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Abstract

Analytical and numerical solutions of non-homogeneous linear fractional boundary value

problems play a very important role in the interpretation of various model results. In this work, we

present the existence and uniqueness results for the solution of non-homogeneous linear fractional

boundary value problem using the Banach fixed point theorem in the space of continuous

functions. The analytic solution is presented using the Laplace transform approach and the

collocation parallel shooting method is employed for the numerical solutions.
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1. Introduction

The concept of fractional calculus dated well back in the 17 century. The birth of this concept dated

30th September, 1695, L’ Hopital wrote a letter to Liebniz asking him about the meaning of one half

derivative. Leibniz response ”an apparent paradox from which one day useful consequences will be

drawn” [1]. In recent years, fractional calculus has developed rapidly within the frame work of pure

mathematics. Often times in solving real life problems, fractional order derivatives appear

naturally [2]. The wide application of fractional calculus in the field of Engineering, Science and social

sciences mark a significant development, these include: Fluid mechanics [3], Electromagnetism [4],

Electrochemistry [5], Dynamics of viscoelastic materials [6], Nuclear dynamics [7], Bioscience [8] and

Mechanical vibrations [9]. Solution of fractional differential equations particular boundary value

problems play an in important role in the interpretation of real world problems, to this end various

methods for solving fractional differential equations are proposed, these include: Boubaker

polynomials [10], Bernoulli wavelet [11], finite element method [12], Jacobi polynomial [13],

Chebyshev polynomials [14], Predictor-correction method [15], Adomia decomposition method [16],
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Homotype perturbation method [17], Extrapolation [18] and the Generalized transform method [19].

The fractional boundary value problem is studied by few authors, for example [20] gives the

Boundary Value Problem (BVP) for fractional differential equation (FrDE) as follows:


Dβ

0+y(t) = g(t), t ∈ (0, 1),

y(0) = y
′
(0) = y

′′
(1) = 0.

Here Dβ
0+ denote the Reimman Liouville fractional differential operator of order β, 2 < β <. The

existence results were obtained via the lower and upper solution method an fixed point theorem. A

non-linear fractional boundary value problem is given in the work of [21]


Dβ

0+y(t) = g(t, y(t)), t ∈ (0, 1)

y(0) = y
′
(0) = y

′′
(0) = y

′′1(1) = 0

where Dβ
0+ is the Reimman Liouville fractional operator of order β, 3 < β ⩽ 4. The existence of positive

solution is investigated via the fixed the point theorem. A boundary value problem of fractional

differential equation at resonance was proposed by [22]


Dγ

0+y(x) = g(t, y(x), y
′
(x), y

′′
(x), y

′′′
(x)), x ∈ (0, 1),

y(0) = y
′
(0) = y

′′
(0) = 0, y

′′′
(1) = y

′v(1).

where Dγ
0+ is the Caputo fractional derivative of order γ, 3 < γ < 4. The lower and upper solution

method combined with the monotone iteration method were utilized for the solution. Blank [23]

gave the numerical treatment of fractional order and applied the method to relaxation equation, later

[24] applied the method to find the solution of fractional integro-differential equations. Further, [25]

proposed the collocation shooting method for solving boundary value problem. In all the works

mentioned above non gave the existence and uniqueness of the exact solution, the analytical solution.

In this paper we present those gaps identified above, to this end we consider the fractional boundary

value problem:

[C1D2 + C2Dα + C3D0]y(t) = g(t), t ∈ [0, T], 0 < α < 2 (1)

y(0) = τ0, y(T) = τ1. (2)

where C1, C2, C3, τ0 and τ1 are constants with C1 ̸= 0 and y ∈ L[0, T]. Here, Dα ( α is a non- integer)

denote the fractional operator of order α and is given by

Dαy(x) =
1

Γ(i − α)

∫ x

0
(x − t)i−α−1yi(t)dt (3)
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where i = N and satisfies the relation i − 1 < α < i. The paper is organized as follows: In section

I, we give some basic definitions of fractional differential equation, section II deals with the existence

and uniqueness of the fractional boundary value problem and the analytical results. In section III

we present the collocation parallel shooting method and section IV several numerical example are

considered to demonstrate the effectiveness, applicability and accuracy of the method.

1.1 Preliminaries

Definition 1.1 ( [26]). The Riemann Liouville fractional integral, Let ω(y) ∈ L, (a, b).

(
Iβ
a+

)
(y) =

1
Γ(β)

∫ y

a

ω(t)
(y − t)1−β

dt y > a(
Iβ
b−

)
(y) =

1
Γ(β)

∫ y

a

ω(t)
(t − y)1−β

dt y < a

where β > 0 are called left and right sided fractional integrals of order β respectively

Definition 1.2 ( [26]). The left and right Riemann Liouville fractional derivatives of a function f(y) defined on

the interval [a, b] as

Dβ
a+g(y) =

1
Γ(1 − β)

d
dy

∫ y

a

g(t)dt
(y − t)β

, , 0 < β < 1

Dβ
b−g(y) =

1
Γ(1 − β)

d
dy

∫ b

y

g(t)dt
(t − y)β

, , 0 < β < 1

respectively.

Definition 1.3 ( [26]). The left and right Caputo fractional derivative of order β are defined by

(
CDβ

a+y
)
(t) :=

(
Dβ

a+

[
y(x)−

m−1

∑
i=0

yi(a)
i!

(x − a)i

])
(t),

and

(
CDβ

b−y
)
(t) :=

(
Dβ

−b

[
y(x)−

m−1

∑
i=0

yi(a)
i!

(b − x)i

])
(t),

respectively, where m = ⌊R(α)⌋+ 1 for β /∈ N0, m = β for β ∈ N0.

Definition 1.4 ( [26]). The Laplace transform ω(x), 0 < x < ∞ is defined as follows:

Lω =

(
Lω

)
(q) =

(
L {ω(x), q} =

∫ ∞

0
e−qxω(x)dx.

and its inverse is given by the formula

(
L−1g

)
(t) = L−1 {g(q), t} =

1
2πi

∫ γ+i∞

2πi
eqxg(q)dq.
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γ = Req > q0.

Definition 1.5 ( [26]). The gamma - function Γ(z), is defined by the Euler integral of the second kind

Γ(z) =
∫ ∞

0
yz−1eydy, Rez > 0.

Definition 1.6. The Gauss hypergeometric function is defined as an analytic continuous of the series

2F1(a, b; c; z) =
Γ(C)

Γ(b)Γ(c − (b)

∫ 1

0
xb−1(1 − x)(c−b−1)(1 − zx)adt,

0 < Reb < Rec. |arg(1 − x)| < π.

Definition 1.7. The confluent hypergeometric function or the Kummer function is defined as a

1F1(a, c; z) =
∞

∑
n=0

(a)n

(c)nn!
zn = lim

b→∞
2F1(a, b; c;

z
b
), |Z| < ∞.

Definition 1.8 ( [27]). A generalized Mittag Leffler function is defined as

Eγ
α,β(Z) =

∞

∑
i=0

γiZi

Γ(αi + β)i!
, Re(α) > 0.

Definition 1.9 ( [28]). The caputo fractional derivative CDβ
+a of order β of a function h(t) ∈ Cn[a, b] is

CDβ
a+h(t) =


1

Γ(n−β)

∫ t
0 (t − s)n−β−1h(n)(t)dt, i f β /∈ N

h(n)(t), i f β = n ∈ N,

Where h(n)(t)= dn

dtn h(t), Re(β) ⩾ 0, n = [Re(α)] + 1.

Definition 1.10 ( [29]). Let H ∈ Rn, [a,b ] ⊂ Rn and f : [a, b]× H → Rn be a function such that for any

y1, y2 ∈ H, f satisfies the Lipschitz condition with respect to the second variable if for all t ∈ [a, b] and any

y1, y2 ∈ H one has

| f (t, y1)− f (t, y2)| ≤ B|y1 − y2|, B > 0 (4)

2. The Existence and Uniqueness of Solution of Non-homogeneous Fractional Linear

Boundary Value Problem

In this section, we investigate the existence and uniqueness of the solution of the non-homogeneous

fractional linear boundary value problem. Before this investigation we give some definitions and

important lemmas that are useful for the investigation.
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Lemma 2.1 ( [28]). Let β, ω ∈ C, Re(β) > 0 and a ∈ R then, there holds

(
CDβ

a+Eβ(ω(Z − a)β)

)
(t) = ωEβ(ω(Z − a)β)(t).

