and uniqueness of common fixed point in dislocated

quasi-metric spaces of integral type.

Theorem 3.1. Let (X, d) be a complete dislocated quasi-metric space and S, T : X → X be continuous mappings

satisfying

∫ d(Sx,Ty)

0
f (t) dt ≤α

∫ d(y,Ty)[1+d(x,Sx)]
1+d(x,y)

0
f (t) dt + β

∫ d(x,y)

0
f (t) dt + γ

∫ d(y,Ty)

0
f (t) dt (9)

for all x, y ∈ X, α > 0, β > 0, γ > 0 with α + β + γ < 1. Then S and T have a unique common fixed point.



Common Fixed Point Theorem for Two Self-Mappings in Dislocated... / Rajesh Patel, Rakesh Tiwari 232

Proof. Let {xn} be a sequence in X, defined as x2n+1 = Sx2n and x2n+2 = Tx2n+1 such that

∫ d(x2n+1,x2n+2)

0
f (t) dt =

∫ d(Sx2n,Tx2n+1)

0
f (t) dt

≤ α
∫ d(x2n+1,Tx2n+1)[1+d(x2n ,Sx2n)]

1+d(x2n ,x2n+1)

0
f (t) dt + β

∫ d(x2n,x2n+1)

0
f (t) dt + γ

∫ d(x2n+1,Tx2n+1)

0
f (t) dt

≤ α
∫ d(x2n+1,x2n+2)[1+d(x2n ,x2n+1)]

1+d(x2n ,x2n+1)

0
f (t) dt + β

∫ d(x2n,x2n+1)

0
f (t) dt + γ

∫ d(x2n+1,x2n+2)

0
f (t) dt

≤
( β

1 − α − γ

) ∫ d(x2n,x2n+1)

0
f (t) dt.

Let h = β
1−α−γ , 0 < h < 1. Therefore

∫ d(x2n+1,x2n+2)

0
f (t) dt ≤ h

∫ d(x2n,x2n+1)

0
f (t) dt.

Similarly,

∫ d(x2n,x2n+1)

0
f (t) dt ≤ h

∫ d(x2n−1,x2n)

0
f (t) dt.

Continuing this process, we get

∫ d(x2n+1,x2n+2)

0
f (t) dt ≤ h2n+1

∫ d(x0,x1)

0
f (t) dt.

Since 0 < h < 1, so for n → ∞, h2n+1 → 0, we have d(x2n+1, x2n+2) → 0. Hence {xn} is a Cauchy

sequence in X, so there is a point x∗ ∈ X, such that xn → x∗. Since S and T are continuous,

S(x∗) = lim
n→∞

S(x2n) = lim
n→∞

x2n+1 = x∗

and

T(x∗) = lim
n→∞

T(x2n+1) = lim
n→∞

x2n+2 = x∗.

Thus S(x∗) = T(x∗) = x∗, so S and T have a common fixed point.

Uniqueness: If x ∈ X a common fixed point of S and T, then by (3.1)

∫ d(Sx,Tx)

0
f (t) dt =

∫ d(x,x)

0
f (t) dt ≤ (α + β + γ)

∫ d(x,x)

0
f (t) dt,

which is true only if d(x, x) = 0, since 0 < α + β + γ < 1 and d(x, x) ≥ 0. Thus d(x, x) = 0 for a

common fixed point x of S and T. Let x, y be common fixed point of S and T, then by (3.1),

∫ d(x,y)

0
f (t) dt =

∫ d(Sx,Tx)

0
f (t) dt

≤ α
∫ d(x,y)

0
f (t) dt + β

∫ d(x,y)

0
f (t) dt + γ

∫ d(y,y)

0
f (t) dt
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≤ (α + β)
∫ d(x,y)

0
f (t) dt

and from this it follows that d(x, y) = 0, since α + β < 1 and d(x, y) ≥ 0. Hence x = y. Thus S and T

have unique common fixed point.

4. Conclusion

In this paper, we study coupled common fixed point theorems in dislocated quasi-metric spaces.

We prove common fixed point theorems for self-mappings in dislocated quasi-metric spaces. We

provide application to integral equations, proving existence and uniqueness of solutions. Our result is

supported with example to confirm correctness and applicability. Our work aim to advance fixed point

theory, offering new tools for nonlinear analysis and applied mathematics. We hope these findings

inspire future research to explore more in dislocated metric spaces and contribute to mathematical

knowledge.
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