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Abstract

Let G be a (p, q) graph. Let V be an inner product space with basis S. We denote the inner product

of the vectors x and y by < x, y >. Let ϕ : V(G) → S be a function. For edge uv assign the

label < ϕ(u), ϕ(v) >. Then ϕ is called a vector basis S-cordial labeling of G if |ϕx − ϕy| ≤ 1 and

|γi − γj| ≤ 1 where ϕx denotes the number of vertices labeled with the vector x and γi denotes the

number of edges labeled with the scalar i. A graph which admits a vector basis S-cordial labeling

is called a vector basis S-cordial graph. In this paper, we prove that the graphs D(Tn)⊙ mK1 and

D(Qn)⊙ mK1 admit a vector basis {(1,1,1,1),(1,1,1,0),(1,1,0,0),(1,0,0,0)}-cordial.

Keywords: triangular snake; quadrilateral snake; double triangular snake; double quadrilateral

snake; star graph.
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1. Introduction

In this paper, the graph G(V, E) mean a finite, simple and undirected. The paper written by Euler on

the seven bridges of Konigsberg and published in 1736 is regarded as the first paper in the history of

graph theory. Graph labeling problems was first introduced by Rosa in 1967 [15]. The progress and

uses of graph labeling are significant when compared other fields of mathematics. Graph labeling is a

dynamic field of study within graph theory that has primarily developed due to its various

applications in mobile telecommunications systems, optimal circuit designs, graph decomposition

problems, coding theory and communication networks. Gowri and Jayapriya [4] have explored the

HMC labeling behavior of triangular snake, alternate triangular snake, double triangular snake and

alternate double triangular snake. Moreover the quotient labeling number of quadrilateral snake,

double quadrilateral snake, alternate triangular snake, alternate double triangular snake, subdivision

of triangular snake and subdivision of quadrilateral snake have been investigated by Sumathi and

Rathi [17]. The concept of heronian mean labeling was introduced by santhiya et al. and moreover
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studied the heronian mean labeling of triangular snake, double triangular snake, quadrilateral snake

and double quadrilateral snake in [16].

The innovative concept of cordial labeling was introduced by Cahit [1]. Pair mean cordial labeling of

triangular snake, alternate triangular snake, quadrilateral snake and alternate quadrilateral snake,

hexagonal snake, irregular quadrilateral snake and triple triangular snake was discussed in [10,11].

The innovative idea of group mean cordial labeling was introduced by Rajalekshmi and Kala and they

have computed that the triangular snake, alternate triangular snake, double triangular snake,

alternate double triangular snake, quadrilateral snake, alternate quadrilateral snake, double

quadrilateral snake and alternate double quadrilateral snake are group mean graphs [13,14].

Hk-cordial labeling of triangular snake, double triangular snake, triple triangular snake, alternate

triangular snake, irregular triangular snake, quadrilateral snake, double quadrilateral snake, alternate

quadrilateral snake, irregular quadrilateral snake have been studied in [2]. Ponraj et al. [12] computed

that the prism, Mongolian tent, book, young tableau, Km × P2, torus grids, n-cube graphs are

difference cordial. Prime cordial and 3-equitable prime cordial graphs was discussed in [18]. The

standard terminology and notations that we follow by Harary [5] and Hertein [6].

Various types of graph labeling have been studied in an excellent survey of graph labeling by Gallian

[3]. Ponraj and Jeya [7] have introduced the vector basis S-cordial labeling of graphs and the vector

basis {(1, 1, 1, 1), (1, 1, 1, 0), (1, 1, 0, 0), (1, 0, 0, 0)}-cordial labeling of behavior of the path, cycle, star,

comb, complete graph, generalized friendship graph, tadpole graph and gear graph and thorn related

graphs have been investigated in [7–9]. In this paper, we show that the graphs D(Tn) ⊙ mK1 and

D(Qn)⊙ mK1 are a vector basis {(1, 1, 1, 1), (1, 1, 1, 0), (1, 1, 0, 0), (1, 0, 0, 0)}-cordial.

2. Preliminaries

In this section, we state a few definitions which are relevant for proving the main results.

Definition 2.1 ([16]). The triangular snake Tn is obtained from a path Pn : u1u2 . . . un by joining ui and ui+1

to a new vertex vi for 1 ≤ i ≤ n − 1. That is every edge of a path is replaced by a triangle.

Definition 2.2 ([16]). The double triangular snake D(Tn) is obtained from a path Pn : u1u2 . . . un by joining ui

and ui+1 to a new vertices vi and wi for 1 ≤ i ≤ n − 1. That is it consists of two triangular snakes that have a

common path.

Definition 2.3 ([16]). The quadrilateral snake Qn is obtained from a path Pn : u1u2 . . . un by joining ui and

ui+1 to a new vertices vi and wi respectively and adding edges viwi for 1 ≤ i ≤ n − 1. That is every edge of a

path is replaced by a cycle C4.

Definition 2.4 ([16]). The double quadrilateral snake D(Qn) is obtained from two quadrilateral snakes that have

a common path.
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Definition 2.5 ([3]). The corona graph G1 ⊙ G2 is the graph obtained by taking one copy of G1 and n copies of

G2 and joining ith vertex of G1 with an edge to every vertex in the ith copy of G2, where G1 is graph of order n.

In this paper, we consider the inner product space Rn and the standard inner product ⟨x, y⟩ = x1y1 +

x2y2 + · · ·+ xnyn where x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) , xi, yi ∈ R.

3. Vector Basis S-Cordial Labeling

Let G be a (p, q) graph. Let V be an inner product space with basis S. We denote the inner product of

the vectors x and y by ⟨x, y⟩. Let ϕ : V(G) → S be a function. For edge uv assign the label ⟨ϕ(u), ϕ(v)⟩.

Then ϕ is called a vector basis S-cordial labeling of G if |ϕx −ϕy| ≤ 1 and |γi −γj| ≤ 1 where ϕx denotes

the number of vertices labeled with the vector x and γi denotes the number of edges labeled with the

scalar i. A graph which admits a vector basis S-cordial labeling is called a vector basis S-cordial graph.

An illustration for the vector basis {(1, 1, 1, 1), (1, 1, 1, 0), (1, 1, 0, 0), (1, 0, 0, 0)}-cordial labeling of graph

is shown in Figure 1.

(1,1,1,1)

(1,1,1,1)

(1,1,1,0)

(1,1,0,0) (1,0,0,0)

Figure 1. A vector basis {(1, 1, 1, 1), (1, 1, 1, 0), (1, 1, 0, 0), (1, 0, 0, 0)}-cordial graph

4. Main Results

In this section, we discuss the existence of the vector basis {(1, 1, 1, 1), (1, 1, 1, 0), (1, 1, 0, 0), (1, 0, 0, 0)}-

cordial labeling of D(Tn)⊙ mK1 and D(Qn)⊙ mK1.

