Available Online: http://ijmaa.in

Maximal Degree Domination in Graphs

V. Thukarama^{1,*}, N. D. Soner¹

 1 Department of Studies in Mathematics, Manasagangothri, University of Mysore, Mysuru, Karnataka, India

Abstract

A set S of vertices in a graph G is called a dominating set if every vertex in V-S is adjacent to at least one vertex in S. A maximal degree dominating function (MDDF) is a type of function $f:V(G)|\{0,1,2,3,...,(\triangle(G)+1)\}$ having the property that every v in S is assigned the value deg(v)+1, and all remaining vertices with zero. The weight of a maximal degree dominating function f is defined by $w(f)=\sum_{v\in S}deg(v)+1$. The maximal degree domination number $\gamma_{mdeg}(G)$ is the minimum weight among all possible MDDFs. In this paper, we determine its exact value.

Keywords: maximal domination number; dominating set; maximal degree domination; maximal degree domination function.

2020 Mathematics Subject Classification: 05C69, 05C76.

1. Introduction

Let G=(V,E) be a simple graph, where V is the vertex set and E is the edge set. The open neighborhood of a vertex v in a graph G is defined as $N(v)=\{u:(u,v)\in E(G)\}$. The closed neighborhood of a vertex v is defined as $N[v]=N(v)\cup\{v\}$. The order n and size m of G are the vertices and edges respectively. The total number of edges incident to a vertex v is called the degree of v in G is defined by deg(v), [1]. A set $S\subseteq V$ is a dominating set if every in V-S is adjacent to at least one vertex in S. The domination number $\gamma(G)$ of G is the minimum cardinality of a dominating set [4]. There are many types of domination depending on the structures of dominating sets. One of these types, the weighted domination number γ_w of (G,W) is the minimum weight $W(S)=\sum_{v\in D}W(v)$ of a set $S\subseteq V$ with N[S]=V, i.e., a dominating set of G [2]. The Roman domination number, denoted by γ_R , is the minimum weight among all possible RDF_S , defined as a function $f:V\to\{0,1,2\}$ satisfying the condition that every vertex v with f(v)=0 is adjacent to at least one vertex v such that f(u)=2 [5]. A degree dominating function (DDF) is a function $f:V\to\{0,1,2,...,(\triangle(G)+1)\}$ with the property that every vertex $v\in S\subseteq V$ is assigned the value deg(v)+1, and all remaining vertices are assigned

^{*}Corresponding author (thukarama.v1@gmail.com)

zero [3]. Motivated by the concepts of maximal dominating sets [6] and degree dominating function [3], we introduce in this paper the concept of the maximal degree domination function.

A dominating set S of a graph G is a maximal dominating set if V-S is not a dominating set of G. A maximal degree dominating function (MDDF) is a function $f:V(G)\to\{0,1,2,...,\triangle(G)+1\}$ having the property that every vertex V of S is assigned with deg(v)+1 and all remaining vertices with zero. The weight of a degree dominating function f is defined by $W(f)=\sum_{v\in S}(deg(v)+1)$. The maximal degree domination number $\gamma_{mdeg}(G)$, is the minimum weight of all possible $MDDF_s$. The maximal domination number $\gamma_{mdeg}(G)$ of G is the minimum cardinality of a maximal dominating set G.

2. Maximal Degree Domination Number

Example 2.1. Consider the following graph *G*:

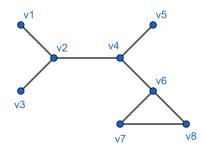


Figure 1: eight-vertices

In Figure 1, there are many maximal dominating sets, but the set that gives the minimum weight should be chosen. Here $S = \{v_1, v_2, v_5, v_6\}$ is the minimum maximal dominating set. The maximum degree of the graph G is $\triangle(G) = 3$. By the definition of MDDF, $f: V(G) \rightarrow \{0, 1, 2, 3, 4\}$. Hence

$$\gamma_{mdeg}(G) = \sum_{v \in S} f(v) = 2 + 4 + 2 + 4 = 12$$

Theorem 2.2. *For* $n \ge 3$,

$$\gamma_{mdeg}(\mu(P_n)) = \begin{cases} n+2, & \text{if} \quad n \equiv 0, 2 \pmod{3} \\ n+3, & \text{if} \quad n \equiv 1 \pmod{3} \end{cases}$$

Proof. Let $(P_n) = \{v_1, v_2, ..., v_n\}$, be a path of order n. It is known that the degree of all vertices except the pendent vertices is 2. Then we define $f: V(G) \to \{0, 1, 2, 3\}$.