Lemma 2.2 ( [28]). If y(t) = Cm[a, b], then

(
CDβ

a+ Iβ
a+y
)
(t) = y(t)(

Iβ
a+

CDβ
a+y
)
(t) = y(t)−

n−1

∑
i=0

y(i)(a)
i!

(t − a)i.

Lemma 2.3 ( [28]). The Laplace transform of the Caputo fractional derivative is defined as

L
{

CDβ
a+ f (t); s

}
= y(t)−

n−1

∑
i−0

sβ−i−1 f (i)(0).

Lemma 2.4 ( [28]). Let R(β > 0) , n = [R(β)] + 1 , and R(β) > 0, then

(C
aDβ(t − a)α−1)(x) =

Γ(α)
Γ(α − β)

(x − a)α−β−1,R(α) > n f or i = 0, 1, · · · , n − 1

(C
aDβ(t − a)i)(x) = 0.

Lemma 2.5 ( [30]). A function f ∈ Cn
δ [a, b] if and only if f can be written in the form

g(t) =
1

(n − 1)!

∫ t

a
(t − u)n−1 f (u)du +

n−1

∑
i=0

f i(a)
i!

(t − a)i. (5)

Lemma 2.6 ( [31]). Let 0 < β < b < ∞ and 0 < δ < 1, then

(a). If 0 < δ < 1, then a Iβ is bounded from Cδ[a, b] into Cδ−β[a, b]:

∥a Iβ f ∥Cδ−β
⩽ (b − a)β Γ(1 − δ)

Γ(1 − δ + β)
∥ f ∥Cδ

. (6)

(b). If β ⩾ δ, then a Iβ is bounded from Cδ[a, b] into C[a, b]:

∥a Iβ f ∥C ⩽ (b − a)β−δ Γ(1 − δ)

Γ(1 − δ + β)
∥ f ∥Cδ

. (7)

(c). The fractional integral operator a Iβ presents a mapping from C[a, b] into C[a, b] and

∥a Iβ f ∥C ⩽
1

Γ(β + 1)
(b − a)β∥ f ∥C. (8)
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Lemma 2.7 ( [28]). Let β, ω ∈ C, Re(β) > 0 and a ∈ R then, there holds

(
CDβ

a+Eβ(ω(Z − a)β)

)
(t) = ωEβ(ω(Z − a)β)(t).

Lemma 2.8 ( [28]). If y(t) = Cn−1[a, b], then

(
CDβ

a+ Iβ
a+y
)
(t) = y(t), (9)(

Iβ
a+

CDβ
a+y
)
(t) = y(t)−

n−1

∑
i=0

y(i)(a)
i!

(t − a)i. (10)

Lemma 2.9 ( [28]). For a function f defined on the interval [a, b], we defined a semi-group property for the

Caputo integral as

(a Iβ(a Iα f ))(t) = (a Iβ+α f )(t), R(β) > 0, R(α) > 0.

Lemma 2.10 ( [28]). The Laplace transform of the Caputo fractional derivative is defined as

L
{

CDβ
a+ f (t); s

}
= y(t)−

n−1

∑
i=0

sβ−i−1 f (i)(a) (11)

Theorem 2.11 (Banach fixed point theorem [32]). Let (Y, d) be a nonempty complete metric space, and let

0 ⩽ δ < 1. If T : Y → Y is mapping such that for every y1, y2 ∈ Y , the relation

d(Ty1 , Ty2) ⩽ δd(y1, y2) (12)

holds, then the operator T ha a unique fixed point y∗ ∈ Y. Further, if T∗(s ∈ N ) is the sequence which is defined

by 
Ts = TTs−1, s ∈ N\(1)

T1 = T,

then, for any y0 ∈ Y,
{

Ts
y0

}∞

s=1
converges the above fixed point y∗.

2.1 The existence and uniqueness

In order to investigate the existence and uniqueness of solution of equation (65), we defined a max

metric dδ containing yα, and prove that any two solutions of equation (65) are equivalent in the metric

space (Cn[a, T], dδ). Further we show that a solution sequence
{

yj
}∞

j=1 of equation (65) is a Cauchy

sequence in the metric space. Setting B1 = B2 = B3 = 1, we rewrite equation (65) in the form,

y
′′
(t) = g(t)−

(
C
aDα

t y(t)
)
− y(t) = h

(
t, y(t), y(α)(t)

)
, 0 < α < 2,
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y(a) = τ̄0, y′(a) = τ̄1. (13)

Where h(t) is continuous if g(t) is continuous in the interval [a, T]. For the same value of α the

following equations are equivalent to equation (65).

Lemma 2.12. Let h
(

t, y(t), y(α)(t)
)

= g(t) −
(

C
aDα

t y(t)
)
− y(t), then the initial value problem (65) is

equivalent to the following equations.

(a)

y(t) =
∫ t

0
(t − s)h

(
s, y(s), y(α)(s)

)
+ τ̄1t + τ̄0. (14)

(b) For 0 < α < 1,

yα(t) =
1

Γ(2 − α)

∫ t

0
(t − s)1−αh

(
s, y(s), y(α)(s)

)
ds +

τ̄1t1−α

Γ(2 − α)
t ∈ [a, T]. (15)

(c) and for 1 < α < 2,

yα(t) = I2−αy
′′
(t) =

1
Γ(2 − α)

∫ t

0
(t − s)1−αh

(
s, y(s), y(α)(s)

)
ds t ∈ [a, T]. (16)

Proof.

(a) To proof the above lemma we take the Laplace transform of equation (13), we get

L
{

y
′′
(t), s

}
=L

{
h
(

t, y(t), yα(t)
)}

s2Y(s) =H
(

s, y(s), yα(s)
)
+ τ̄1 + sτ̄0

Y(s) =s2H
(

s, y(s), yα(s)
)
+ s−2τ̄1 + s−1τ̄0. (17)

Applying the Laplace convolution property and inverse Laplace transform on (17) we obtain the

following solution

y(t) =
∫ t

0
(t − s)h

(
s, y(s), yα(s)

)
ds + τ̄1t + τ̄0, t ∈ [a, T]. (18)

(b) To prove part (b) we first differential both sides of equation (18)

y
′
(t) =

d
dt

∫ t

0
(t − s)h

(
s, y(s), yα(s)

)
ds + τ̄1.
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Interchanging the derivative and the integral and differentiating with respect to t, we have

=
∫ t

0
h
(

s, y(s), y(α)(s)
)

ds + τ̄1. (19)

For 0 < α < 1 and t ∈ [a, T] , by applying the defined of Caputo derivative in definition (1.9), we

get

y(α)(t) =I1−αy
′
(t) = y(α)

[ ∫ t

0
h
(

s, y(s), yα(s)
)

ds + τ̄1

]
=

1
Γ(1 − α)

∫ t

0
(t − s)−α

[ ∫ s

0
h
(

ϱ, y(ϱ), yα(ϱ)

)
dϱ + τ̄1

]
ds

yα(t) =
1

Γ(1 − α)

∫ t

0
h
(

ϱ, y(ϱ), yα(ϱ)

)
dϱ
∫ t

ϱ
(t − s)−αds +

1
Γ(1 − α)

∫ t

0
(s − t)−ατ̄1ds.

We change the order of integration in the iterative integral to get,

1
Γ(1 − α)

∫ t

0

(t − ϱ)1−α

(1 − α)
h
(

ϱ, y(ϱ), yα(ϱ)

)
dϱ +

1
Γ(1 − α)

(
(t − s)1−α

(1 − α)
|t0
)

τ̄1

=
1

(1 − α)Γ(1 − α)

∫ t

0
(t − ϱ)1−αh

(
ϱ, y(ϱ), yα(ϱ)

)
dϱ +

τ̄1

(1 − α)Γ(1 − α)

(
(t − s)1−α

)
=

1
Γ(2 − α)

∫ t

0
(t − ϱ)1−αh

(
ϱ, y(ϱ), yα(ϱ)

)
dϱ +

τ̄1

Γ(2 − α)

(
(t − s)1−α

)
.

Setting t − s = t we get,

=
1

Γ(2 − α)

∫ t

0
(t − ϱ)1−αh

(
ϱ, y(ϱ), yα(ϱ)

)
dϱ +

τ̄1t1−α

Γ(2 − α)
.

If α = 1. The result is is gotten from equation (19)

y
′
(t) =

∫ t

0
h
(

ϱ, y(ϱ), y
′
(ϱ)

)
dϱ + τ̄1.