Theorem 4.1. Every graph is a subgraph of a connected vector basis

{(1, 1, 1, 1), (1, 1, 1, 0), (1, 1, 0, 0), (1, 0, 0, 0)}-cordial graph.

Proof. Let G be a (p, q) graph. Consider the four copies of the complete graph Kp. Denote the ith copy

of Kp by Ki
p, i = 1, 2, 3, 4. Let V(Ki

p) = {ui
1, ui

2, . . . , ui
p}. We construct the new graph which is a super

graph G∗ as follows: Let V(G∗) = V(K1
p) ∪ V(K2

p) ∪ V(K3
p) ∪ V(K4

p) and E(G∗) = E(K1
p) ∪ E(K2

p) ∪

E(K3
p) ∪ E(K4

p) ∪
{

u1
1u2

1, u2
1u3

1, u3
1u4

1

}
. Now we assign the labels to the vertices of V(G∗) as follows: First

assign the vector (1, 0, 0, 0) to all the vertices of K1
p and assign the vector (1, 1, 0, 0) to all the vertices

of K2
p. Then assign the vector (1, 1, 1, 0) to all the vertices of K3

p and finally assign the vector (1, 1, 1, 1)

to all the vertices of K4
p. Clearly ϕ(1,0,0,0) = p, ϕ(1,1,0,0) = p, ϕ(1,1,1,0) = p and ϕ(1,1,1,1) = p. Hence

γ1 = (p
2) + 1, γ2 = (p

2) + 1, γ3 = (p
2) + 1 and γ4 = (p

2). Clearly this vertex labeling is a vector basis

{(1, 1, 1, 1), (1, 1, 1, 0), (1, 1, 0, 0), (1, 0, 0, 0)}-cordial.
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Example 4.2. We know that C4 is not vector basis {(1, 1, 1, 1), (1, 1, 1, 0), (1, 1, 0, 0), (1, 0, 0, 0)}-cordial graph

[7]. But it is a subgraph of following graph (figure 2) which is a vector basis {(1,1,1,1),(1,1,1,0),

(1,1,0,0),(1,0,0,0)}-cordial graph. Here ϕ(1,0,0,0) = ϕ(1,1,0,0) = ϕ(1,1,1,0) = ϕ(1,1,1,1) = 4. Hence

γ1 = γ2 = γ3 = (4
2) + 1 = 7 and γ4 = (4

2) = 6.

(1,0,0,0)
(1,0,0,0)

(1,0,0,0)
(1,0,0,0)

(1,1,0,0)

(1,1,0,0)

(1,1,0,0)

(1,1,0,0)

(1,1,1,0)

(1,1,1,0)

(1,1,1,0)

(1,1,1,0) (1,1,1,1)

(1,1,1,1)

(1,1,1,1)

(1,1,1,1)

Figure 2. A vector basis {(1,1,1,1), (1,1,1,0), (1,1,0,0), (1,0,0,0)}-cordial graph

Theorem 4.3. The graph D(Tn)⊙ mK1 is a vector basis {(1, 1, 1, 1), (1, 1, 1, 0), (1, 1, 0, 0), (1, 0, 0, 0)}-cordial

for all n, m ≥ 2.

Proof. Denote by V(D(Tn)⊙ mK1) = {ui, uij | 1 ≤ i ≤ n and 1 ≤ j ≤ m} ∪ {vi, wi, vij, wij | 1 ≤ i ≤ n − 1

and 1 ≤ j ≤ m} and E(D(Tn) ⊙ mK1) = {uiui+1, uivi, ui+1vi, uiwi, ui+1wi, vivij, wiwij | 1 ≤ i ≤ n −

1 and 1 ≤ j ≤ m} ∪ {uiuij | 1 ≤ i ≤ n and 1 ≤ j ≤ m} respectively the vertex and edge sets of

D(Tn)⊙ mK1. Clearly

p = |V(D(Tn)⊙ mK1)| = (3n − 2)(m + 1)

and q = |E(D(Tn) ⊙ mK1)| = (3n − 2)(m + 1) + 2n − 3. Assign the vectors to the vertices in the

following order u1, u2, v1, w1, u3, v2, w2, u4, v3, w3, . . . , un−1, un, vn−1, wn−1 and u11, u12, . . . , u1m, v11,

v12, . . . , v1m, w11, w12, . . . , w1m, u21, u22, . . . , u2m, v21, v22, . . . , v2m, w21, w22, . . . , w2m, . . . , vn−1,1, vn−1,2,

. . . , vn−1,m, wn−1,1, wn−1,2, . . . , wn−1,m, un,1, un,2, . . . , unm. We have consider the following four cases:

Case (i): 2n − 2 ≡ 0 (mod 4)

Let 2n − 2 = 4s1, s1 > 0. We get n = 2s1 + 1, p = (6s1 + 1)(m + 1), and q = (6s1 + 1)(m + 1) + 4s1 − 1.

If s1 is even, assign the vector (1, 1, 1, 1) to the first 3s1
2 + 1 vertices. Then assign the vector (1, 1, 1, 0) to

the next 3s1
2 vertices and assign the vector (1, 1, 0, 0) to the next 3s1

2 vertices. Finally assign the vector

(1, 0, 0, 0) to the next 3s1
2 vertices. From these vertex labeling, we get 5s1

2 , 5s1
2 , 5s1

2 , 5s1
2 edges with edge

label 4,3,2,1 respectively.

When s1 is odd, assign the vector (1,1,1,1) to the first 3(s1+1)
2 vertices. Then assign the vector (1,1,1,0)

to the next 3(s1+1)
2 − 2 vertices and assign the vector (1,1,0,0) to the next 3(s1−1)

2 + 2 vertices. Finally

assign the vector (1, 0, 0, 0) to the next 3(s1−1)
2 + 1 vertices. From these vertex labeling, we obtain

5(s1−1)
2 + 3, 5(s1−1)

2 + 2, 5(s1−1)
2 + 3, 5(s1−1)

2 + 2 edges with edge label 4, 3, 2, 1 respectively.

Subcase (A): m ≡ 0 (mod 4)

Let m = 4s2, s2 > 0. We get p = 24s1s2 + 6s1 + 4s2 + 1, and q = 24s1s2 + 10s1 + 4s2. If s1 is even, assign

the vector (1,1,1,1) to the first 6s1s2 + s2 pendent vertices. Then assign the vector (1, 1, 1, 0) to the next

6s1t2 + s2 pendent vertices and assign the vector (1,1,0,0) to the next 6s1s2 + s2 pendent vertices. Finally
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assign the vector (1, 0, 0, 0) to the next 6s1s2 + s2 pendent vertices. We get ϕ(1,1,1,1) = 6s1s2 + s2 +
3s1
2 + 1,

ϕ(1,1,1,0) = ϕ(1,1,0,0) = ϕ(1,0,0,0) = 6s1s2 + s2 +
3s1
2 . Clearly γ1 = γ2 = γ3 = γ4 = 6s1s2 + s2 +

5s1
2 .

