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Abstract

In this paper, we introduce the leap Kepler Banhatti and modified leap Kepler Banhatti indices

and their corresponding exponentials of a graph. Furthermore, we compute these newly defined

leap Kepler Banhatti indices and their corresponding exponentials for certain important molecular

structures such as chloroquine, hydroxychloroquine and remdesivir.
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1. Introduction

A graph index is a numerical parameter mathematically derived from the graph structure. In Chemical

Graph Theory, concerning the definition of the graph index on the molecular graph and concerning

chemical properties of drugs can be studied by the graph index calculation. Several graph indices

have been considered in Theoretical Chemistry and many graph indices were defined by using vertex

degree concept [1]. The Zagreb, Revan, Gourava, delta, Nirmala, Sombor indices are the most degree

based graph indices in Chemical Graph Theory, see [2–40]. Graph indices have their applications in

various disciplines in Science and Technology [41, 42]. Let G be a finite, simple connected graph with

vertex set V(G) and edge set E(G). The degree dG(u) of a vertex u is the number of edges incident

to u. The number of edges in a shortest path connecting any two vertices u and v of G is the distance

between these two vertices u and v, and denoted by d(u, v). For a positive integer k and v ∈ V(G),

the open neighborhood of v in G is defined as Nk(v/G) = {u ∈ V(G) : d(u, v) = k}. The k-distance

degree of v in G is the number of k neighbors of v in G and denoted by dk(v), see [43]. Any undefined

terminologies and notations may be found in [44]. The Kepler Banhatti index [45] of a graph G is

defined as

KB (G) = ∑
uv∈E(G)

[
(dG(u) + dG(v)) +

√
dG(u)2 + dG(v)2

]
*Corresponding author (vrkulli@gmail.com)
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Recently, some Kepler Banhatti indices were studied in [46-49]. The leap Kepler Banhatti index of a

graph G is defined as

LKB (G) = ∑
uv∈E(G)

(
(d2 (u) + d2 (v)) +

√
d2 (u)

2 + d2 (v)
2
)

Considering the leap Kepler Banhatti index, we introduce the leap Kepler Banhatti exponential of a

graph G and defined it as

LKB (G, x) = ∑
uv∈E(G)

x(d2(u)+d2(v))+
√

d2(u)
2+d2(v)

2

We define the modified leap Kepler Banhatti index of a graph G as

mLKB (G) = ∑
uv∈E(G)

1

(d2 (u) + d2 (v)) +
√

d2 (u)
2 + d2 (v)

2

Considering the modified leap Kepler Banhatti index, we introduce the modified leap Kepler Banhatti

exponential of a graph G and defined it as

mLKB (G, x) = ∑
uv∈E(G)

x
1

(d2(u)+d2(v))+
√

d2(u)
2+d2(v)

2

Recently, some leap indices were studied in [50-54]. In this work, we determine the leap Kepler Banhatti

and modified leap Kepler Banhatti indices and their exponentials for chloroquine, hydroxychloroquine

and remdesivir.

2. Results for Chloroquine

Chloroquine is an antiviral compound (drug) which was discovered in 1934 by H. Andersag. This

drug is medication primarily used to prevent and treat malaria. Let G1 be the chemical structure of

chloroquine. This structure has 21 atoms (vertices) and 23 bonds (edges), see Figure 1.

Figure 1: Chemical structure of chloroquine

From Figure 1, we obtain that {(d2(u), d2(v)\uv ∈ E(G1)} has 9 edge set partitions.
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d2(u), d2(v)\uv ∈ E(G1) (1, 2) (2, 2) (2, 3) (2, 4) (3, 3) (3, 4) (3, 5) (4, 4) (4, 5)
Number of edges 2 2 8 1 2 3 1 2 2

Table 1: Edge set partitions of chloroquine

We determine the leap Kepler Banhatti index of chloroquine as follows.

Theorem 2.1. Let G1 be the chemical structure of chloroquine. Then

LKB (G1) = 150 + 18
√

2 + 4
√

5 + 8
√

13 +
√

34 + 2
√

41.