(c) For 1 < α < 2, we use equation (13) and definition (1.9), we obtain

yα(t) = I2−αy
′′
(t) =

1
Γ(2 − α)

(t − s)1−α
∫ t

0
h
(

s, y(s), yα(s)
)

ds t ∈ [a, T].

The proof is complete.

Let V :=
(
(t, w, u) ∈ R3 : t ∈ [a, T], (w, u) ∈ R2

)
. Let the real valued function h : V → R be

Lipschitz continuous with respect to w and u. Let w > 0 and δ > 0 and Y := C2[a, T] be a set of twice

continuously differentiable function on [a, T]. We consider the metric space (Y, dδ) coupled with the

max metric

dδ :=
max

t ∈ [a, T]
|x(t)− y(t)|

Eτ(δtτ)
+

max
t ∈ [a, T]

|x(α)(t)− y(α)(t)|
Eτ(δtτ)

, ∀x, y ∈ Y. (20)
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Theorem 2.13. If there exist two positive constants M ⩾ 0 and N ⩾ 0 ∀ (t, wj, uj) ∈ V(j = 1, 2) such that

|h(t, w1, u1)− h(t, w2, u2)| ⩽ M|w1 − w2)|+ N|u1 − u2)|. (21)

and max {M, N} T2

2 < 1, equation (13) has only one solution y = y(t) defined on the interval [a, T].

Proof. Define λ := max {M, N} ( T2

2 + 1
δ ) and consider the positive constants M and N as defined in

equation (35). δ is chosen such that it is sufficiently large such that λ < 1. For any two solutions x, y

the initial value problem (65) is such that x ≡ y in the metric space (Y, dδ). Using equation (14) and

(35) we derive the following,

|x(t)− y(t)| = |
∫ t

0
(t − s)

[
h
(

s, x(s), xα

)
− h
(

s, y(s), yα

)]
ds|

|x(t)− y(t)| ⩽
∫ t

0
(t − s)|

[
h
(

s, x(s), xα

)
− h
(

s, y(s), yα

)]
|ds.

Multiply both sides by 1
E2−α(δt2−α)

|x(t)− y(t)|
E2−α(δt2−α)

⩽
1

E2−α(δt2−α)

∫ t

0
(t − s)|

[
h
(

s, x(s), xα

)
− h
(

s, y(s), yα

)]
|ds

⩽
1

E2−α(δt2−α)

∫ t

0
(t − s)

(
M|x(s)− y(s)|+ N|x(α)(s)− y(α)(s)|

)
ds

⩽
(
(M|x(s)− y(s)|

E2−α(δt2−α)
+

N|x(α)(s)− y(α)(s)|
E2−α(δt2−α)

) ∫ t

0
(t − s)ds

⩽ max {M, N}
(

max
t ∈ [a, T]

|x(s)− y(s)|
E2−α(δt2−α)

+
max

t ∈ [a, T]
|x(α)(s)− y(α)(s)|

E2−α(δt2−α)

) ∫ t

0
(t − s)ds

⩽ max {M, N} T2

2
dδ(x, y).

Additionally, for 0 < α < 2 from 2.12

|x(t)− y(t)| = | 1
Γ(2 − α)

∫ t

0
(t − s)1−α

[
h
(

s, x(s), xα

)
− h
(

s, y(s), yα

)]
ds|

|x(t)− y(t)| ⩽ 1
Γ(2 − α)

∫ t

0
(t − s)1−α|

[
h
(

s, x(s), xα

)
− h
(

s, y(s), yα

)]
|ds.

Multiply both sides by 1
E2−α(δt2−α)

|x(t)− y(t)|
E2−α(δt2−α)

⩽
1

E2−α(δt2−α)

1
Γ(2 − α)

∫ t

0
(t − s)1−α|

[
h
(

s, x(s), xα

)
− h
(

s, y(s), yα

)]
|ds

⩽
1

E2−α(δt2−α)

1
Γ(2 − α)

∫ t

0
(t − s)

[
E2−α(δt2−α)

×
(

M|x(s)− y(s)|+ N|x(α)(s)− y(α)(s)|
E2−α(δt2−α)

)
ds
]

⩽
1

E2−α(δt2−α)
max {M, N} dδ(x, y)

1
Γ(2 − α)

∫ t

0
(t − s)(1 − α)E2−α(δt2−α). (22)
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Applying (1) and (2) to equation (22) we get

⩽
1

E2−α(δt2−α)
max {M, N} dδ(x, y)

max
t ∈ [a, T]

{
1

E2−α(δt2−α)

(
I2−α
0+

CD2−α
0+

E2−α(δt2−α)

δ

)}
⩽

1
E2−α(δt2−α)

max {M, N} dδ(x, y)
max

t ∈ [a, T]

[
1

E2−α(δt2−α)

(
E2−α(δt2−α)

δ

−
n−1

∑
k=0

(E2−α(δt2−α))k(a)
δk!

(t − a)k
)]

⩽
1

E2−α(δt2−α)
max {M, N} dδ(x, y)

max
t ∈ [a, T]

[
1

E2−α(δt2−α)

(
E2−α(δt2−α)

δ
− 1

δ

)]
⩽

1
E2−α(δt2−α)

max {M, N} dδ(x, y)
max

t ∈ [a, T]

[
1 − 1

E2−α(δt2−α)

)]
.

We clearly see that E2−α(δt2−α) is continuous for 2 − α > 0 and strictly increasing on the interval [a, T].

Therefore |x(t)−y(t)|
E2−α(δt2−α)

≤ max {M, N} 1
δ dδ(x, y). The above result indicated that any two solutions x,y to

equation (13) satisfies the relation x, y ∈ (Y, dδ), therefore dδ(x, y) ≤ max {M, N} ( T2

2 + 1
δ )dδ(x, y) =

λdδ(x, y), this gives (1 − λ)dδ(x, y) ≤ 0. δ is chosen such that λ < 1, this implies that dδ(x, y) = 0. In

a metric space, distance between two points dδ(x, y) can only be zero if x = y. Since dδ(x, y) = 0, this

implies that x ≡ y indicating that equation (13) has only one solution.

Let Cn([a, b], C) be the Banach space of all continuously differentiable functions from Cn[a, b] to C. We

let the weighted spaces of a function f be Cδ[a, b] and Cn
δ [a, b]. For n − 1 < R(β) ⩽ n and 0 < R(β) ⩽ 1,

We defined the following

Cn[a, b] =
{

f : [a, b] → C scuh that f (n) ∈ C[a, b]
}

(23)

Cδ[a, b] =
{

f : (t − a)δ f (x) ∈ C[a, b]
}

(24)

equipped with the norm

∥ f ∥Cδ
= ∥(t − a)δ f (t)∥C =

max
t ∈ [a, b]

|(t − a)δ f (t)|. (25)

2.2 The equivalent of the Cauchy -problem and the Volterra Integral equation

Consider the solution of the problem (65) in equation (18)

u(t) =
∫ t

0
(t − s)h

(
s, y(s), yα(s)

)
ds + τ̄1t + τ̄0, t ∈ [a, T]

we can write the above equation as

CDβ
a+u(t) = Iα

a+ f [t, u(t)], t ∈ [a, b], (26)

lim
t → a+

(
CDβ

a+u(t)
)
= Ai i = 1, 2, . . . , n. (27)
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Equation (26) and (27) are know as the Cauchy problem. The solution to (26) and (27) are equivalent

to the solution of the volterra integral equation

u(t) =
n

∑
i=1

Ai
(t − a)β−i

Γ(β − k + 1)
+ Iβ+α

a+ f [x, u(x)], (28)

u(t) =
n

∑
i=1

Ai
(t − a)β−i

Γ(β − k + 1)
+

1
Γ(β)

∫ t

a
(t − x)β−1 Iα

a+ f [x, u(x)]dx,

u(t) =
n

∑
i=1

Ai
(t − a)β−i

Γ(β − k + 1)
+

1
Γ(β)

∫ t

a
(t − x)β−1h[s, ϖ(s, y)]dx. (29)

where we defined f [x, u(x)] = h[s, ϖ(s, y)].

Theorem 2.14. Let β ∈ R, n = [β] + 1, 0 ⩽ δ < 1 such that δ ⩽ β and let β > 0 satisfies (25), and let H be

an open set in R and a function h : (a, b)× H → R is such that, h( f , y) ∈ Cδ[a, b] and Lipschitz condition (4)

is satisfies:

(a) If n − 1 < β < n, then there exists a unique solution y to the Cauchy problem (26) which is equivalent to

the solution of Cauchy-Euler equation (13) in the space of Cβ,n−1
δ [a, b]

(b) If 0 < β < 1, then there exists a unique solution y ∈ Cβ
δ [a, b] to problem (26) which is equivalent to problem

(13) with the condition y(a) = β̄0 ∈ R.