When s1 is odd. Then assign the vector (1, 1, 1, 1) to the first 6s1s2 + s2 − 1 pendent vertices and assign

the vector (1, 1, 1, 0) to the next 6s1s2 + s2 + 1 pendent vertices. Thereafter assign the vector (1, 1, 0, 0)

to the next 6s1s2 + s2 pendent vertices and assign the vector (1, 0, 0, 0) to the next 6s1s2 + s2 pendent

vertices. We have ϕ(1,1,1,1) = ϕ(1,1,1,0) = 6s1s2 + s2 +
3(s1+1)

2 − 1, ϕ(1,1,0,0) = 6s1s2 + s2 +
3(s1−1)

2 + 2

and ϕ(1,0,0,0) = 6s1s2 + s2 +
3(s1−1)

2 + 1. Clearly γ1 = γ4 = 6s1s2 + s2 +
5(s1−1)

2 + 2 and γ2 = γ3 =

6s1s2 + s2 +
5(s1−1)

2 + 3.

Subcase (B): m ≡ 1 (mod 4)

Let m = 4s2 + 1, s2 > 0. We get p = 24s1s2 + 12s1 + 4s2 + 2, and q = 24s1s2 + 16s1 + 4s2 + 1. If

s1 is even, assign the vector (1, 1, 1, 1) to the first 6s1s2 + s2 +
3s1
2 pendent vertices. Then assign the

vector (1, 1, 1, 0) to the next 6s1s2 + s2 +
3s1
2 pendent vertices and assign the vector (1, 1, 0, 0) to the

next 6s1s2 + s2 +
3s1
2 pendent vertices. Finally assign the vector (1, 0, 0, 0) to the next 6s1s2 + s2 +

3s1
2 + 1

pendent vertices. We get ϕ(1,1,1,1) = ϕ(1,0,0,0) = 6s1s2 + s2 + 3s1 + 1, ϕ(1,1,1,0) = ϕ(1,1,0,0) = 6s1s2 + s2 + 3s1.

Clearly γ2 = γ3 = γ4 = 6s1s2 + s2 + 4s1 and γ1 = 6s1s2 + s2 + 4s1 + 1.

When s1 is odd. Then assign the vector (1, 1, 1, 1) to the first 6s1s2 + s2 +
3(s1−1)

2 + 1 pendent vertices

and assign the vector (1, 1, 1, 0) to the next 6s1s2 + s2 +
3(s1−1)

2 + 2 pendent vertices. Thereafter assign

the vector (1, 1, 0, 0) to the next 6s1s2 + s2 +
3(s1+1)

2 − 2 pendent vertices and assign the vector (1, 0, 0, 0)

to the next 6s1s2 + s2 +
3(s1+1)

2 pendent vertices. We have ϕ(1,1,1,1) = ϕ(1,0,0,0) = 6s1s2 + s2 + 3s1 + 1 and

ϕ(1,1,1,0) = ϕ(1,1,0,0) = 6s1s2 + s2 + 3s1. Clearly γ4 = γ3 = γ2 = 6s1s2 + s2 + 4s1 and γ1 = 6s1s2 + s2 +

4s1 + 1.

Subcase (C): m ≡ 2 (mod 4)

Let m = 4s2 + 2, s2 ≥ 0. We get p = 24s1s2 + 18s1 + 4s2 + 3, and q = 24s1s2 + 22s1 + 4s2 + 2. If

s1 is even, assign the vector (1, 1, 1, 1) to the first 6s1s2 + s2 + 3s1 pendent vertices. Then assign the

vector (1, 1, 1, 0) to the next 6s1s2 + s2 + 3s1 pendent vertices and assign the vector (1, 1, 0, 0) to the next

6s1s2 + s2 + 3s1 + 1 pendent vertices. Finally assign the vector (1, 0, 0, 0) to the next 6s1s2 + s2 + 3s1 + 1

pendent vertices. We get ϕ(1,1,1,1) = ϕ(1,1,0,0) = ϕ(1,0,0,0) = 6s1s2 + s2 +
9s1
2 + 1 and ϕ(1,1,1,0) = 6s1s2 + s2 +

9s1
2 . Clearly γ4 = γ3 = 6s1s2 + s2 +

11s1
2 and γ2 = γ1 = 6s1s2 + s2 +

11s1
2 + 1.

When s1 is odd. Then assign the vector (1, 1, 1, 1) to the first 6s1s2 + s2 + 3s1 pendent vertices and

assign the vector (1, 1, 1, 0) to the next 6s1s2 + s2 + 3s1 + 1 pendent vertices. Thereafter assign the

vector (1, 1, 0, 0) to the next 6s1s2 + s2 + 3s1 pendent vertices and assign the vector (1, 0, 0, 0) to the next

6s1s2 + s2 + 3s1 + 1 pendent vertices. We have ϕ(1,1,1,1) = 6s1s2 + s2 +
9s1+3

2 and ϕ(1,1,1,0) = ϕ(1,1,0,0) =

ϕ(1,0,0,0) = 6s1s2 + s2 +
9s1+1

2 . Clearly γ4 = γ2 = γ1 = 6s1s2 + s2 +
11s1+1

2 and γ3 = 6s1s2 + s2 +
11s1−1

2 .

Subcase (D): m ≡ 3 (mod 4)

Let m = 4s2 + 3, s2 ≥ 0. We get p = 24s1s2 + 24s1 + 4s2 + 4, and q = 24s1s2 + 28s1 + 4s2 + 3. If s1

is even, assign the vector (1,1,1,1) to the first 6s1s2 + s2 +
9s1
2 pendent vertices. Then assign the vector

(1,1,1,0) to the next 6s1s2 + s2 +
9s1
2 + 1 pendent vertices and assign the vector (1, 1, 0, 0) to the next
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6s1s2 + s2 +
9s1
2 + 1 pendent vertices. Finally assign the vector (1, 0, 0, 0) to the next 6s1s2 + s2 +

9s1
2 + 1

pendent vertices. We get ϕ(1,1,1,1) = ϕ(1,1,1,0) = ϕ(1,1,0,0) = ϕ(1,0,0,0) = 6s1s2 + s2 + 6s1 + 1. Clearly

γ4 = 6s1s2 + s2 + 7s1 and γ3 = γ2 = γ1 = 6s1s2 + s2 + 7s1 + 1.