If
$$n \equiv 0 \pmod{3}$$
, then $f(V_{3i-1}) = 3$ for $1 \le i \le \frac{n}{3}$ and $f(v_n) = 2$.

If
$$n \equiv 2 \pmod{3}$$
, then $f(V_{3i-1}) = 3$ for $1 \le i \le \frac{n-2}{3}$, $f(v_1) = 2$ and $f(v_n) = 2$.

If
$$n \equiv 1 \pmod{3}$$
, then $f(V_{3i-1}) = 3$ for all $1 \le i \le \frac{n-1}{3}$, $f(v_1) = 2$ and $f(v_n) = 2$.

For all remaining vertices f(v) = 0. It is easy to generalize that f is MDDF of (P_n) weight

$$3.\frac{n}{3} + 2 = n + 2, \quad if \quad n \equiv 0 \pmod{3},$$

$$3.\frac{n-2}{3} + 4 = \frac{3n+6}{3} = n+2, \quad if \quad n \equiv 2 \pmod{3},$$

$$3.\frac{n-1}{3} + 4 = n+3, \quad if \quad n \equiv 1 \pmod{3}.$$

Thus,

$$\gamma_{mdeg}(P_n) = \begin{cases}
n+2, & if \quad n \equiv 0,2 \pmod{3} \\
n+3, & if \quad n \equiv 1 \pmod{3}
\end{cases}$$

Theorem 2.3. *For* $n \ge 3$,

$$\gamma_{mdeg}(C_n) = \begin{cases} \frac{n+6}{r} & if \quad n \equiv 0 \pmod{3} \\ \frac{n+5}{r} & if \quad n \equiv 1 \pmod{3} \\ \frac{n+4}{r} & if \quad n \equiv 2 \pmod{3} \end{cases}$$

Proof. Let $C_n = \{v_1, v_2, ..., v_n\}$ be a cycle of order n. It is a regular graph of degree 2. Then, we define $f: V(G) \to \{0, 1, 2, 3, \}$.

If $n \equiv 0 \pmod{3}$, then $f(v_{3i-1}) = 3$ for $1 \le i \le \frac{n}{3}$, $f(v_{n-1}) = 3$ and $f(v_n) = 3$. If $n \equiv 1 \pmod{3}$, then $f(v_{3i-1}) = 3$ for $1 \le i \le \frac{n-1}{3}$, $f(v_{n-1}) = 3$ and $f(v_n) = 3$. and If $n \equiv 2 \pmod{3}$, then $f(v_{3i-1}) = 3$ for $1 \le i \le \frac{n-2}{3}$, $f(v_{n-1}) = 3$ and $f(v_n) = 3$.

For all remaining vertices of f(v) = 0. It is easy to generalize that f is MDDF of C_n of weight

$$3.\frac{n}{3} + 6 = n + 6, \text{ if } n \equiv 0 \pmod{3},$$

$$3.\frac{n-1}{3} + 6 = n + 5, \text{ if } n \equiv 1 \pmod{3}$$

$$3.\frac{n-2}{3} + 6 = n + 4, \text{ if } n \equiv 2 \pmod{3}$$

Thus,

$$\gamma_{mdeg}(C_n) = egin{cases} rac{n+6}{r} & if & n \equiv 0 (mod3) \ rac{n+5}{r} & if & n \equiv 1 (mod3) \ rac{n+4}{r} & if & n \equiv 2 (mod3) \end{cases}$$

Theorem 2.4. For, $K_{r,t}$, with respect to, $\gamma_{mdeg}(Kr,t) = r(t+2) + 1$.