Proof. To prove Theorem 2.14, we begin by establishing the existence of a unique solution

y ∈ Cβ,n−1
δ [a, b]

(a) Let t1 ∈ [a, b], we prove the existence of a unique solution y ∈ Cβ,n−1
δ [a, b] satisfies the condition

n

∑
k=1

B(t1 − a)Re(β)−k Γ(1 − δ)

Γ(1 − δ + β − k)
< 1, δ ⩽ β. (30)

We then apply Theorem 2.11 to prove that there exist a unique solution y ∈ Cβ,n−1
δ [a, b] to equation

(26). We write equation (29) in the form u(t) = (Ty)(t), where

(Ty)(t) =
n

∑
i=1

Ai
(t − a)β−i

Γ(β − k + 1)
+

1
Γ(β)

∫ t

a
(t − x)β−1h[s, ϖ(s, y)]dx,

(Ty)(t) = y0(t) +
1

Γ(β)

∫ t

a
(t − x)β−1h[s, ϖ(s, y)]dx.

We denote y0(t) =
n
∑

i=1
Ai

(t−a)β−i

Γ(β−k+1) . It follows that y0(t) ∈ Cn−1[a, b], since we can write y0(t)

as a finite sum of functions in the space of continuous functions on the interval [a, t1]. Further,

h[s, ϖ(s, y)] ∈ Cδ[a, b] implies h[s, ϖ(s, y)] ∈ Cδ[a, t1]. Applying equation (7), we get

a Iβh[s, ϖ(s, y)](t) ∈ Cn−1
δ [a, t1] i f δ ⩽ β

where β > 0 and 0 ⩽ δ < 1. Let y ∈ Cn−1[a, t1], then using equation (8) we see that the
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integral term in equation (29) on the right hand side belong to Cn−1[a, t1]. This shows that

a Iβh[s, ϖ(s, y)](t) ∈ Cn−1[a, t1]. This implies that Ty ∈ Cn−1[a, t1]. Thus we have prove that T is

continuous on Cn−1[a, t1]. Furthermore, we prove that T is a contraction by showing that, give

y1, y2 ∈ Cn−1[a, t1] there exist B > 0 such that

∥Ty1 − Ty2∥Cn−1
[a,t1 ]

⩽ B∥y1 − y2∥Cn−1
[a,t1 ]

. (31)

Applying Lemma 2.8, Lemma 2.9 and equation (4), we obtain

∥∥∥aI
β(h[s, y1, C

aDβy1]− (h[s, y2, C
aDβy2)

∥∥∥
Cn−1
[a,t1 ]

⩽ aI
β

(∥∥∥(h[s, y1, C
aDβy1]− (h[s, y2, C

aDβy2])
∥∥∥

Cn−1
[a,t1 ]

)
⩽
(

B
∥∥∥(a Iβ)a Iβ(C

aDβ)(y1 − y2)
∥∥∥

Cn−1
[a,t1 ]

)
,

=

(
Ba Iβ

∥∥∥aI
β(C

aDβ)(y1 − y2)
∥∥∥

Cn−1
[a,t1 ]

)
,

=

[(
Ba Iβ ∥y1 − y2∥Cn−1

[a,t1 ]

)
(s)−

n

∑
k=1

dk

dtk (y1 − y2)(a)
k!

(t − a)k
]

.

We see that y1, y2 ∈ Cn−1[a, t1], this implies that, dk

dtk y1(a) = dk

dtk y2(a) and thus,

∥∥∥a Iβ(h[s, y1, C
aDβy1]− h[s, y2, C

aDβy2])
∥∥∥

Cn−1
[a,t1 ]

⩽ B
(

aI
β ∥y1 − y2∥

)
. (32)

therefore

∥∥∥∥a Iβ

(
h[s, ϖ(s, y1)]− (h[s, ϖ(s, y2])

)
(t)
∥∥∥∥ ⩽ B

(
aI

β ∥y1 − y2∥
)
(t). (33)

Next, using lemma 2.6 and equation (33) we get and this implies that ∥Ty1 − Ty2∥Cn−1
[a,t1 ]

⩽ B∥y1 −

y2∥Cn−1
[a,t1 ]

∀ y1, y2 ∈ Cn−1[a, t1]. The results indicated that there is a fixed point y∗ ∈ Cn−1[a, t1]

which defined the limit of the iterations that mapped T. Thus

lim
j → ∞

∥yj(t)− y∗(t)∥Cn−1
[a,t1 ]

= 0, (34)

where yj(t) = T jy∗ and y∗(t) = y(t).

Theorem 2.15. Let M > 0 and N > 0 be positive real constants ∀ (t, wj, uj) ∈ V (j = 1, 2) such that

|h(t, w1, u1)− h(t, w2, u2)| ⩽ M|w1 − w2)|+ N|u1 − u2)|.

and max {M, N} T2

2 < 1, equation (13) has a unique solution in [a, T]
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Proof. We construct a sequence of functions
{

yj
}∞

j=1 with y0 := τ̄1t + τ̄0 and

yk+1 :=
∫ t

0
(t − s)h(s, yk(s), yα

k (s))ds + τ̄1t + τ̄0 (k = 1, 2, . . . ). (35)

We prove that the constructed sequence is Cauchy on the interval [a, T]. From Theorem 2.13 we

can conveniently write dδ(yj+1, yj) ≤ λdδ(yj, yj−1) (j = 0, 1, . . . ). Applying mathematical induction

dδ(yj+1, yj) ≤ λ2dδ(y1, y0) (j = 0, 1, · · · ). Here for all δ > 0 is chosen in such way that the definition of

our max metric dδ is such that λ := max {M, N} ( T2

2 , 1
δ ) < 1. By triangle inequality, ∃ a large N ∈ N

such that ∀ m > n > N and for all positive ϵ

dδ(ym, yn) ⩽ dδ(ym, ym−1) + dδ(ym−1, ym−2) + · · ·+ dδ(yn+1, yn)

⩽ (λm−1 + λm−2 + · · ·+ λn)dδ(y0, y1)

<
λn

1 − λ
dδ(y0, y1) < ϵ.

This shows that the constructed sequence
{

yj
}∞

j=1 is Cauchy, this implies that there is a continuously

differentiable function y = y(t) such that Lim
j=∞ dδ(yjy) = 0. Furthermore, we show that limit of the

function y(t) satisfies.

y(t) =
∫ t

0
(t − s)h(s, y(s), yα(s))ds + τ̄1 + τ̄0.

This limit of the function y(t) is a solution of equation (13) on the interval [a, T]. Theorem 2.13 and

Theorem 2.15 put together show that the initial value problem (13) has a unique solution on [a, T].

2.3 The method

We present the methods for the solution of the non-homogeneous linear boundary value problem as

follows.

Consider the boundary value problem:

[C1D2 + C2Dα + C3D0]y(t) = g(t), t ∈ [0, T], 0 < α < 2

subject to,

y(0) = τ0, y(T) = τ1

where C1, C2, C3, τ0 and τ1 are constants with C1 ̸= 0 and y ∈ L[0, T]. Here, Dα (α is a non- integer)

denote the fractional operator of order α and is given by

Dαy(x) =
1

Γ(i − α)

∫ x

0
(x − t)i−α−1yi(t)dt
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where i = N and satisfies the relation i − 1 < α < i. The existence and uniqueness of the exact

solution to problem (65) to the boundary conditions (66) are discuss herein. We recall the following:

The Laplace transform for the Caputo’s fractional derivative is given by

L[yp](s) = spY(s)−
m−1

∑
i=0

sp−i−1Y(i)(0), m − 1 < p < m. (36)

Theorem 2.16. The fractional boundary value problem

C1y
′′
(t) + C2

(
C
0Dαy

)
(t) + C3y(t) = g(t), t ∈ [0, T], 0 < α < 2.

has a unique solution give by y(t) = yh(t) + ηyp(t), where η = τ1 − yh(t)/yp(T).

yh(t) = L−1
[

C1τ1s2−α + C1τ1

C1s2−α + C2s2 + C3s2−α

]
.

is the solution of the linear homogeneous solution to

[C1D2 + C2Dα + C3D0]yh(t) = 0, 0 < t < T, 0 < α < 2

yh(0) = 0 y
′
(0) = τ1. (37)

and

yp(t) = L−1
[

G(s) + C1sτ0 + C2sα−1τ0

C1s2 + C2sα + C3

]
.

is the particular solution of the non- homogeneous linear fractional initial value problem

[C1D2 + C2Dα + C3D0]yp(t) = g(t), 0 < t < T, 0 < α < 2

yp(0) = τ1; y
′
p(0) = 0. (38)

Proof.