When s1 is odd. Then assign the vector (1, 1, 1, 1) to the first 6s1s2 + s2 +
9s1−1

2 pendent vertices and

assign the vector (1, 1, 1, 0) to the next 6s1s2 + s2 +
9s1+1

2 pendent vertices. Thereafter assign the vector

(1, 1, 0, 0) to the next 6s1s2 + s2 +
9s1+1

2 pendent vertices and assign the vector (1, 0, 0, 0) to the next

6s1s2 + s2 +
9s1+3

2 pendent vertices. We have ϕ(1,1,1,1) = ϕ(1,1,1,0) = ϕ(1,1,0,0) = ϕ(1,0,0,0) = 6s1s2 + s2 +

6s1 + 1. Clearly γ4 = 6s1s2 + s2 + 7s1 and γ3 = γ2 = γ1 = 6s1s2 + s2 + 7s1 + 1.

Case (ii): 2n − 2 ≡ 1 (mod 4)

Let 2n− 2 = 4s1 + 1, s1 ≥ 0. We get n = 2s1 + 2, p = (6s1 + 4)(m+ 1), and q = (6s1 + 4)(m+ 1) + 4s1 +

1. If s1 is even, assign the vector (1, 1, 1, 1) to the first 3s1
2 + 3 vertices. Then assign the vector (1, 1, 1, 0)

to the next 3s1
2 + 1 vertices and assign the vector (1, 1, 0, 0) to the next 3s1

2 vertices. Finally assign the

vector (1, 0, 0, 0) to the next 3s1
2 vertices. From these vertex labeling, we get 5s1

2 + 3, 5s1
2 + 2, 5s1

2 , 5s1
2 edges

with edge label 4, 3, 2, 1 respectively.

When s1 is odd, assign the vector (1, 1, 1, 1) to the first 3(s1+1)
2 + 1 vertices. Then assign the vector

(1, 1, 1, 0) to the next 3(s1+1)
2 vertices and assign the vector (1, 1, 0, 0) to the next 3(s1−1)

2 + 2 vertices.

Finally assign the vector (1, 0, 0, 0) to the next 3(s1−1)
2 + 1 vertices. From these vertex labeling, we

obtain 5(s1+1)
2 , 5(s1+1)

2 , 5(s1−1)
2 + 3, 5(s1−1)

2 + 2 edges with edge label 4, 3, 2, 1 respectively.

Subcase (A): m ≡ 0 (mod 4)

Let m = 4s2, s2 > 0. We get p = 24s1s2 + 6s1 + 16s2 + 4, and q = 24s1s2 + 10s1 + 16s2 + 5. If

s1 is even, assign the vector (1, 1, 1, 1) to the first 6s1s2 + 4s2 − 2 pendent vertices. Then assign the

vector (1, 1, 1, 0) to the next 6s1s2 + 4s2 pendent vertices and assign the vector (1, 1, 0, 0) to the next

6s1s2 + 4s2 + 1 pendent vertices. Finally assign the vector (1, 0, 0, 0) to the next 6s1s2 + 4s2 + 1 pendent

vertices. We get ϕ(1,1,1,1) = ϕ(1,1,1,0) = ϕ(1,1,0,0) = ϕ(1,0,0,0) = 6s1s2 + 4s2 +
3s1
2 + 1. Clearly γ1 = γ2 =

γ4 = 6s1s2 + 4s2 +
5s1
2 + 1 and γ3 = 6s1s2 + 4s2 +

5s1
2 + 2.

When s1 is odd. Then assign the vector (1, 1, 1, 1) to the first 6s1s2 + 4s2 − 1 pendent vertices and assign

the vector (1, 1, 1, 0) to the next 6s1s2 + 4s2 − 1 pendent vertices. Thereafter assign the vector (1, 1, 0, 0)

to the next 6s1s2 + 4s2 + 1 pendent vertices and assign the vector (1, 0, 0, 0) to the next 6s1s2 + 4s2 + 1

pendent vertices. We have ϕ(1,1,1,1) = ϕ(1,1,0,0) = 6s1s2 + 4s2 +
3(s1+3)

2 and ϕ(1,1,0,0) = ϕ(1,0,0,0) = 6s1s2 +

s2 +
3(s1+1)

2 + 2. Clearly γ4 = γ3 = γ2 = 6s1s2 + 4s2 +
5(s1+3)

2 and γ1 = 6s1s2 + s2 +
5(s1+1)

2 .

Subcase (B): m ≡ 1 (mod 4)

Let m = 4s2 + 1, s2 > 0. We get p = 24s1s2 + 12s1 + 16s2 + 8, and q = 24s1s2 + 16s1 + 16s2 + 9. If s1 is

even, assign the vector (1, 1, 1, 1) to the first 6s1s2 + 4s2 +
3s1
2 − 1 pendent vertices. Then assign the vector

(1, 1, 1, 0) to the next 6s1s2 + 4s2 +
3s1
2 + 1 pendent vertices and assign the vector (1, 1, 0, 0) to the next

6s1s2 + 4s2 +
3s1
2 + 2 pendent vertices. Finally assign the vector (1, 0, 0, 0) to the next 6s1s2 + 4s2 +

3s1
2 + 2

pendent vertices. We get ϕ(1,1,1,1) = ϕ(1,1,1,0) = ϕ(1,1,0,0) = ϕ(1,0,0,0) = 6s1s2 + 4s2 + 3s1 + 2. Clearly

γ4 = γ2 = γ1 = 6s1s2 + 4s2 + 4s1 + 2 and γ3 = 6s1s2 + 4s2 + 4s1 + 3.
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When s1 is odd. Then assign the vector (1, 1, 1, 1) to the first 6s1s2 + s2 +
3(s1−1)

2 + 1 pendent vertices

and assign the vector (1, 1, 1, 0) to the next 6s1s2 + s2 +
3(s1−1)

2 + 2 pendent vertices. Thereafter assign

the vector (1, 1, 0, 0) to the next 6s1s2 + s2 +
3(s1+1)

2 pendent vertices and assign the vector (1, 0, 0, 0) to

the next 6s1s2 + s2 +
3(s1+1)

2 + 1 pendent vertices. We have ϕ(1,1,1,1) = ϕ(1,1,1,0) = ϕ(1,1,0,0) = ϕ(1,0,0,0) =

6s1s2 + 4s2 + 3s1 + 2. Clearly γ4 = γ2 = γ1 = 6s1s2 + 4s2 + 4s1 + 2 and γ3 = 6s1s2 + s2 + 4s1 + 3.