Proof. By using the definition and edge partition of G1, we deduce

LKB (G1) = ∑
uv∈E(G1)

(
(d2 (u) + d2 (v)) +

√
d2 (u)

2 + d2 (v)
2
)

=
(
(1 + 2) +

√
12 + 22

)
2 +

(
(2 + 2) +

√
22 + 22

)
2 +

(
(2 + 3) +

√
22 + 32

)
8

+
(
(2 + 4) +

√
22 + 42

)
1 +

(
(3 + 3) +

√
32 + 32

)
2 +

(
(3 + 4) +

√
32 + 42

)
3

+
(
(3 + 5) +

√
32 + 52

)
1 +

(
(4 + 4) +

√
42 + 42

)
2 +

(
(4 + 5) +

√
42 + 52

)
2

By simplifying the above equation, we get the desired result.

We calculate the leap Kepler Banhatti exponential of chloroquine as follows.

Theorem 2.2. Let G1 be the chemical structure of chloroquine. Then

LBK (G1, x) = 2x3+
√

5 + 2x4+2
√

2 + 8x5+
√

13 + 1x6+2
√

5 + 2x6+3
√

2 + 3x7+5 + 1x8+
√

34 + 2x8+4
√

2 + 2x9+
√

41

Proof. By using the definition and edge partition of G1, we deduce

LKB (G1, x) = ∑
uv∈E(G1)

x(d2(u)+d2(v))+
√

d2(u)
2+d2(v)

2

= 2x(1+2)+
√

12+22
+ 2x(2+2)+

√
22+22

+ 8x(2+3)+
√

22+32
+ 1x(2+4)+

√
22+42

+ 2x(3+3)+
√

32+32

+ 3x(3+4)+
√

32+42
+ 1x(3+5)+

√
32+52

+ 2x(4+4)+
√

42+42
+ 2x(4+5)+

√
42+52

.

By simplifying the above equation, we obtain the desired result.

We find the modified leap Kepler Banhatti index of chloroquine as follows.

Theorem 2.3. Let G1 be the chemical structure of chloroquine. Then

mLKB (G1) =
2

3 +
√

5
+

1
2 +

√
2
+

8
5 +

√
13

+
1

6 + 2
√

5
+

2
6 + 3

√
2
+

1
4
+

1
8 +

√
34

+
1

4 + 2
√

2
+

2
9 +

√
41
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Proof. By using the definition and edge partition of G1, we deduce

mLKB (G1) = ∑
uv∈E(G1)

1

(d2 (u) + d2 (v)) +
√

d2 (u)
2 + d2 (v)

2

=
2

(1 + 2) +
√

12 + 22
+

2

(2 + 2) +
√

22 + 22
+

8

(2 + 3) +
√

22 + 32
+

1

(2 + 4) +
√

22 + 42

+
2

(3 + 3) +
√

32 + 32
+

3

(3 + 4) +
√

32 + 42
+

1

(3 + 5) +
√

32 + 52
+

2

(4 + 4) +
√

42 + 42

+
2

(4 + 5) +
√

42 + 52

By simplifying the above equation, we get the desired result.

We compute the modified leap Kepler Banhatti exponential of chloroquine as follows.

Theorem 2.4. Let G1 be the chemical structure of chloroquine. Then

mLBK (G1, x) = 2x3+
√

5 + 2x4+2
√

2 + 8x5+
√

13 + 1x6+2
√

5 + 2x6+3
√

2 + 3x12 + 1x8+
√

34 + 2x8+4
√

2 + 2x9+
√

41

Proof. By using the definition and edge partition of G1, we deduce

mLKB (G1, x) = ∑
uv∈E(G1)

x
1

(d2(u)+d2(v))+
√

d2(u)
2+d2(v)

2

= 2x
1

(1+2)+
√

12+22 + 2x
1

(2+2)+
√

22+22 + 8x
1

(2+3)+
√

22+32 + 1x
1

(2+4)+
√

22+42 + 2x
1

(3+3)+
√

32+32

+ 3x
1

(3+4)+
√

32+42 + 1x
1

(3+5)+
√

32+52 + 2x
1

(4+4)+
√

42+42 + 2x
1

(4+5)+
√

42+52 .

By simplifying the above equation, we obtain the desired result.

3. Results for Hydrochloroquine

Let G2 be the chemical structure of hydroxychloroquine. This structure has 22 atoms (vertices) and 24

bonds (edges), see Figure 2.