[C1D2 + C2Dα + C3D0]y(t) = g(t), 0 < t < T, 0 < α < 2.

for the homogeneous part we have

C1D2yh(t) + C2Dαyh(t) + C3D0yh(t) = 0

We take the Laplace transform of both sides

L
{

C1D2yh(t) + C2Dαyh(t) + C3D0yh(t)
}
= 0,
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L
{

C1D2yh(t)
}
+ L {C2Dαyh(t)}+ L

{
C3D0yh(t)

}
= 0,

C1L
{

D2yh(t)
}
+ C2L {Dαyh(t)}+ C3L

{
D0yh(t)

}
= 0.

Using the definition of Caputo derivative in equation (36)

C1

{
s2Yh(s)− sYh(0)− Y

′
h(0)

}
+ C2

{
sαYh(s)−

m−1

∑
i=0

sα−i−1Y(i)
h (0)

}
+ C3Yh(s) = 0,

C1

{
s2Yh(s)− sYh(0)− Y

′
h(0)

}
+ C2

{
sαYh(s)− sα−1Yh(0)− sα−2Y

′
h(0)

}
+ C3Yh(s) = 0,

substituting the initial conditions we get

C1
{

s2Yh(s)− sYh(0)− τ1
}
+ C2

{
sαYh(s)− sα−1Yh(0)− sα−2τ1

}
+ C3Yh(s) = 0,

C1s2Yh(s)− C1τ1 + C2sαYh(s)− C2sα−2τ1 + C3Yh(s) = 0,[
C1s2 + C2sα + C3

]
Yh(s) = C1τ1 + C2sα−2τ1,

Yh(s) =
C1τ1 + C2sα−2τ1

C1s2 + C2sα + C3
,

multiplying the numerator and denominator by s−(α−2) we have

Yh(s) =
(C1τ1 + C2sα−2τ1)s−(α−2)

(C1s2 + C2sα + C3)s−(α−2)
,

Yh(s) =
C1τ1sα−2 + C2τ1

(C1s4−α + C2s2 + C3s−(α−2)
,

We take the inverse Laplace transform of both sides

L−1 {Yh(s)} = L−1
{

C1τ1sα−2 + C2τ1

(C1s4−α + C2s2 + C3s−(α−2)

}
,

yh(t) = L−1
{

C1τ1sα−2 + C2τ1

(C1s4−α + C2s2 + C3s−(α−2)

}
, (39)

We find the Laplace transform of the non-homogeneous fractional boundary value problem as follows

C1D2yp(t) + C2Dαyp(t) + C3D0yp(t)− g(t) = 0, t ∈ [0, T], 0 < α < 2,

We take the Laplace transform of both sides

L
{

C1D2yp(t) + C2Dαyp(t) + C3D0yp(t)
}
− g(t) = 0,

L
{

C1D2yp(t)
}
+ L

{
C2Dαyp(t)

}
+ L

{
C3D0yp(t)

}
−L{g(t)} = 0,

C1L
{

D2yp(t)
}
+ C2L

{
Dαyp(t)

}
+ C3L

{
D0yp(t)

}
−L{g(t)} = 0,
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Using the definition of Caputo derivative in equation (36)

C1

{
s2Yp(s)− sYh(0)− Y

′
p(0)

}
+ C2

{
sαYp(s)−

m−1

∑
i=0

sα−i−1Y(i)
p (0)

}
+ C3Yp(s)− G(s) = 0,

C1

{
s2Yp(s)− sYp(0)− Y

′
p(0)

}
+ C2

{
sαYp(s)− sα−1Yp(0)− sα−2Y

′
p(0)

}
+ C3Yp(s)− G(s) = 0,

Substituting the initial conditions yp(0) = τ0; y
′
p(0) = 0

C1
{

s2Yp(s)− sτ0 − 0
}
+ C2

{
sαYp(s)− sα−1τ0 − sα−2(0)

}
+ C3Yp(s)− G(s) = 0,[

C1s2 + C2sα + C3

]
Yp(s) = G(s) + C1sτ0 + C2sα−1τ0,

Yp(s) =
G(s) + C1sτ0 + C2sα−1τ0

C1s2 + C2sα + C3
,

we take the inverse Laplace transform of both sides

L−1 {Yp(s)
}
= L−1

{
G(s) + C1sτ0 + C2sα−1τ0

C1s2 + C2sα + C3

}
,

yp(t) = L−1
{

G(s) + C1sτ0 + C2sα−1τ0

C1s2 + C2sα + C3

}
(40)

where Yh(s) = L[y(t)] and Yp(s) = L[y(t)]. Applying the properties of the inverse Laplace transform

on (39) and (40) we find the homogeneous and particular solutions yh(t) and yp(t) respectively as

shown above.

Consider equation (65)

C1D2y(t) + C2Dαy(t) + C3D0y(t)− g(t) = 0,

applying the definition of Laplace transform operator on the above equation we have

L
{

C1D2y(t) + C2Dαy(t) + C3D0y(t)
}
− g(t) = 0,

L
{

C1D2y(t)
}
+ L {C2Dαy(t)}+ L

{
C3D0y(t)

}
−L{g(t)} = 0,

C1L
{

D2y(t)
}
+ C2L {Dαy(t)}+ C3L

{
D0y(t)

}
−L{g(t)} = 0,

C1

{
s2Y(s)− sYh(0)− Y

′
(0)
}
+ C2

{
sαY(s)−

m−1

∑
i=0

sα−i−1Y(i)(0)

}
+ C3Y(s)− G(s) = 0,

C1

{
s2Y(s)− sY(0)− Y

′
(0)
}
+ C2

{
sαY(s)− sα−1Y(0)− sα−2Y

′
(0)
}
+ C3Y(s)− G(s) = 0,

C1s2Y(s)− C1sY(0)− C1Y
′
(0) + C2sαY(s)− C2sα−1Y(0)− C2sα−2Y

′
(0) + C3Y(s)− G(s) = 0,

C1s2Y(s) + C2sαY(s) + C3Y(s)− C1sY(0)− C2sα−1Y(0)− C1Y
′
(0)− C2sα−2Y

′
(0)− G(s) = 0,(

C1s2 + C2sα + C3

)
Y(s)−

(
C1sY(0) + C2sα−1

)
Y(0)−

(
C1 + C2sα−2

)
Y

′
(0)− G(s) = 0,



On Solution of Non-homogeneous Fractional Linear Boundary Value Problem / Mtema James Chin 127

Divide both side by c1.

(
s2 +

C2

C1
sα +

C3

C1

)
Y(s) =

(
s +

C2

C1
sα−1

)
Y(0)−

(
1 +

C2

C1
sα−2

)
Y

′
(0) +

1
C1

G(s), (41)

Let λ = C2
C1

and ϖ = C3
C1

, substituting in equation (41)

(
s2 + λsα + ϖ

)
Y(s) =

(
s + λsα−1

)
Y(0) +

(
1 + λsα−2

)
Y

′
(0) +

1
C1

G(s),

Divide each term by s2 + ϖ,

(
s2

s2 + ϖ
+

λsα

s2 + ϖ
+

ϖ

s2 + ϖ

)
Y(s) = (s2 + ϖ)−1

{(
s + λsα−1

)
Y(0)

+

(
1 + λsα−2

)
Y

′
(0) +

1
C1

G(s)
}

, (42)

we take the reciprocal of both sides

[(
s2

s2 + ϖ
+

λsα

s2 + ϖ
+

ϖ

s2 + ϖ

)
Y(s)

]−1

=

[
(s2 + ϖ)−1

{(
s + λsα−1

)
Y(0)

+

(
1 + λsα−2

)
Y

′
(0) +

1
C1

G(s)
}]−1

,

[(
s2

s2 + ϖ
+

λsα

s2 + ϖ
+

ϖ

s2 + ϖ

)]−1

(Y(s))−1 =

[
(s2 + ϖ)−1

{(
s + λsα−1

)
Y(0)

+

(
1 + λsα−2

)
Y

′
(0) +

1
C1

G(s)
}]−1

, (43)

simplifying the left side of equation (43) gives

(
1 +

λsα

s2 + ϖ

)−1

(Y(s))−1 =

[
(s2 + ϖ)−1

{(
s + λsα−1

)
Y(0)

+

(
1 + λsα−2

)
Y

′
(0) +

1
C1

G(s)
}]−1

, (44)

Using the binomial series expansion for (1 + y)k.