Subcase (C): m ≡ 2 (mod 4)

Let m = 4s2 + 2, s2 ≥ 0. We get p = 24s1s2 + 18s1 + 16s2 + 12, and q = 24s1s2 + 22s1 + 16s2 + 13. If s1 is

even, assign the vector (1, 1, 1, 1) to the first 6s1s2 + 4s2 + 3s1 pendent vertices. Then assign the vector

(1, 1, 1, 0) to the next 6s1s2 + 4s2 + 3s1 + 2 pendent vertices and assign the vector (1, 1, 0, 0) to the next

6s1s2 + 4s2 + 3s1 + 3 pendent vertices. Finally assign the vector (1, 0, 0, 0) to the next 6s1s2 + 4s2 + 3s1 + 3

pendent vertices. We get ϕ(1,1,1,1) = ϕ(1,1,1,0) = ϕ(1,1,0,0) = ϕ(1,0,0,0) = 6s1s2 + 4s2 +
9s1
2 + 3. Clearly

γ4 = γ2 = γ1 = 6s1s2 + 4s2 +
11s1

2 + 3 and γ3 = 6s1s2 + 4s2 +
11s1

2 + 4.

When s1 is odd. Then assign the vector (1, 1, 1, 1) to the first 6s1s2 + 4s2 + 3s1 + 1 pendent vertices

and assign the vector (1, 1, 1, 0) to the next 6s1s2 + 4s2 + 3s1 + 1 pendent vertices. Thereafter assign

the vector (1, 1, 0, 0) to the next 6s1s2 + 4s2 + 3s1 + 2 pendent vertices and assign the vector (1, 0, 0, 0)

to the next 6s1s2 + 4s2 + 3s1 + 4 pendent vertices. We have ϕ(1,1,1,1) = ϕ(1,0,0,0) = 6s1s2 + 4s2 +
9s1+7

2

and ϕ(1,1,1,0) = ϕ(1,1,0,0) = 6s1s2 + 4s2 +
9s1+5

2 . Clearly γ4 = γ3 = γ1 = 6s1s2 + 4s2 +
11s1+7

2 and

γ2 = 6s1s2 + 4s2 +
11s1+5

2 .

Subcase (D): m ≡ 3 (mod 4)

Let m = 4s2 + 3, s2 ≥ 0. We get p = 24s1s2 + 24s1 + 16s2 + 16, and q = 24s1s2 + 28s1 + 16s2 + 17. If s1 is

even, assign the vector (1, 1, 1, 1) to the first 6s1s2 + 4s2 +
9s1
2 + 1 pendent vertices. Then assign the vector

(1, 1, 1, 0) to the next 6s1s2 + 4s2 +
9s1
2 + 3 pendent vertices and assign the vector (1, 1, 0, 0) to the next

6s1s2 + 4s2 +
9s1
2 + 4 pendent vertices. Finally assign the vector (1, 0, 0, 0) to the next 6s1s2 + 4s2 +

9s1
2 + 4

pendent vertices. We get ϕ(1,1,1,1) = ϕ(1,1,1,0) = ϕ(1,1,0,0) = ϕ(1,0,0,0) = 6s1s2 + 4s2 + 6s1 + 4. Clearly

γ4 = γ2 = γ1 = 6s1s2 + 4s2 + 7s1 + 4 and γ3 = 6s1s2 + 4s2 + 7s1 + 5.

When s1 is odd. Then assign the vector (1, 1, 1, 1) to the first 6s1s2 + 4s2 +
9s1+3

2 pendent vertices

and assign the vector (1, 1, 1, 0) to the next 6s1s2 + 4s2 +
9s1+5

2 pendent vertices. Thereafter assign the

vector (1, 1, 0, 0) to the next 6s1s2 + 4s2 +
9s1+7

2 pendent vertices and assign the vector (1, 0, 0, 0) to

the next 6s1s2 + 4s2 +
9s1+9

2 pendent vertices. We have ϕ(1,1,1,1) = ϕ(1,1,1,0) = ϕ(1,1,0,0) = ϕ(1,0,0,0) =

6s1s2 + 4s2 + 6s1 + 4. Clearly γ4 = γ2 = γ1 = 6s1s2 + 4s2 + 7s1 + 4 and γ3 = 6s1s2 + 4s2 + 7s1 + 5.

Hence the vertex labeling ϕ is a vector basis {(1, 1, 1, 1), (1, 1, 1, 0), (1, 1, 0, 0), (1, 0, 0, 0)}-cordial labeling

of D(Tn)⊙ mK1 for all n, m ≥ 2.

Example 4.4. An illustration for the vector basis {(1, 1, 1, 1), (1, 1, 1, 0), (1, 1, 0, 0), (1, 0, 0, 0)}-cordial labeling

of D(T6)⊙ 4K1 for the case when n ≡ 2 (mod 4) and m ≡ 0 (mod 4) is shown in Figure 3.
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Figure 3. A vector basis {(1,1,1,1),(1,1,1,0),(1,1,0,0),(1,0,0,0)}-cordial labeling of D(T6)⊙ 4K1

Theorem 4.5. The graph D(Qn)⊙ mK1 is a vector basis {(1, 1, 1, 1), (1, 1, 1, 0), (1, 1, 0, 0), (1, 0, 0, 0)}-cordial

for all n, m ≥ 2.

Proof. Denote by V(D(Qn) ⊙ mK1) = {ui, uij | 1 ≤ i ≤ n and 1 ≤ j ≤ m}

∪{vi, wi, vij, wij, xi, yi, xij, yij | 1 ≤ i ≤ n − 1 and 1 ≤ j ≤ m} and E(D(Qn) ⊙ mK1)

= {uiui+1, uivi, uixi, viwi, xiyi, ui+1wi, ui+1yi, vivij, wiwij, xixij, yiyij | 1 ≤ i ≤ n − 1 and 1 ≤ j ≤

m} ∪ {uiuij | 1 ≤ i ≤ n and 1 ≤ j ≤ m} respectively the vertex and edge sets of D(Qn)⊙ mK1. Clearly

p = |V(D(Qn)⊙ mK1)| = (5n − 4)(m + 1) and q = |E(D(Qn)⊙ mK1)| = (5n − 4)(m + 1) + 2n − 3

Assign the vectors to the vertices in the following order: u1, u2, w1, v1, x1, y1, u3, w2, v2, x2, y2, u4, w3,

v3, x3, y3, . . . , un−1, un, wn−1, vn−1, xn−1, yn−1 and u11, u12, . . . , u1m, v11, v12, . . . , v1m, w11, w12, . . . , w1m,

x11, x12, . . . , x1m, y11, y12, . . . , y1m, u21, u22, . . . , u2m, v21, v22, . . . , v2m, w21, w22, . . . , w2m, x21, x22, . . . ,

x2m, y21, y22, . . . , y2m, . . . , vn−1,1, vn−1,2, . . . , vn−1,m, wn−1,1, wn−1,2, . . . , wn−1,m, xn−1,1, xn−1,2, . . . , xn−1,m,

yn−1,1, yn−1,2, . . . , yn−1,m, un1, un2, . . . , unm. We have consider the following four cases:

Case (i): 2n − 2 ≡ 0 (mod 4)

Let 2n− 2 = 4s1, s1 > 0. We get n = 2s1 + 1, p = (10s1 + 1)(m+ 1), and q = (10s1 + 1)(m+ 1)+ 4s1 − 1.