Figure 2: Chemical structure of hydroxychloroquine

From Figure 2, we obtain that {(d2(u), d2(v)\uv ∈ E(G2)} has 11 edge set partitions.
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d2(u), d2(v)\uv ∈ E(G2) (1, 1) (1, 2) (1, 3) (2, 2) (2, 3) (2, 4)
Number of edges 1 1 1 2 8 1

d2(u), d2(v)\uv ∈ E(G2) (3, 3) (3, 4) (3, 5) (4, 4) (4, 5)
Number of edges 2 3 1 2 2

Table 2: Edge set partitions of hydroxychloroquine

We calculate the leap Kepler Banhatti index of hydroxychloroquine as follows.

Theorem 3.1. Let G2 be the chemical structure of hydroxychloroquine. Then

LKB (G2) = 153 + 19
√

2 + 3
√

5 +
√

10 + 8
√

13 +
√

34 + 2
√

41

Proof. By using the definition and edge partition of G2, we deduce

LKB (G2) = ∑
uv∈E(G2)

(
(d2 (u) + d2 (v)) +

√
d2 (u)

2 + d2 (v)
2
)

=
(
(1 + 1) +

√
12 + 12

)
1 +

(
(1 + 2) +

√
12 + 22

)
1 +

(
(1 + 3) +

√
12 + 32

)
1

+
(
(2 + 2) +

√
22 + 22

)
2 +

(
(2 + 3) +

√
22 + 32

)
8 +

(
(2 + 4) +

√
22 + 42

)
1

+
(
(3 + 3) +

√
32 + 32

)
2 +

(
(3 + 4) +

√
32 + 42

)
3 +

(
(3 + 5) +

√
32 + 52

)
1

+
(
(4 + 4) +

√
42 + 42

)
2 +

(
(4 + 5) +

√
42 + 52

)
2

By simplifying the above equation, we get the desired result.

We find the leap Kepler Banhatti exponential of hydroxychloroquine as follows.

Theorem 3.2. Let G2 be the chemical structure of hydroxychloroquine. Then

LBK (G2, x) = 1x2+
√

2 + 1x3+
√

5 + 1x4+
√

10 + 2x4+2
√

2 + 8x5+
√

13 + 1x6+2
√

5

+ 2x6+3
√

2 + 3x7+5 + 1x8+
√

34 + 2x8+4
√

2 + 2x9+
√

41

Proof. By using the definition and edge partition of G1, we deduce

LKB (G2, x) = ∑
uv∈E(G2)

x(d2(u)+d2(v))+
√

d2(u)
2+d2(v)

2

= 1x(1+1)+
√

12+12
+ 1x(1+2)+

√
12+22

+ 1x(1+3)+
√

12+32
+ 2x(2+2)+

√
22+22

+ 8x(2+3)+
√

22+32

+ 1x(2+4)+
√

22+42
+ 2x(3+3)+

√
32+32

+ 3x(3+4)+
√

32+42
+ 1x(3+5)+

√
32+52

+ 2x(4+4)+
√

42+42

+ 2x(4+5)+
√

42+52

By simplifying the above equation, we obtain the desired result.

We compute the modified leap Kepler Banhatti index of hydroxychloroquine as follows.
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Theorem 3.3. Let G2 be the chemical structure of hydroxychloroquine. Then

mLKB (G2) =
1

2 +
√

2
+

1
3 +

√
5
+

1
4 +

√
10

+
1

2 +
√

2
+

8
5 +

√
13

+
1

6 + 2
√

5
+

2
6 + 3

√
2

+
1
4
+

1
8 +

√
34

+
1

4 + 2
√

2
+

2
9 +

√
41

Proof. By using the definition and edge partition of G2, we deduce

mLKB (G2) = ∑
uv∈E(G2)

1

(d2 (u) + d2 (v)) +
√

d2 (u)
2 + d2 (v)

2

=
1

(1 + 1) +
√

12 + 12
+

1

(1 + 2) +
√

12 + 22
+

1

(1 + 3) +
√

12 + 32
+

2

(2 + 2) +
√

22 + 22

+
8

(2 + 3) +
√

22 + 32
+

1

(2 + 4) +
√

22 + 42
+

2

(3 + 3) +
√

32 + 32
+

3

(3 + 4) +
√

32 + 42

+
1

(3 + 5) +
√

32 + 52
+

2

(4 + 4) +
√

42 + 42
+

2

(4 + 5) +
√

42 + 52

By simplifying the above equation, we get the desired result.

