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Abstract

In this study, we introduce the F-uphill index and its corresponding polynomial of a graph.

Furthermore, we compute this index for some standard graphs, wheel graphs, gear graphs and

helm graphs.
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1. Introduction

In this paper, G denotes a finite, simple, connected graph, V(G) and E(G) denote the vertex set and

edge set of G. The degree dG (u) of a vertex u is the number of vertices adjacent to u. A topological

index is a numerical parameter mathematically derived from the graph structure. Several topological

indices were defined by using vertex degree concept [1]. The Zagreb, Nirmala, Gourava, Sombor,

Revan, Sombor, delta indices are the most degree based graph indices in Chemical Graph Theory, see

[2-37]. Topological indices have their applications in various disciplines in Science and Technology

[38]. A u − v path P in G is a sequence of vertices in G, starting with u and ending at v, such that

consecutive vertices in P are adjacent, and no vertex is repeated. A path π = v1, v2, . . . , vk+1 in G is

a downhill path if for every i, 1 ≤ i ≤ k, dG (vi) ≥ dG (vi+1). A vertex v is downhill dominates a

vertex u if there exists a downhill path originated from u to v. The downhill neighborhood of a vertex

v is denoted by Ndn (v) and defined as: Ndn (v) = {u : v downhill dominates u}. The downhill degree

ddn (v) of a vertex v is the number of downhill neighbors of v, see [39]. Recently, some downhill indices

were studied in [40-44]. The uphill domination is introduced by Deering in [45].

A u− v path P in G is a sequence of vertices in G, starting with u and ending at v, such that consecutive

vertices in P are adjacent, and no vertex is repeated. A path π = v1, v2, . . . , vk+1 in G is a uphill path if

for every i, 1 ≤ i ≤ k, dG (vi) ≤ dG (vi+1). A vertex v is uphill dominates a vertex u if there exists an

uphill path originated from u to v. The uphill neighborhood of a vertex v is denoted by Nup (v) and
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defined as: Nup (v) = {u : v uphill dominates u}. The uphill degree dup (v) of a vertex v is the number

of uphill neighbors of v, see [46]. The F-index [47] of a graph G is defined as

F (G) = ∑
uv∈E(G)

(
dG (u)2 + dG (v)2

)
.

We introduce the F-uphill index of a graph and it is defined as

FU (G) = ∑
uv∈E(G)

(
dup (u)

2 + dup (v)
2
)

.

Considering the F-uphill index, we introduce the F-uphill polynomial of a graph G and it is defined as

FU (G, x) = ∑
uv∈E(G)

xdup(u)
2+dup(v)

2
.

In this paper, the F-uphill index and its corresponding polynomial of certain graphs are computed.

2. Results for Some Standard Graphs

Proposition 2.1. Let G be r-regular with n vertices and r ≥ 2. Then

FU (G) = nr (n − 1)2 .

Proof. Let G be an r-regular graph with n vertices and r ≥ 2 and nr
2 edges. Then dup (v) = n − 1 for

every v in G.

FU (G) = ∑
uv∈E(G)

(
dup (u)

2 + dup (v)
2
)

=
nr
2

(
(n − 1)2 + (n − 1)2

)
= nr (n − 1)2 .

Corollary 2.2. Let Cn be a cycle with n ≥ 3 vertices. Then FU (Cn) = 2n (n − 1)2.

Corollary 2.3. Let Kn be a complete graph with n ≥ 3 vertices. Then FU (Kn) = n (n − 1)3.

Proposition 2.4. Let G be r-regular with n vertices and r ≥ 2. Then

FU (G) =
nr

2 (n − 1)
.

Proof. Let G be an r-regular graph with n vertices and r ≥ 2 and nr
2 edges. Then dup (v) = n − 1 for
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every v in G.

FU (G, x) = ∑
uv∈E(G)

xdup(u)
2+dup(v)

2

=
nr
2

x(n−1)2+(n−1)2

=
nr
2

x2(n−1)2
.

Corollary 2.5. Let Cn be a cycle with n ≥ 3 vertices. Then FU (Cn, x) = nx2(n−1)2
.

Corollary 2.6. Let Kn be a complete graph with n ≥ 3 vertices. Then FU (Kn) =
n(n−1)

2 x2(n−1)2
.

Proposition 2.7. Let P be a path with n ≥ 3 vertices. Then

FU (Pn) = 2
(
2n2 − 10n + 13

)
+ 2 (n − 3)3 .

Proof. Let P be a path with n ≥ 3 vertices. We obtain two partitions of the edge set of P as follows:

E1 = {uv ∈ E(P)|dup(u) = n − 2, dup(v) = n − 3}, |E1| = 2.

E2 = {uv ∈ E(P)|dup(u) = dup(v) = n − 3}, |E2| = n − 3.

FU (Pn) = ∑
uv∈E(Pn)

(
dup (u)

2 + dup (v)
2
)

= 2
(
(n − 2)2 + (n − 3)2

)
+ (n − 3)

(
(n − 3)2 + (n − 3)2

)
= 2

(
2n2 − 10n + 13

)
+ 2 (n − 3)3 .

Proposition 2.8. Let Pn be a path with n ≥ 3 vertices. Then

FU (Pn, x) = 2x2n2−10n+13 + (n − 3) x2(n−3)2
.