Proof. Let $G \cong Kr$, t be complete bipartite graph with bipartite sets V_1 and V_2 of order r and t, for $r \le t$, we know that $\gamma_{md}(Kr,t) = r+1$, and $S = \{x_1, x_2, x_3, ..., x_r, t\}$, where $x_i \in V_i$, i = 1, 2, 3, ..., r and $t \in V_2$

is the maximal dominating set of Kr, t. Then $deg(x_i) = t$ and deg(t) = r. By the definition of MDDF,

$$\begin{split} \gamma_{mdeg}(Kr,t) &= (deg(x_1)+1) + (deg(x_2+1) + ... + (deg(x_r)+1) + (deg(t)+1) \\ &= (t+1) + (t+1) + ... + (t+1) + (r+1) \\ &= r(t+1) + r + 1 \\ &= r(t+2) + 1 \end{split}$$

Thus,
$$\gamma_{mdeg}(Kr, t) = r(t+2) + 1$$
, where $r \leq t$.

Theorem 2.5. Let G be a complement of complete bipartite graph, where $r \leq t$. Then $\gamma_{mdeg}(\overline{K}_{r,t}) = r^2 + t$.

Proof. Let $G \cong \overline{K}_{r,t}$. Then $\overline{K}_{r,t} = K_r \cup K_t$ of order r and t, respectively. We know that, $\gamma_{md}(\overline{K}_{r,t}) = \min\{r,t\}+1=r+1$, if $r \leq t$. And $S = \{x_1,x_2,...,x_r,v;x_i \in K_r \ and \ v \in K_t\}$ is the maximal dominating set of $\overline{K}_{r,t}$. Then $deg(x_i) = r-1$ and deg(v) = t-1. By the definition of MDDF,

$$\begin{split} \gamma_{mdeg}(\overline{K}_{r,t}) &= (deg(x_1) + 1) + \dots + (deg(x_r) + 1) + (deg(v) + 1) \\ &= ((r-1) + 1) + \dots + ((r-1) + 1) + ((t-1) + 1) \\ &= r + r + \dots + r + t \\ &= r^2 + t \end{split}$$

Theorem 2.6. For $n \ge 1$, $\gamma_{mdeg}(K_n) = n^2$.

Proof. K_n is a regular graph of degree (n-1), and $\gamma_{mdeg}(K_n) = n$ and $S = \{v_1, v_2, ..., v_n\}$ is the maximal dominating set of K_n . By the definition of MDDF,

$$\gamma_{mdeg}(K_n) = (deg(v_1) + 1) + (deg(v_2) + 1) + \dots + (deg(v_n) + 1)$$
$$= ((n-1) + 1) + \dots + ((n-1) + 1)$$
$$= n \cdot n = n^2$$

Observation 2.7. *Let* G *be a totally disconnected graph, then* $\gamma_{mdeg}(G) = 2n$.

Theorem 2.8. *For* $n \ge 4$, $\gamma_{mdeg}(W_n) = n + 12$.

Proof. Consider any wheel graph W_n with n vertices formed by sum of the complete graph with one vertex v_1 and cycle graph with n-1 vertices are $v_2, v_3, \ldots, v_{n-1}, v_n$, that is the wheel W_n can be defined as the graph $K_1 + C_{n-1}$. Hee v_1 has degree n-1 so it is the internal vertex to all other vertices and $deg(v_2) = deg(v_3) = \cdots = deg(v_n) = 3$. We know that $\gamma_m(W_n) = 4$ and $S = \{v_1, v_2, v_3, v_4\}$ is the

maximal dominating set of W_n . Then $deg(v_1) = n - 1$, $deg(v_2) = deg(v_3) = deg(v_4) = 3$. By the definition of MDDF,

$$\gamma_{mdeg}(W_n) = (deg(v_1) + 1) + (deg(v_2) + 1) + (deg(v_3) + 1) + (deg(v_4) + 1)$$

$$= (n - 1) + 1 + (3 + 1) + (3 + 1) + (3 + 1)$$

$$= n + 12$$

Theorem 2.9. For any graph G, $\gamma_{md}(G) \leq \gamma_{mdeg}(G)$.

Proof. Suppose that S is a maximal dominating set and D is the maximal degree dominating set of G. Let |S| = t where $t \ge 1$. By the definition of MDDF, it is clear that D consists of deg(v) + 1, where $v \in S$. Thus $|D| = \sum_{i=1}^k (deg(v_i) + 1)$. Therefore, |S| = |D| and $\gamma_{md}(G) \le \gamma_{mdeg}(G)$.