We determine the modified leap Kepler Banhatti exponential of hydroxychloroquine as follows.

Theorem 3.4. Let G2 be the chemical structure of hydroxychloroquine. Then

mLBK (G2, x) = 1x2+
√

2 + 1x3+
√

5 + 1x4+
√

10 + 2x4+2
√

2 + 8x5+
√

13 + 1x6+2
√

5

+ 2x6+3
√

2 + 3x12 + 1x8+
√

34 + 2x8+4
√

2 + 2x9+
√

41.

Proof. By using the definition and edge partition of G1, we deduce

mLKB (G2, x) = ∑
uv∈E(G2)

x
1

(d2(u)+d2(v))+
√

d2(u)
2+d2(v)

2

= 1x
1

(1+1)+
√

12+12 + 1x
1

(1+2)+
√

12+22 + 1x
1

(1+3)+
√

12+32 + 2x
1

(2+2)+
√

22+22 + 8x
1

(2+3)+
√

22+32 + 1x
1

(2+4)+
√

22+42

+ 2x
1

(3+3)+
√

32+32 + 3x
1

(3+4)+
√

32+42 + 1x
1

(3+5)+
√

32+52 + 2x
1

(4+4)+
√

42+42 + 2x
1

(4+5)+
√

42+52 .

By simplifying the above equation, we obtain the desired result.

4. Results for Remdesivir

Let G3 be the molecular structure of remdesivir. This graph has 41 atoms (vertices) and 44 bonds

(edges).
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Figure 3: Chemical structure of remdesivir

From Figure 3, we obtain that {(d2(u), d2(v)\uv ∈ E(G3)} has 13 edge set partitions.

d2(u), d2(v)\uv ∈ E(G3) (1, 2) (2, 2) (2, 3) (2, 4) (2, 5) (3, 3) (3, 4)
Number of edges 2 3 10 1 1 7 3

d2(u), d2(v)\uv ∈ E(G3) (3, 5) (3, 6) (4, 4) (4, 5) (5, 5) (5, 6)
Number of edges 8 1 1 2 3 2

Table 3: Edge set partitions of remdesivir

We compute the leap Kepler Banhatti index of remdesivir as follows.

Theorem 4.1. Let G2 be the chemical structure of remdesivir. Then

LKB (G3) = 394 + 46
√

2 + 7
√

5 + 10
√

13 +
√

29 + 8
√

34 + 2
√

41 + 2
√

61.

Proof. By using the definition and edge partition of G2, we deduce

LKB (G3) = ∑
uv∈E(G3)

(
(d2 (u) + d2 (v)) +

√
d2 (u)

2 + d2 (v)
2
)

=
(
(1 + 2) +

√
12 + 22

)
2 +

(
(2 + 2) +

√
22 + 22

)
3 +

(
(2 + 3) +

√
22 + 32

)
10

+
(
(2 + 4) +

√
22 + 42

)
1 +

(
(2 + 5) +

√
22 + 52

)
1 +

(
(3 + 3) +

√
32 + 32

)
7

+
(
(3 + 4) +

√
32 + 42

)
3 +

(
(3 + 5) +

√
32 + 52

)
8 +

(
(3 + 6) +

√
32 + 62

)
1

+
(
(4 + 4) +

√
42 + 42

)
1 +

(
(4 + 5) +

√
42 + 52

)
2 +

(
(5 + 5) +

√
52 + 52

)
3

+
(
(5 + 6) +

√
52 + 62

)
2

By simplifying the above equation, we get the desired result.

We determine the leap Kepler Banhatti exponential of remdesivir as follows.