Proof. We obtain

FU (Pn, x) = ∑
uv∈E(Pn)

xdup(u)
2+dup(v)

2

= 2x(n−2)2+(n−3)2
+ (n − 3) x(n−3)2+(n−3)2

= 2x2n2−10n+13 + (n − 3) x2(n−3)2
.
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3. Results for Wheel Graphs

The wheel Wn is the join of Cn and K1. Clearly Wn has n + 1 vertices and 2n edges. Then Wn has two

types of edges based on the uphill degree of the vertices of each edge as follows:

E1 = {uv ∈ E(Wn)|dup(u) = 0, dup(v) = n}, |E1| = n.

E2 = {uv ∈ E(Wn)|dup(u) = dup(v) = n}, |E2| = n.

Theorem 3.1. Let Wn be a wheel graph with n + 1 vertices and 2n edges, n ≥ 4. Then the F-uphill index of Wn

is FU (Wn) = 3n3.

Proof. We deduce

FU (Wn) = ∑
uv∈E(Wn)

(
dup (u)

2 + dup (v)
2
)

= n
(
02 + n2)+ n

(
n2 + n2)

= 3n3.

Theorem 3.2. Let Wn be a wheel graph with n + 1 vertices, n ≥ 4. Then the F-uphill polynomial of Wn is

FU (Wn, x) = nxn2
+ nx2n2

.

Proof. We obtain

FU (Wn, x) = ∑
uv∈E(Wn)

xdup(u)
2+dup(v)

2

= nx02+n2
+ nxn2+n2

= nxn2
+ nx2n2

.

4. Results for Gear Graphs

A bipartite wheel graph is a graph obtained from Wn with n + 1 vertices adding a vertex between each

pair of adjacent rim vertices and this graph is denoted by Gn and also called as a gear graph. Clearly,

|V(Gn)| = 2n + 1 and |E(Gn)| = 3n. A gear graph Gn is depicted in Figure 1.
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Figure 1: Gear graph Gn

Let Gn be a gear graph with 2n + 1 vertices, 3n edges, n ≥ 4. Then Gn has two types of edges based on

the uphill degree of the vertices of each edge as follows:

E1 = {u ∈ E(Gn)|dup(u) = 1, dup(v) = 0}, |E1| = n

E2 = {u ∈ E(Gn)|dup(u) = 1, dup(v) = 3}, |E2| = 2n.

Theorem 4.1. Let Gn be a gear graph with 2n + 1 vertices, 3n edges, n ≥ 4. Then the F-uphill index of Gn is

FU (Gn) = 21n.

Proof. We deduce

FU (Gn) = ∑
uv∈E(Gn)

(
dup (u)

2 + dup (v)
2
)

= n
(
12 + 02)+ 2n

(
12 + 32)

= 21n.

Theorem 4.2. Let Gn be a gear graph with 2n + 1 vertices, 3n edges, n ≥ 4. Then the F-uphill polynomial of

Gn is FU (Gn, x) = nx1 + 2nx10.

Proof. We deduce

FU (Gn, x) = ∑
uv∈E(Gn)

xdup(u)
2+dup(v)

2

= nx12+02
+ 2nx12+32

= nx1 + 2nx10.



F-uphill Index of Graphs / V. R. Kulli 198

5. Results for Helm Graphs

The helm graph Hn is a graph obtained from Wn (with n + 1 vertices) by attaching an end edge to each

rim vertex of Wn. Clearly, |V(Hn)| = 2n + 1 and |E(Hn)| = 3n. A graph Hn is shown in Figure 2.

Figure 2: Helm graph Hn

Let Hn be a helm graph with 3n edges, n ≥ 5. Then Hn has three types of edges based on the uphill

degree of the vertices of each edge as follows:

E1 = {uv ∈ E(Hn)|dup(u) = n + 1, dup(v) = n}, |E1| = n

E2 = {uv ∈ E(Hn)|dup(u) = dup(v) = n}, |E2| = n

E3 = {uv ∈ E(Hn)|dup(u) = n, dup(v) = 0}, |E3| = n

Theorem 5.1. Let Hn be a helm graph with 2n+ 1 vertices, n ≥ 5. Then the F-uphill index of Hn is FU (Hn) =

5n3 + 2n2 + n.

Proof. We obtain

FU (Hn) = ∑
uv∈E(Hn)

(
dup (u)

2 + dup (v)
2
)

= n
(
(n + 1)2 + n2

)
+ n

(
n2 + n2)+ n

(
n2 + 02)

= 5n3 + 2n2 + n.

Theorem 5.2. Let Hn be a helm graph with 2n + 1 vertices, 3n edges, n ≥ 5. Then the F-uphill polynomial of

Hn is FU (Hn, x) = nx2n2+2n+1 + nx2n2
+ nxn2

.

Proof. We deduce

FU (Hn, x) = ∑
uv∈E(Hn)

xdup(u)
2+dup(v)

2



F-uphill Index of Graphs / V. R. Kulli 199

= nx(n+1)2+n2
+ nxn2+n2

+ nxn2+02

= nx2n2+2n+1 + nx2n2
+ nxn2

.

6. Conclusion

In this research work, the F-uphill index and its corresponding polynomial of a graph are defined.

Also the F-uphill index and its corresponding polynomial of certain graphs are determined.
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