Observation 2.10. For any connected graph G, $\gamma_{mdeg}(G) \ge deg(v_i)$ for all $1 \le i \le n$.

Lemma 2.11. Let G be an r-regular graph. Then $\gamma_{mdeg}(G) = (r+1)\gamma_{md}(G)$.

Proof. Suppose that S is a maximal dominating set and r is the degree of each vertex in G. Let |S| = t where $t \ge 1$. It is clear that the degree of all vertices in S is r, by the definition of the MDDF, $\gamma_{mdeg}(G) = \sum_{i=1}^{t} (r+1)$. Therefore,

$$\gamma_{mdeg}(G) = (r+1)t$$

$$= (r+1)|S|$$

$$= (r+1).\gamma_{md}(G)$$

Proposition 2.12. For any helm graph H_n , $(n \ge 4)$, the maximal degree domination number is $\gamma_{mdeg}(H_n) = 2n + 5$, $n \ge 4$.

Proof. Let $G \cong H_n$ be a helm graph on 2n+1 vertices and 3n edges. Let $deg(v) = \triangle = n$. Let v_1, v_2, \ldots, v_n be the vertices in the helm graph, each having degree 4. Also, let u_1, u_2, \ldots, u_n denotes the pendent vertices of the helm graph. It can be easily verified that $S = \{v_1, u_1, \ldots, u_n\}$ is a dominating set of the helm graph G. Choose a vertex u_1 which is adjacent to v_1 . Then clearly, $T = S \cup v_1$ is a maximal dominating set of the helm graph G. Therefore $\gamma_{md}(G) = n + 1$, the maximum degree of the graph G is $\Delta(G) = n$. By the definition of MDDF, $f: V(G) \to \{0, 1, 2, \ldots, \Delta + 1\}$ and the MDDF must consist of vertices, $\{(deg(v_1) + 1), (deg(u_2) + 1), \ldots, (deg(u_n) + 1), (deg(u_1) + 1)\}$. Hence the maximal

degree domination number is,

$$\gamma_{mdeg}(G) = \sum_{v \in T} f(v)$$

$$= (4+1) + (1+1) + \dots + (1+1)$$

$$= 5 + 2 + \dots + 2$$

$$= 2n + 5$$

Proposition 2.13. For any firecracker graph F(m, n), the maximal degree domination number is $\gamma_{mdeg}(F_{m,n}) = 4m + 2$, where $n \ge 2$.

Proof. Let $G \cong F(m,n)$ be a firecracker graph on mn vertices with (mn-1) edges, and let D be a minimum dominating set of graph G. By the definition of firecracker graph, it is constructed by joining m copies of n stars in a series, linking one leaf from each. For each of the n stars, if we choose all central vertices $v_1, v_2, ... v_m$ and define the set $S = \{v_1, v_2, ..., v_m\}$, then S dominates all the other vertices of G. Therefore, the domination number is $\gamma(G) = m$. Let x be any pendent vertex of G. Then $T = S \cup \{x\}$ forms a maximal dominating set with the minimum possible cardinality, and hence $\gamma_{md}(G) = m+1$. The maximum degree of the graph G is $\Delta(G) = 3$. By the definition of a MDDF, it is a function $f: V(G) \to \{0,1,2,3,4\}$, where the MDDF assigns to each vertex in a dominating set the value $\{deg(v_1) + 1, deg(v_2) + 1, ..., deg(v_n) + 1\}$. Hence the maximal degree domination number is,

$$\gamma_{mdeg}(G) = \sum_{v \in T} f(v)$$

$$= (3+1) + (3+1) + \dots + (3+1) + (1+1)$$

$$= 4+4+\dots+4+2$$

$$= 4m+2$$

Definition 2.14. Let G be a caterpillar graph with a vertex set $\{v_1, v_2, \ldots, v_n\}$ of a path and number of the pendant vertices are denoted with m_1, m_2, \ldots, m_n to the v_1, v_2, \ldots, v_n respectively. If G is denoted by $G = C_n(m_1 + 1, m_2, \ldots, m_n + 1)$ as m figure 1.