(1 + y)k = 1k + ky +
k(k − 1)

2!
y2 +

k(k − 1)(k − 2)
3!

y3

+ · · ·+ k(k − 1)(k − 2) · · · (k − r − 1)
r!

yr + · · · ,

(1 + y)k =
∞

∑
k=1

(
k
i

)
yi (45)
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where (
n
k

)
=

k(k − 1)(k − 2) · · · (k − i − 1)
i

, i = 1, 2, 3, . . . , k and
(

k
0

)
= 0.

we let k = −1 and substitute in equation (45)

(1 + y)−1 = 1 − y +
2
2!

y2 − 6
3!

y3 + · · · (−6 · · · − i)
i!

yi,

(1 + y)−1 = 1 − y + y2 − y3 + · · ·+ yi, (46)

(1 + y)−1 =
∞

∑
i=0

(−1)yi, (47)

Let y = λsα

s2+ϖ
, we have = (1 + y)−1 =

(
1 + λsα

s2+ϖ

)−1

,

(1 + y)−1 =
∞

∑
i=0

(−1)i λisα

s2 + ϖ

i

=
∞

∑
i=0

(−1)i λisαi(
s2 + ϖ

) , (48)

substituting (48) into (44) we have

∞

∑
i=0

(−1)i λisαi(
s2 + ϖ

) (Y(s))−1 =

[
(s2 + ϖ)−1

{(
s + λsα−1

)
Y(0)

+

(
1 + λsα−2

)
Y

′
(0) +

1
C1

G(s)
}]−1

, (49)

(Y(s))−1 =

(
∞

∑
i=0

(−1)i λisαi(
s2 + ϖ

)i

)[
(s2 + ϖ)−1

{(
s + λsα−1

)
Y(0)

+

(
1 + λsα−2

)
Y

′
(0) +

1
C1

G(s)
}]−1

, (50)

(Y(s)) =

(
∞

∑
i=0

(−1)i λisαi(
s2 + ϖ

)i

)
(s2 + ϖ)−1

{(
s + λsα−1

)
Y(0)

+

(
1 + λsα−2

)
Y

′
(0) +

1
C1

G(s)
}

, (51)

(Y(s)) =

(
∞

∑
i=0

(−1)i λisαi(
s2 + ϖ

)i+1

){(
s + λsα−1

)
Y(0) +

(
1 + λsα−2

)
Y

′
(0) +

1
C1

G(s)
}

(52)

in order to find the inverse Laplace transform of Y(s) in equation (52) we rewrite the equation in
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expanded form as follows

(Y(s)) = Y(0)
∞

∑
i=0

(−1)iλi sαi(
s2 + ϖ

)i+1 .s + Y(0)
∞

∑
i=0

(−1)iλi sαi(
s2 + ϖ

)i+1 .λsα−1

+ Y
′
(0)

∞

∑
i=0

(−1)iλi sαi(
s2 + ϖ

)i+1 .s + Y
′
(0)

∞

∑
i=0

(−1)iλi sαi(
s2 + ϖ

)i+1 .λsα−2

+
1

C1
G(s)

∞

∑
i=0

(−1)iλi sαi(
s2 + ϖ

)i+1 , (53)

Simplifying equation (53) we have

(Y(s)) = Y(0)
∞

∑
i=0

(−1)iλi sαi+1(
s2 + ϖ

)i+1 + Y(0)
∞

∑
i=0

(−1)iλi+1 sα(i+1)−1(
s2 + ϖ

)i+1

+ Y
′
(0)

∞

∑
i=0

(−1)iλi sαi(
s2 + ϖ

)i+1 + Y
′
(0)

∞

∑
i=0

(−1)iλi+1 sα(i+1)−2(
s2 + ϖ

)i+1

+
1

C1
G(s)

∞

∑
i=0

(−1)iλi sαi(
s2 + ϖ

)i+1 , (54)

From the works of [Prabhakar, 1971], we have

Eγ
η,β(t) =

∞

∑
i=0

(γ)i(ti)

Γ(iη + β)i!
, (η, β, γ ∈ R,R(η),R(β),R(γ) > 0)

with ui = Γ(u+i)
Γ(u) being the Pochhammer symbol. When γ = 1, these functions are called wiman

functions, here, the main fact to be used is related to the inverse of the Laplace transform of the main

term that appear in equation (52) is given by

L−1
{

sηγ−β

(s2 + λ)γ

}
= xβ−1Eγ

η,β(−λyη).

We now compare the first term in equation (54),
(

sαi+1−β

(s2+λ)i+1

)
with

(
sηγ−β

(sη+λ)γ

)
, we have

γ = i + 1, η + 2, λ = ϖ

αi + 1 = ηγ − β

αi + 1 = 2(i + 1)− β

β = i(2 − α) + 1
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L−1
{

sαi+1

(s2 + λ)i+1

}
= yi(2−α)Ei+1

2.(i(2−α)+1)(−ϖy2), (55)

Next we now compare the second, third and forth terms of equation (54), the results are as follows

L−1

{
sα(i+1)−1

(s2 + λ)i+1

}
= yi(2−α)+1Ei+1

2.(i(2−α)+2)(−ϖy2), (56)

L−1
{

sαi

(s2 + λ)i+1

}
= yi(2−α)+1Ei+1

2.(i(2−α)+2)(−ϖy2), (57)

L−1

{
sα(i+1)−2

(s2 + λ)i+1

}
= yi(2−α)−α+3Ei+1

2.(i(2−α)−α+4)(−ϖy2), (58)

the Laplace transform of the fifth term of equation (54) is as follows:

Let

z(t) = +
1

C1
G(s)

∞

∑
i=0

(−1)iλi sαi(
s2 + ϖ

)i+1 (59)

and ϕ)(s) = 1
C1

G(s),

z(t) = ϕ(s)
∞

∑
i=0

(−1)iλi sαi(
s2 + ϖ

)i+1 ,

By the convolution theorem

L−1 {H(s) ∗ G(s)} = L−1 {h ∗ g(t)}

(h ∗ g)(t) = L−1 {H(s).G(s)} ,

from (57), the inverse Laplace transform

L−1
{

sαi

(s2 + λ)i+1

}
=

∞

∑
i=1

(−λ)iyi(2−α)+1Ei+1
2.(i(2−α)+2)(−ϖy2),

we let

L−1(G(s)) =
∞

∑
i=1

(−λ)iyi(2−α)+1Ei+1
2.(i(2−α)+2)(−ϖy2),

and

1
C1

L−1 {ϕ(s)} =
1

C1
L−1 {H(s)} =

1
C1

{ϕ(τ)} ,

z(t) =
∫ x

0
g(x − τ)h(τ)dτ
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z(t) =
1

C1

∞

∑
i=1

(−λ)i
∫ x

0
ϕ(x − τ)τi(2−α)+1Ei+1

2.(i(2−α)+2)(−ϖy2)dτ. (60)

Consequently the particular solution of the non homogeneous linear fractional boundary value

problem (65) if found by substituting (55), (56), (57 (58), (60) in equation (54)

yp(t) = Yp(0)
∞

∑
i=0

(λ)iyi(2−α)Ei+1
2.(i(2−α)+1)(−ϖy2)

+ Yp(0)
∞

∑
i=0

(λ)iyi(2−α)+1Ei+1
2.(i(2−α)+2)(−ϖy2)

+ Y
′
p(0)

∞

∑
i=0

(λ)iyi(2−α)+1Ei+1
2.(i(2−α)+2)(−ϖy2)

+ Y
′
p(0)

∞

∑
i=0

(λ)iyi(2−α)−α+3Ei+1
2.(i(2−α)−α+4)(−ϖy2)

+
1

C1

∞

∑
i=1

(−λ)i
∫ x

0
ϕ(x − τ)τi(2−α)+1Ei+1

2.(i(2−α)+2)(−ϖy2)dτ, (61)

substituting the initial conditions, we have, Yp(0) = 0, Y
′
p = τ1

yp(t) = τ1

∞

∑
i=0

(λ)iyi(2−α)+1Ei+1
2.(i(2−α)+2)(−ϖy2)