Theorem 4.2. Let G3 be the chemical structure of remdesivir. Then

LBK (G3, x) = 2x3+
√

5 + 3x4+2
√

2 + 10x5+
√

13 + 1x6+2
√

5 + 1x7+
√

29 + 7x6+3
√

2 + 3x12

+ 8x8+
√

34 + 1x9+3
√

5 + 1x8+4
√

2 + 2x9+
√

41 + 3x10+5
√

2 + 2x11+
√

61
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Proof. By using the definition and edge partition of G3, we deduce

LKB (G3, x) = ∑
uv∈E(G3)

x(d2(u)+d2(v))+
√

d2(u)
2+d2(v)

2

= 2x(1+2)+
√

12+22
+ 3x(2+2)+

√
22+22

+ 10x(2+3)+
√

22+32
+ 1x(2+4)+

√
22+42

+ 1x(2+5)+
√

22+52

+ 7x(3+3)+
√

32+32
+ 3x(3+4)+

√
32+42

+ 8x(3+5)+
√

32+52
+ 1x(3+6)+

√
32+62

+ 1x(4+4)+
√

42+42

+ 2x(4+5)+
√

42+52
+ 3x(5+5)+

√
52+52

+ 2x(5+6)+
√

52+62

By simplifying the above equation, we obtain the desired result.

We calculate the modified leap Kepler Banhatti index of remdesivir as follows.

Theorem 4.3. Let G3 be the chemical structure of remdesivir. Then

mLKB (G3) =
2

3 +
√

5
+

3
4 + 2

√
2
+

10
5 +

√
13

+
1

6 + 2
√

5
+

1
7 +

√
29

+
7

6 + 3
√

2

+
1
4
+

8
8 +

√
34

+
1

9 + 3
√

5
+

1
8 + 4

√
2
+

2
9 +

√
41

+
3

10 + 5
√

2
+

2
11 +

√
61

.

Proof. By using the definition and edge partition of G3, we deduce

mLKB (G3) = ∑
uv∈E(G3)

1

(d2 (u) + d2 (v)) +
√

d2 (u)
2 + d2 (v)

2

=
2

(1 + 2) +
√

12 + 22
+

3

(2 + 2) +
√

22 + 22
+

10

(2 + 3) +
√

22 + 32
+

1

(2 + 4) +
√

22 + 42

+
1

(2 + 5) +
√

22 + 52
+

7

(3 + 3) +
√

32 + 32
+

3

(3 + 4) +
√

32 + 42
+

8

(3 + 5) +
√

32 + 52

+
1

(3 + 6) +
√

32 + 62
+

1

(4 + 4) +
√

42 + 42
+

2

(4 + 5) +
√

42 + 52
+

3

(5 + 5) +
√

52 + 52

+
2

(5 + 6) +
√

52 + 62

By simplifying the above equation, we get the desired result.

We obtain the modified leap Kepler Banhatti exponential of remdesivir as follows.

Theorem 4.4. Let G3 be the chemical structure of remdesivir. Then

mLBK (G3, x) = 2x
1

3+
√

5 + 3x
1

4+2
√

2 + 10x
1

5+
√

13 + 1x
1

6+2
√

5 + 1x
1

7+
√

29 + 7x
1

6+3
√

2 + 3x12

+ 8x
1

8+
√

34 + 1x
1

9+3
√

5 + 1x
1

8+4
√

2 + 2x
1

9+
√

41 + 3x
1

10+5
√

2 + 2x
1

11+
√

61 .

Proof. By using the definition and edge partition of G3, we deduce

mLKB (G3, x) = ∑
uv∈E(G3)

x
1

(d2(u)+d2(v))+
√

d2(u)
2+d2(v)

2
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= 2x
1

(1+2)+
√

12+22 + 3x
1

(2+2)+
√

22+22 + 10x
1

(2+3)+
√

22+32 + 1x
1

(2+4)+
√

22+42 + 1x
1

(2+5)+
√

22+52

+ 7x
1

(3+3)+
√

32+32 + 3x
1

(3+4)+
√

32+42 + 8x
1

(3+5)+
√

32+52 + 1x
1

(3+6)+
√

32+62 + 1x
1

(4+4)+
√

42+42

+ 2x
1

(4+5)+
√

42+52 + 3x
1

(5+5)+
√

52+52 + 2x
1

(5+6)+
√

52+62 .

By simplifying the above equation, we obtain the desired result.

5. Conclusion

In this study, we have introduced the leap Kepler Banhatti and modified leap Kepler Banhatti indices

and their exponentials of a graph. We have computed these newly defined leap Kepler Banhatti indices

and their exponentials for chloroquine, hydroxychloroquine and remdesivir.
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