If s1 is even, assign the vector (1, 1, 1, 1) to the first 5s1
2 + 1 vertices. Then assign the vector (1, 1, 1, 0) to

the next 5s1
2 vertices and assign the vector (1, 1, 0, 0) to the next 5s1

2 vertices. Finally assign the vector

(1, 0, 0, 0) to the next 5s1
2 vertices. From these vertex labeling, we get 7s1

2 , 7s1
2 , 7s1

2 , 7s1
2 edges with edge

label 4, 3, 2, 1 respectively.

When s1 is odd, assign the vector (1, 1, 1, 1) to the first 5(s1−1)
2 + 4 vertices. Then assign the vector
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(1, 1, 1, 0) to the next 5(s1−1)
2 + 2 vertices and assign the vector (1, 1, 0, 0) to the next 5(s1−1)

2 + 3 vertices.

Finally assign the vector (1, 0, 0, 0) to the next 5(s1−1)
2 + 2 vertices. From these vertex labeling, we obtain

7(s1−1)
2 + 4, 7(s1−1)

2 + 3, 7(s1−1)
2 + 4, 7(s1−1)

2 + 3 edges with edge label 4, 3, 2, 1 respectively.

Subcase (A): m ≡ 0 (mod 4)

Let m = 4s2, s2 > 0. We get p = 40s1s2 + 10s1 + 4s2 + 1, and q = 40s1s2 + 14s1 + 4s2. If s1 is

even, assign the vector (1, 1, 1, 1) to the first 10s1s2 + s2 pendent vertices. Then assign the vector

(1, 1, 1, 0) to the next 10s1s2 + s2 pendent vertices and assign the vector (1, 1, 0, 0) to the next 10s1s2 + s2

pendent vertices. Finally assign the vector (1, 0, 0, 0) to the next 10s1s2 + s2 pendent vertices. We get

ϕ(1,1,1,1) = 10s1s2 + s2 +
5s1
2 + 1, ϕ(1,1,1,0) = ϕ(1,1,0,0) = ϕ(1,0,0,0) = 10s1s2 + s2 +

5s1
2 . Clearly γ1 = γ2 =

γ3 = γ4 = 10s1s2 + s2 +
7s1
2 .

When s1 is odd. Then assign the vector (1, 1, 1, 1) to the first 10s1s2 + s2 − 1 pendent vertices and assign

the vector (1, 1, 1, 0) to the next 10s1s2 + s2 pendent vertices. Thereafter assign the vector (1, 1, 0, 0) to

the next 10s1s2 + s2 pendent vertices and assign the vector (1, 0, 0, 0) to the next 10s1s2 + s2 + 1 pendent

vertices. We have ϕ(1,1,1,1) = ϕ(1,1,0,0) = ϕ(1,0,0,0) = 10s1s2 + s2 +
5(s1−1)

2 + 3 and ϕ(1,1,1,0) = 10s1s2 + s2 +

5(s1−1)
2 + 2. Clearly γ4 = γ3 = 10s1s2 + s2 +

7(s1−1)
2 + 3 and γ2 = γ1 = 10s1s2 + s2 +

7(s1−1)
2 + 4.

Subcase (B): m ≡ 1 (mod 4)

Let m = 4s2 + 1, s2 > 0. We get p = 40s1s2 + 20s1 + 4s2 + 2, and q = 40s1s2 + 24s1 + 4s2 + 1. If s1 is

even, assign the vector (1, 1, 1, 1) to the first 10s1s2 + s2 +
5s1
2 pendent vertices. Then assign the vector

(1, 1, 1, 0) to the next 10s1s2 + s2 +
5s1
2 pendent vertices and assign the vector (1, 1, 0, 0) to the next

10s1s2 + s2 +
5s1
2 pendent vertices. Finally assign the vector (1, 0, 0, 0) to the next 10s1s2 + s2 +

5s1
2 + 1

pendent vertices. We get ϕ(1,1,1,1) = ϕ(1,0,0,0) = 10s1s2 + s2 + 5s1 + 1 and ϕ(1,1,1,0) = ϕ(1,1,0,0) = 10s1s2 +

s2 + 5s1. Clearly γ4 = γ3 = γ2 = 10s1s2 + s2 + 6s1 and γ1 = 10s1s2 + s2 + 6s1 + 1.

When s1 is odd. Then assign the vector (1, 1, 1, 1) to the first 10s1s2 + s2 +
5(s1−1)

2 + 2 pendent vertices

and assign the vector (1, 1, 1, 0) to the next 10s1s2 + s2 +
5(s1−1)

2 + 3 pendent vertices. Thereafter assign

the vector (1, 1, 0, 0) to the next 10s1s2 + s2 +
5(s1−1)

2 + 2 pendent vertices and assign the vector (1, 0, 0, 0)

to the next 10s1s2 + s2 +
5(s1−1)

2 + 4 pendent vertices. We have ϕ(1,1,1,1) = ϕ(1,0,0,0) = 10s1s2 + s2 + 5s1 + 1

and ϕ(1,1,1,0) = ϕ(1,1,0,0) = 10s1s2 + s2 + 5s1. Clearly γ4 = γ3 = γ2 = 10s1s2 + s2 + 6s1 and γ1 =

10s1s2 + s2 + 6s1 + 1.

Subcase (C): m ≡ 2 (mod 4)

Let m = 4s2 + 2, s2 ≥ 0. We get p = 40s1s2 + 30s1 + 4s2 + 3, and q = 40s1s2 + 34s1 + 4s2 + 2. If

s1 is even, assign the vector (1, 1, 1, 1) to the first 10s1s2 + s2 + 5s1 pendent vertices. Then assign the

vector (1, 1, 1, 0) to the next 10s1s2 + s2 + 5s1 pendent vertices and assign the vector (1, 1, 0, 0) to the next

10s1s2 + s2 + 5s1 + 1 pendent vertices. Finally assign the vector (1, 0, 0, 0) to the next 10s1s2 + s2 + 5s1 + 1

pendent vertices. We get ϕ(1,1,1,1) = ϕ(1,1,0,0) = ϕ(1,0,0,0) = 10s1s2 + s2 +
15s1

2 + 1 and ϕ(1,1,1,0) = 10s1s2 +

s2 +
15s1

2 . Clearly γ4 = γ3 = 10s1s2 + s2 +
17s1

2 and γ2 = γ1 = 10s1s2 + s2 +
17s1

2 + 1.