+ τ1

∞

∑
i=0

(λ)iyi(2−α)−α+3Ei+1
2.(i(2−α)−α+4)(−ϖy2)

+
1

C1

∞

∑
i=1

(−λ)i
∫ x

0
ϕ(x − τ)τi(2−α)+1Ei+1

2.(i(2−α)+2)(−ϖy2)dτ, (62)

similarly the homogeneous solution is

yh(t) = τ0

∞

∑
i=0

(λ)iyi(2−α)Ei+1
2.(i(2−α)+1)(−ϖy2)

+ τ0

∞

∑
i=0

(λ)iyi(2−α)+1Ei+1
2.(i(2−α)+2)(−ϖy2). (63)

Adding equation (63) and (62) gives the general solution of the non homogeneous fractional linear

boundary value problem.

yh(t) = τ0

∞

∑
i=0

(λ)iyi(2−α)Ei+1
2.(i(2−α)+1)(−ϖy2)

+ τ0

∞

∑
i=0

(λ)iyi(2−α)+1Ei+1
2.(i(2−α)+2)(−ϖy2) + τ1

∞

∑
i=0

(λ)iyi(2−α)+1Ei+1
2.(i(2−α)+2)(−ϖy2)

+ τ1

∞

∑
i=0

(λ)iyi(2−α)−α+3Ei+1
2.(i(2−α)−α+4)(−ϖy2)

+
1

C1

∞

∑
i=1

(−λ)i
∫ x

0
ϕ(x − τ)τi(2−α)+1Ei+1

2.(i(2−α)+2)(−ϖy2)dτ, (64)
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2.4 The Collocation Parallel-shooting Method

Consider the non-homogeneous linear fractional boundary value problem of the form

C1y
′′
(t) + C2

(
C
0Dαy

)
(t) + C3y(t) = g(t), t ∈ [0, T], 0 < α < 2, (65)

subject to the boundary conditions

y (0) = τ0, y (T) = τ1, (66)

where C1, C2, C3 and τ0, τ1 are constants with C1 ̸= 0 and y ∈ C2 [0, T] and
(

C
0Dαy

)
(t) denote the

Caputo derivative of order α. Let Ih := [0, T]. The algorithm used to solve the problem (65) subject to

(66) presented herein involves collocation-parallel shooting approach for the following IVP.

C1y
′′
(t) + C2

(
C
0Dαy

)
(t) + C3y(t) = g(t), t ∈ I, 0 < α < 2 (67)

y(0) = ξ̄0, y
′
(0) = ξ̄1. (68)

Here ξ̄1 is unknown constant which shall be found in the solution process. The interval I is subdivided

into N uniform sub-intervals αn = [tn, tn+1], where n = 0 · · · N − 1. Let Ih = {tn = nh : n = 1 · · · N}

with h = T
N . Suppose that, the exact solution of problem (5) subject to initial condition (6) can be

approximated by an element uh ∈ Sd
m+d(Ih), where Sd

m+d(Ih) := {p ∈ Cd(I)|αn ∈ ∏m+d} and ∏m+d

denotes the space of all real polynomials of degree not exceeding m + d. For known integer m ⩾ 1,

it should be noted that the integer m present the number of collocation points in each sub-interval

αn.(n = 0, · · · , N − 1) those points are defined as Xh = {t = tn,i = tn + cih, i = 1, . . . , m, n =

0, . . . , N − 1}, with 0 ≤ c1 < . . . cm ≤ 1. The collocation solution uh satisfies the following initial value

problem.

C1u
′′
h(t) + C2

(
C
0Dαuh

)
(t) + C3uh(t) = g(t) (69)

uh(0) = ξ̄0, u
′
h(0) = ξ̄1. (70)

On each subinterval, αn, the spline uh can be presented as a piecewise polynomials of degree m + l of

the form

uh(t) = uh(tn + τh) =
l

∑
q=0

a(n)s τq +
m

∑
r=1

b(n)r τl+r, t ∈ αn and τ ∈ [0, 1]. (71)

where τ ∈ [0, T]. The fractional differential operator of order β for the collocation solution at t =

(tn + cih) is found by Blank [23] and is given by

Dβ (µn(tn + cih)) =
h−β

Γ (1 − β)

[
n

∑
j=0

l

∑
q=0

W(n−j,β)
i,q a(j)

q +
n

∑
j=0

m

∑
r=1

W(n−j,β)
i,r+d b(j)

r

]
, (72)
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where β ∈ R+, l ∈ N and in general

W(j,β)
i,k


(j + ci)

−β − δ∗j,0 (j + ci − 1)−β , k = 0

(j + ci)
−β+k k

∏
p=1

p
p−β − δ∗j,0

k

∑
v=0

(j + ci − 1)v−β Sβ
v,k, k ≥ 0

where Sβ
v,k =

v
∏

p=1

k−v+p
p−β and δ∗j,0 = 0 if j = 0 and 1 otherwise

Dq (µ(tn + τh)) = h−q
l

∑
r=q

r · · · (r − q + 1)τr−qa(n)q +
m

∑
r=1

l + r · · · (l + r − q + 1)τl+r−qb(n)r . (73)

Applying Blank results (13) on (10) we get

C1h−2

[
l

∑
q=2

q(q − 1)cq−2
i a(n)q +

m

∑
r=1

l + r(l + r − 1)cl+r−2
i b(n)r

]
+

C2
h−β

Γ(1 − β)

[
n

∑
j=0

d

∑
q=0

W(n−j,β)
i,q a(j)

q +
n

∑
j=0

m

∑
r=1

W(n−j,β)
i,r+l b(j)

r

]

+ C3

l

∑
q=0

cq
i a(n)q + C3

m

∑
r=1

cd+r
i b(n)r = g(tn,i),

Simplifying the above will get

C1

d

∑
q=2

q(q − 1)cq−2
i a(n)q + C2

h−β+2

Γ(1 − β)
W(n,β)

i,q a(n)q + h2C3

l

∑
s=0

cq
i a(n)q +

C1

m

∑
r=1

l + r(l + r − 1)cl+r−2
i b(n)r + C2

h−β+2

Γ(1 − β)
W(n,β)

i,r+l b(n)r + h2C3

m

∑
r=1

cl+r
i b(n)r

= h2g(tn,i)− δ∗n,0C2
h−β+2

Γ(1 − β)

[
n−1

∑
j=0

l

∑
q=0

W(n−j,β)
i,q a(j)

q +
n−1

∑
j=0

m

∑
r=1

W(n−j,β)
i,r+l b(j)

r

]
,

written the above in matrix form we have

Aa(n) + Bb(n) = F (74)

Here the unknown constants a(n) =
[

a(n)0 , · · · , a(n)d

]t
and b(n) =

[
b(n)1 , · · · , a(n)m

]t
where [.]t represent the

transpose to the vector. At n = 0 the vector a0 is known from the initial conditions and a0 is given by

a0 =

[
hq

q!
dqy
dtq

]
, q = 0 . . . r (75)

a0 =


. . . 0

hq

q!

0
. . .

 .

 dq

dtq y(0)
dq

dtq y(0)

 , q = 0 . . . r
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for n ≥ 1, the smoothness condition at [tn−1, tn] which gives the relationship between the known

vectors a(n), b(n) and the unknown vector a(n+1)

a(n+1) = M1a(n) + M2b(n) (76)

where (M1) =

1 1

0 1

 , M2 =

1 1 1

2 3 4

 see [24, 25] and [35] for details and the references therein.

In parallel shooting method, each succeeding approximation is adjusted simultaneously to satisfy the

boundary condition and appropriate continuity condition at the interior point tn, n = 1, · · · , N − 1, see

for more details in [24]. In this method, the missing (unknown) initial condition at the initial point of

the interval is assumed and the differential equation is then approximated as an initial value problem.

Let

L = C1D2 + C2

(
C
0Dβ

t

)
+ C3D0 (77)

we rewrite problem (7) subject the initial condition (8) in the form.

L[ωn] = g(t), t ∈ Ih. (78)

This implies that, the solution of equation (14) on the time interval Ih can be determined by solving

equation (14) on the subintervals [tn, tn+1] for n = 0, . . . , N − 1 so that we have the following set of

initial value problems.