Figure 2: caterpillar-graph

Lemma 2.15. For any caterpillar graph $G \cong C_n(m_1 + 1, m_2 + 1, ..., m_n + 1)$, the maximal degree domination number is $\gamma mdeg(G) = nt + 2n + 2$, where $m_1 = m_2 = \cdots = m_n = t$.

Proof. Let $G \cong C_n(m_1+1,m_2+1,\ldots,m_n+1)$ be a caterpillar graph with vertex set $\{v_1,v_2,\ldots,v_n\}$ of a path and the number of pendant vertices are denoted with $|V_1|=m_1,|V_2|=m_2,\ldots,|V_n|=m_n$, to the v_1,v_2,\ldots,v_n respectively. Let $m_1=m_2=\cdots=m_n=t$ (say). It is known that v_1 dominates m_1 pendant vertices that are connected to it. Like this minimum dominating set is $S=\{v_1,v_2,\ldots,v_n|\}$. Therefore $\gamma(G)=n$. Choose a vertex $x\in V_1$. Then $T=S\cup\{x\}$ is a maximal dominating set of G, and so $\gamma_{md}(G)n+1$. The maximum degree of the graph G is $\Delta(G)=t+1$. By the definition of MDDF, $f;V(G)\to\{0,1,2,\ldots,\Delta+1\}$ and the MDDF must consist of vertices $\{deg(v_1)+1,deg(v_2)+1,\ldots,deg(v_n)+1,deg(x)+1\}$. Hence, the maximal degree domination number is,

$$\gamma mdeg(G) = \sum_{v \in T} f(v)$$

$$= [(t+1)+1] + [(t+1)+1] + \dots + [(t+1)+1] + (1+1)$$

$$= (t+2)(t+2) + \dots + (t+2) + 2$$

$$= n(t+2) + 2$$

$$= nt + 2n + 2$$

Theorem 2.16. For any Comb graph $G = C_n(2,2,...,2)$, the maximal degree dominating number is, $\gamma_{mdeg}(G) = 2n + 3$.

Proof. By above Lemma 1.15, for $m_1 = m_2 = \cdots = m_n = 1$, and $m = \sum_{i=1}^n m_i = n$. We know that, there are three minimum dominating sets, but the set that gives the minimum weight should be chosen. It is seen that the set of all pendant vertices $S = \{u_1, u_2, \dots, u_n\}$ is the minimum dominating set. Let x be a vertex of degree 2. Then $T = S \cup \{x\}$ is maximal dominating set of G, and $\gamma_{md}(G) = n + 1$. The maximum degree of the graph G is $\Delta(G) = 3$. By the definition of MDDF, $f: V(G) \rightarrow \{0,1,2,3,4\}$ and the MDDF must consist of vertices $\{deg(u_1) + 1, deg(u_2) + 1, \dots, deg(u_n) + 1, deg(x) + 1\}$

$$\begin{split} \gamma_{mdeg}(G) &= \sum_{v \in T} f(v) \\ &= (1+1) + (1+1) + \dots + (1+1) + (2+1) \\ &= 2+2+\dots + 2+3 \\ &= 2n+3 \end{split}$$

3. Conclusion

In this paper, we introduced and investigated the concept of a maximal degree dominating function (MDDF) for a graph G, which assigns a value of deg(v) + 1 to vertices in a dominating set s, and zero to all others. We defined the maximal degree domination number, denoted $\gamma_{mdeg}(G)$, as the minimum possible weight of such a function over all dominating sets in G.

References

- [1] F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley Publishing Company, (1990).
- [2] P. Dankelmann, D. Rautenbach and L. Volkmann, Weighted Domination, J. Combin, Math. Comb. Compute. to appear.
- [3] N. C. Demirpolat and E. Kilic, *On Degree Domination in Graph*, J. of Modern Technology and Eng., 9(2)(2024), 112-118.
- [4] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of domination in Graphs, Marcel Dekk, (1998).
- [5] S. T. Helatniemi, P. M. Cockakayne and P. M. Dreyer Jr, On Roman Domination in Graphs, Discrete Math., 278(1998).
- [6] V. R. Kulli and Janakiram, *The maximal domination number of a graph*, Theory notes of NEW York, XXXIII(1997), 11-13.