When s1 is odd. Then assign the vector (1, 1, 1, 1) to the first 10s1s2 + s2 + 5s1 pendent vertices and
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assign the vector (1, 1, 1, 0) to the next 10s1s2 + s2 + 5s1 + 1 pendent vertices. Thereafter assign the

vector (1, 1, 0, 0) to the next 10s1s2 + s2 + 5s1 pendent vertices and assign the vector (1, 0, 0, 0) to the

next 10s1s2 + s2 + 5s1 + 1 pendent vertices. We have ϕ(1,1,1,1) = 10s1s2 + s2 +
15s1+3

2 and ϕ(1,1,1,0) =

ϕ(1,1,0,0) = ϕ(1,0,0,0) = 10s1s2 + s2 +
15s1+1

2 . Clearly γ4 = γ2 = γ1 = 10s1s2 + s2 +
17s1+1

2 and γ3 =

10s1s2 + s2 +
17s1−1

2 .

Subcase (D): m ≡ 3 (mod 4)

Let m = 4s2 + 3, s2 ≥ 0. We get p = 40s1s2 + 40s1 + 4s2 + 4, and q = 40s1s2 + 44s1 + 4s2 + 3. If s1 is

even, assign the vector (1, 1, 1, 1) to the first 10s1s2 + s2 +
15s1

2 pendent vertices. Then assign the vector

(1, 1, 1, 0) to the next 10s1s2 + s2 +
15s1

2 + 1 pendent vertices and assign the vector (1, 1, 0, 0) to the next

10s1s2 + s2 +
15s1

2 + 1 pendent vertices. Finally assign the vector (1, 0, 0, 0) to the next 10s1s2 + s2 +

15s1
2 + 1 pendent vertices. We get ϕ(1,1,1,1) = ϕ(1,1,1,0) = ϕ(1,1,0,0) = ϕ(1,0,0,0) = 10t1s2 + s2 + 10s1 + 1.

Clearly γ4 = 10s1s2 + s2 + 11s1 and γ3 = γ2 = γ1 = 10s1s2 + s2 + 11s1 + 1.

When s1 is odd. Then assign the vector (1, 1, 1, 1) to the first 10s1s2 + s2 +
15s1−1

2 pendent vertices

and assign the vector (1, 1, 1, 0) to the next 10s1s2 + s2 +
15s1+3

2 pendent vertices. Thereafter assign

the vector (1, 1, 0, 0) to the next 10s1s2 + s2 +
15s1+1

2 pendent vertices and assign the vector (1, 0, 0, 0)

to the next 10s1s2 + s2 +
15s1+3

2 pendent vertices. We have ϕ(1,1,1,1) = ϕ(1,1,1,0) = ϕ(1,1,0,0) = ϕ(1,0,0,0) =

10s1s2 + s2 + 10s1 + 1. Clearly γ4 = 10s1s2 + s2 + 11s1 and γ3 = γ2 = γ1 = 10s1s2 + s2 + 11s1 + 1.

Case (ii): 2n − 2 ≡ 1 (mod 4)

Let 2n − 2 = 4s1 + 1, s1 ≥ 0. We get n = 2s1 + 2, p = (10s1 + 6)(m + 1), and q = (10s1 + 6)(m + 1) +

4s1 + 1. If s1 is even, assign the vector (1, 1, 1, 1) to the first 5s1
2 + 4 vertices. Then assign the vector

(1,1,1,0) to the next 5s1
2 + 2 vertices and assign the vector (1, 1, 0, 0) to the next 5s1

2 vertices. Finally assign

the vector (1, 0, 0, 0) to the next 5s1
2 vertices. From these vertex labeling, we get 7s1

2 + 4, 7s1
2 + 3, 7s1

2 , 7s1
2

edges with edge label 4, 3, 2, 1 respectively.

When s1 is odd, assign the vector (1, 1, 1, 1) to the first 5(s1+1)
2 + 1 vertices. Then assign the vector

(1, 1, 1, 0) to the next 5(s1+1)
2 vertices and assign the vector (1, 1, 0, 0) to the next 5(s1−1)

2 + 3 vertices.

Finally assign the vector (1, 0, 0, 0) to the next 5(s1−1)
2 + 2 vertices. From these vertex labeling, we

obtain 7(s1+1)
2 , 7(s1+1)

2 , 7(s1−1)
2 + 4, 7(s1−1)

2 + 3 edges with edge label 4, 3, 2, 1 respectively.

Subcase (A): m ≡ 0 (mod 4)

Let m = 4s2, s2 > 0. We get p = 40s1s2 + 10s1 + 24s2 + 6 and q = 40s1s2 + 14s1 + 24s2 + 7. If s1 is even,

assign the vector (1, 1, 1, 1) to the first 10s1s2 + 6s2 − 2 pendent vertices. Then assign the vector (1, 1, 1, 0)

to the next 10s1s2 + 6s2 − 1 pendent vertices and assign the vector (1, 1, 0, 0) to the next 10s1s2 + 6s2 + 1

pendent vertices. Finally assign the vector (1, 0, 0, 0) to the next 10s1s2 + 6s2 + 2 pendent vertices. We

get ϕ(1,1,1,1) = ϕ(1,0,0,0) = 10s1s2 + 6s2 +
5s1
2 + 2 and ϕ(1,1,1,0) = ϕ(1,1,0,0) = 10s1s2 + 6s2 +

5s1
2 + 1. Clearly

γ1 = γ2 = γ4 = 10s1s2 + 6s2 +
7s1
2 + 1 and γ3 = 10s1s2 + 6s2 +

7s1
2 + 2.

When s1 is odd. Then assign the vector (1, 1, 1, 1) to the first 10s1s2 + 6s2 − 2 pendent vertices and

assign the vector (1, 1, 1, 0) to the next 10s1s2 + 6s2 − 1 pendent vertices. Thereafter assign the vector

(1, 1, 0, 0) to the next 10s1s2 + 6s2 + 1 pendent vertices and assign the vector (1, 0, 0, 0) to the next
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10s1s2 + 6s2 + 2 pendent vertices. We have ϕ(1,1,1,1) = ϕ(1,1,1,0) = 10s1s2 + 6s2 +
5(s1+1)

2 − 1 and ϕ(1,1,0,0) =

ϕ(1,0,0,0) = 10s1s2 + 6s2 +
5(s1−1)

2 + 4. Clearly γ4 = γ3 = 10s1s2 + 6s2 +
7(s1+1)

2 − 2 and γ2 = γ1 =

10s1s2 + 6s2 +
7(s1−1)

2 + 5.

Subcase (B): m ≡ 1 (mod 4)

Let m = 4s2 + 1, s2 > 0. We get p = 40s1s2 + 20s1 + 24s2 + 12 and q = 40s1s2 + 20s1 + 24s2 + 13.