L[ωn] = g(t), t ∈ [tn, tn+1] (79)

subject to

ωn(tn) = β̄2n, ω
′
n(tn) = β̄2n+1 (80)

where β̄n are the initial conditions for the initial value problems defined on each subinterval [tn, tn+1]

for (n = 0, · · · , N − 1) and β̄0 = β0. The solution of the initial value problem (15) and (16) will be

determined using the method presented in (9) - (12), where the parameters β̄ j; j = 0, . . . , 2N − 1 shall

be determined by solving the system of algebraic equations below.

ω0[t1, β̄1] = ω1[t1, β̄2, β̄3],

ω
′
0[t1, β̄1] = ω

′
1[t1, β̄2, β̄3],

ω1[t2, β̄2, β̄3] = ω2[t2, β̄4, β̄5],

ω
′
2[t2,β̄3

, β̄3] = ω
′
2[t2, β̄4, β̄5],

...
...

...

ω
′
N−2[tN−1, β̄2j−4, β̄2j−3] = ω

′
N−1[tN−1, β̄2j−2, β̄2j−1],

ωN−1[tN−1, β̄2j−2, β̄2j−1] = β1.
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Matlab and Mathematica are used for the computation of the numerical results, further more details

on shooting method see [24] and [35].

3. Numerical Results

In this section we consider some fractional boundary value problems to demonstrate the accuracy of

the methods described in the previous section. The notation AE = |x(t)− ω(t)|, t ∈ [0, 1] denote the

absolute error and the square L2 norm error is presented by E2 =
1∫

0
|(x(t)− ω(t))|2dt. We define the

collocation parameter ci, i = 1 . . . , m as ci =
xk+1

2 , i = 1, . . . , m, xk = 1 − cos
[
(kπ)
2m

]
, k = 1, . . . , m.

Example 3.1. Consider the fractional boundary value problem D2y (t) + D
1
2 y (t) + D0y (t) = g(t); Subject to

y(0) = 0, y(5) = 25, where the exact solution y(t) = t2, g(t) = t2 + 2 + 8
3
√

π
t

3
2 .

Applying the collocation parallel shooting method, the interval [0, 5] is subdivided into five

subintervals as follows: ti = i, i = 0, 1, 2, . . . , 5. Therefore our problem is divided into the following set

of initial value problems.

L[ω0] = f (t), 0 ≤ t ≤ 5, ω0(0, :) = 0, ω
′
0(0, :) = β̄1

...
...

L[ω4] = f (t), 4 < t < 5, ω4(4, :) = β̄8, ω
′
4(4, :) = β̄9

We clearly see from the forgoing that,

ω0(t) = ω0(t, β1), ω1(t) = ω1(t, β2, β3), ω2(t) = ω2(t, β4, β5), . . . , ω4(t) = ω4(t, β8, β9).

The parameter values β̄ j, j = 1, . . . , m are: β̄0 = 0.00000000000000, β̄1 = −1.902763078556897e − 13,

β̄2 = 0.999999999999887, β̄3 = 1.999999999999986, β̄4 = 3.999999999999952, β̄5 = 4.000000000000106,

β̄6 = 9.000000000000039, β̄7 = 6.000000000000041, β̄8 = 16.000000000000036, β̄9 = 7.999999999999958.

Table ?? shows the exact, approximate solution and the absolute error at the mesh points. Furthermore,

figure 1 shows the exact y(t) and approximate solution uh on [0, 5]. The square L2 norm E2 error is

computed and found to be E2

(
f
)
= 1.7191E − 26.

t(i) Eaxct solution Approximate solution Absolute

0 0.0000000000000000 0.000000000000000 0
1 1.0000000000000000 0.999999999999887 1.130207039068409e-13
2 4.0000000000000000 3.999999999999995 5.018208071305708e-14
3 9.0000000000000000 9.000000000000039 3.907985046680551e-14
4 16.0000000000000000 16.000000000000036 3.552713678800501e-14
5 25.0000000000000000 25.0000000000000000 0

Table 1: A table shown the Exact, Approximate solution and Absolute for Example 3.1
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In Example 3.1, we take the collocation points m = 3 and applied the collocation parallel shooting, the

results are presented in Table 1. The column 2 of Table 1 present the exact solution, column 3 presents

the approximate solution and the last column present the absolute error. We see from the results that

the method gives a good approximation of the exact solution. Further, Figure 1 shows the graphs of

the approximate solution and exact solution for m = 10 and the absolute error graph. We see from the

graph that the method approximate exact function with minimal error.

Figure 1: Graph of the exact solution y(t), approximate solution uh(t) and the absolute error AE for
Example 3.1

Example 3.2. Consider the boundary value problem C1D2x (t)C2D
1
4 x (t) + C3D0x (t) = g(t); Subject to

x(0) = 0, x(1) = 3.559752813266941, where the exact solution x(t) = sin(t) + eλt,

g(t) = eλt + λ2eλt +

(
5

Γ( 4
5 )

etΓ
(

4
5

)
−

Γ
( 4

5 , t
)

5

)
+

(
5

Γ
( 4

5

) (t4/5cos(t)1F1(2/5, [1/2, 7/5],−t2/4)/4
)

+ t9/5sin(2t)Γ(t/π + 1/1)Γ(1/2 − t/π))1F1(9/10, [3/2, 19/10],−t2/4))/(18π)))

For us to apply the collocation parallel-shooting method, the interval [0, 1] is subdivided into five sub-

intervals as follows: ti = i, i = 0, 1, 2, . . . , 16. Therefore our problem is divided into the following set

of initial value problems.

L[ω0] = f (t), 0 ≤ t ≤ 5, ω0(0, :) = 0, ω
′
0(0, :) = β̄1

...
...

L[ω4] = f (t), 4 < t < 5, ω4(4, :) = β̄8, ω
′
4(4, :) = β̄9

We clearly see from the forgoing that,

Parameter (β̄ j) are: β̄ = 1.000000000000000, β̄1 = 1.999960107803945, β̄2 = 1.257818925076409, β̄3 =
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2.125313465116970, β̄4 = 1.531421871018279, β̄5 = 2.252913874643586, β̄6 = 1.821254368886025, β̄7 =

2.385484806828370, β̄8 = 2.128136446611042, β̄9 = 2.526300014825962, β̄10 = 2.453333426379004, β̄11 =

2.679216004053744, β̄12 = 2.798630901273591, β̄13 = 2.848706567616902, β̄14 = 3.166414204868768,

β̄15 = 3.039900306279105. Table 1 shows the exact, approximate solution and the absolute error at

the mesh points. Furthermore, figure 1 shows the exact y(t) and approximate solution uh on [0, 5].

Following the same approach as described in Example 3.1 we have the following η values, where β̄i,

(i = 0, . . . , 9) are the initial values at the sub interval. The square L2 norm E2 error is as follows

E2

(
f
)
= 4.4664E − 28.

t(i) y(t) uh(t) AE
0.000 1.000000000000000 1.000000000000000 0,00000000000000000
0.125 1.257823186452054 1.257822660864706 5.255873478660078e-07
0.250 1.531429375942264 1.531428450318473 9.256237909482934e-07
0.375 1.821263943704249 1.821262762860220 1.180844029002870e-06
0.500 2.128146809304331 2.128145531421711 1.277882620165371e-06
0.625 2.453343230372685 2.453342021556800 1.208815885167525e-06
0.750 2.798638776636009 2.798637805794381 9.708416279785581e-07
0.875 3.166418796203125 3.166418230330814 5.658723107870856e-07
1.000 3.559752813266941 3.559752813266941 0.0000000000000000

Table 2: A table shown the Exact, Approximate solution and Absolute for Example 3.2

Under this Example 3.2, we take the collocation points m = 3 and applied the collocation parallel

shooting, the results are shown in Table 2. The column 2 of Table 2 present the exact solution y(t),

column 3 shows the approximate solution uh(t) and column 4 presents the absolute error. We see from

the results that the method gives a good approximation of the exact solution.

Further, Figure 2 show the the graphs of the approximate solution and exact solution for m = 10 and

the absolute error graph. We see from the graph that the method approximate exact function with

minimal error.

Figure 2: Graph of the exact solution y(t), approximate solution uh(t) and the absolute error AE for
Example 3.2
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4. Conclusion

A boundary value problem for non-homogeneous linear fractional differential equation is solved

analytically and numerically using the Laplace transform approach and the collocation parallel

shooting method, existence and uniqueness of the exact solution are proved via the contraction

mapping principle. Numerical examples are constructed to demonstrate the effectiveness and the

applicability of method. The results show that the numerical method approximate the exact solution

effectively.
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