If s1 is even, assign the vector (1, 1, 1, 1) to the first 10s1s2 + 6s2 +
5s1
2 − 1 pendent vertices. Then

assign the vector (1, 1, 1, 0) to the next 10s1s2 + 6s2 +
5s1
2 + 1 pendent vertices and assign the vector

(1, 1, 0, 0) to the next 10s1s2 + 6s2 +
5s1
2 + 3 pendent vertices. Finally assign the vector (1, 0, 0, 0) to

the next 10s1s2 + 6s2 +
5s1
2 + 3 pendent vertices. We get ϕ(1,1,1,1) = ϕ(1,1,1,0) = ϕ(1,1,0,0) = ϕ(1,0,0,0) =

10s1s2 + 6s2 + 5s1 + 3. Clearly γ4 = γ2 = γ1 = 10s1s2 + 6s2 + 6s1 + 3 and γ3 = 10s1s2 + 6s2 + 6s1 + 3.

When s1 is odd. Then assign the vector (1, 1, 1, 1) to the first 10s1s2 + 6s2 +
5(s1−1)

2 + 2 pendent vertices

and assign the vector (1, 1, 1, 0) to the next 10s1s2 + 6s2 +
5(s1−1)

2 + 3 pendent vertices. Thereafter assign

the vector (1, 1, 0, 0) to the next 10s1s2 + 6s2 +
5(s1+1)

2 pendent vertices and assign the vector (1, 0, 0, 0) to

the next 10s1s2 + 6s2 +
5(s1+1)

2 + 1 pendent vertices. We have ϕ(1,1,1,1) = ϕ(1,1,1,0) = ϕ(1,1,0,0) = ϕ(1,0,0,0) =

10s1s2 + 6s2 + 5s1 + 3. Clearly γ4 = γ2 = γ1 = 10s1s2 + 6s2 + 6s1 + 3 and γ3 = 10s1s2 + 6s2 + 6s1 + 4.

Subcase (C): m ≡ 2 (mod 4)

Let m = 4s2 + 2, s2 ≥ 0. We get p = 40s1s2 + 30s1 + 24s2 + 18, and q = 40s1s2 + 34s1 + 24s2 + 19.

If s1 is even, assign the vector (1, 1, 1, 1) to the first 10s1s2 + 6s2 + 5s1 + 1 pendent vertices. Then

assign the vector (1, 1, 1, 0) to the next 10s1s2 + 6s2 + 5s1 + 4 pendent vertices and assign the vector

(1, 1, 0, 0) to the next 10s1s2 + 6s2 + 5s1 + 4 pendent vertices. Finally assign the vector (1, 0, 0, 0) to

the next 10s1s2 + 6s2 + 5s1 + 5 pendent vertices. We get ϕ(1,1,1,1) = ϕ(1,0,0,0) = 10s1s2 + 6s2 +
15s1

2 + 5

and ϕ(1,1,1,0) = ϕ(1,1,0,0) = 10s1s2 + 6s2 +
15s1

2 + 4. Clearly γ4 = γ2 = γ1 = 10s1s2 + 6s2 +
17s1

2 + 5 and

γ3 = 6s1s2 + 4s2 +
17s1

2 + 4.

When s1 is odd. Then assign the vector (1, 1, 1, 1) to the first 10s1s2 + 6s2 + 5s1 + 1 pendent vertices

and assign the vector (1, 1, 1, 0) to the next 10s1s2 + 6s2 + 5s1 + 2 pendent vertices. Thereafter assign

the vector (1, 1, 0, 0) to the next 10s1s2 + 6s2 + 5s1 + 4 pendent vertices and assign the vector (1, 0, 0, 0)

to the next 10s1s2 + 6s2 + 5s1 + 5 pendent vertices. We have ϕ(1,1,1,1) = ϕ(1,1,1,0) = ϕ(1,1,0,0) = ϕ(1,0,0,0) =

10s1s2 + 6s2 +
15s1+9

2 . Clearly γ4 = γ3 = γ1 = 10s1s2 + 6s2 +
17s1+9

2 and γ2 = 10s1s2 + 6s2 +
17s1+11

2 .

Subcase (D): m ≡ 3 (mod 4)

Let m = 4s2 + 3, s2 ≥ 0. We get p = 40s1s2 + 40s1 + 24s2 + 24 and q = 40s1s2 + 44s1 + 24s2 + 25. If

s1 is even, assign the vector (1, 1, 1, 1) to the first 10s1s2 + 6s2 +
15s1

2 + 2 pendent vertices. Then assign

the vector (1, 1, 1, 0) to the next 10s1s2 + 6s2 +
15s1

2 + 4 pendent vertices and assign the vector (1, 1, 0, 0)

to the next 10s1s2 + 6s2 +
15s1

2 + 6 pendent vertices. Finally assign the vector (1, 0, 0, 0) to the next

10s1s2 + 6s2 +
15s1

2 + 6 pendent vertices. We get ϕ(1,1,1,1) = ϕ(1,1,1,0) = ϕ(1,1,0,0) = ϕ(1,0,0,0) = 10s1s2 +

6s2 + 10s1 + 6. Clearly γ4 == γ2 = γ1 = 10s1s2 + 6s2 + 11s1 + 6 and γ3 = 10s1s2 + 6s2 + 11s1 + 7.

When s1 is odd. Then assign the vector (1, 1, 1, 1) to the first 10s1s2 + 6s2 +
15s1+5

2 pendent vertices
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and assign the vector (1, 1, 1, 0) to the next 10s1s2 + 6s2 +
15s1+7

2 pendent vertices. Thereafter assign

the vector (1, 1, 0, 0) to the next 10s1s2 + 6s2 +
15s1+11

2 pendent vertices and assign the vector (1, 0, 0, 0)

to the next 10s1s2 + 6s2 +
9s1+13

2 pendent vertices. We have ϕ(1,1,1,1) = ϕ(1,1,1,0) = ϕ(1,1,0,0) = ϕ(1,0,0,0) =

10s1s2 + 6s2 + 10s1 + 6. Clearly γ4 = γ2 = γ1 = 10s1s2 + 6s2 + 11s1 + 6 and γ3 = 10s1s2 + 6s2 + 11s1 + 7.

Hence the vertex labeling ϕ is a vector basis {(1, 1, 1, 1), (1, 1, 1, 0), (1, 1, 0, 0), (1, 0, 0, 0)}-cordial labeling

ofD(Qn)⊙ mK1 for all n, m ≥ 2.

5. Conclusion

In this paper, we have investigated the existence of a vector basis

{(1, 1, 1, 1), (1, 1, 1, 0), (1, 1, 0, 0), (1, 0, 0, 0)}-cordial labeling of D(Tn) ⊙ mK1 and D(Qn) ⊙ mK1.

Investigating the vector basis {(1, 1, 1, 1), (1, 1, 1, 0), (1, 1, 0, 0), (1, 0, 0, 0)}-cordial labeling behaviour of

corona product of some other family of graphs is our future work.
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