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Abstract

Group algebras of abelian groups of order 16 are represented in terms of block circulant matrices.
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1. Preliminaries

There are fourteen groups of order 16, five of them are abelian the other nine are nonabelian [3]. The

abelian groups of order 16 are:
(i) Cio = {a:al®=1)
(i) Cs x Co = (a,B: a8 =P =1,Bn =ap)
(iii) C4 x Cy = (a, B:a* = B* =1, Ba = ap)
(iv) Cax Cox Cy={a,B,y:a* =B =>=1,pu = af,ya = ay,yf = B7y)

(V) &oxCoxCxC={(n,pB,76:a>=p=7>=56=1,pa =apf,ya =ay,yp = pvy,éa = a,0p =
Bo, 5y = o).

The results in [1] and [2] are used to find the representations of these groups.

Let F be a field. A ring A with unity is an algebra over F (F—algebra) if A is a vector space over F and
the following compatibility condition holds (sa).b = s (a.b) = a.(sb) for any s € F. A is also called
associative algebra (over F). The dimension of the algebra A is the dimension of A as a vector space

over F.

Theorem 1.1 ([4]). Let A be a n—dimensional algebra over a field F. Then there is a one to one algebra

homomorphism from A into M, (F), the algebra of n—matrices over F.
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Let G = {s91=14,...,9n} be a finite group of order n and F a field. Define
FG = {mg1 +axg2+ -+ angn:a; € F}. FG is n—dimensional vector space over F with basis G.
Multiplication of G can be extended linearly to FG. Thus, FG becomes an algebra over F of dimension

n. FG is called group algebra. The following identifications should be realized:
(i) Orgg =0pc =0forany g € G
(ii) 1rgc = grc = g for any ¢ € G. In particular 1rgc = 1pc =1

(iii) arlg = apg foranya € G

A circulant matrix M on parameters ag, a1, ..., a,—1 is defined as follows:

i ay  Gp_1 --- a1 i
M (ag,a1,...,ay-1) = M a4 @
| n-1 Ap—1 - A |
This matrix may be denoted in terms of its columns by [col (ag) |col (a,—1)|...|col(ag)]. M is said to

be circulant block matrix if it is if the form M(Mj, My, ..., M,). i.e, it is circulant blockwise on the

blocks My, M>, ..., M,,. Thus,

M, M, - M
M, M: --- M
M= 2 1 3
| My My M |

2. Main Results

Theorem 2.1 ([1]). Let F be a field and G = (a:a" = 1) a cyclic group of order n. Then any element
ml+ aa+ -+ a0t of FG can be represented with respect to the order basis {1,a,...,a" 1} by the

al an o o o az
) ) ap a, e as
circulant matrix M (ay,ay,...,a,) =
L an Ap—1 -+ M |

Theorem 2.2 ([1]). Let F be a field and G a split metacyclic group [2]. The representation of the general

m—1n—1 L e .
element Y Y aja'l in FG is given by the circulant matrix M (M(aio),Mﬁ(aﬂ), ..., MP 1(511-,,1_1)) ;1=
j=0 i=0
0,1,...,n—1.

Corollary 2.3 ([1]). Let F be a field. Matrix representation of F(C, X Cy,), where (m,n) # 1 is given by
M ((an), M(air),..., M(aiy-1));i=0,1,...,n—1and a;; € F.
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Note that if the order of the basis elements is changed, we obtain a different matrix of representation.
The new matrix is obtained by suitable interchanging of the columns of the matrix M (ag, a1,...,a,-1).
In [2] the representation is done for the non-split metacyclic group. For more complicated finite groups

we use the circulant block matrices to do the required representations.

3. Applications

(i) Cig () = (aw: a1 =1)={1,a,4% ..., a1}

w = m1+ aa + axa® + - - - + agea'®
a de - A2
az al o« .. a3
[w] = M (a1, a, ..., a16) =
| 416 415 - 41 |

(ii) Cg(a) X Co(B) = (a,p:a® =p* =1, pu = ap) = {L,a,a?%,...,a7,B,aB,a’B,...,a’ B}

w =1+ a+aza® + - - - + aga’ + aof + aroaf + apa’f+ - - - + aea’ B

M(al,...,ag) M(ag,...,a16)
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ap 4ag 4y 4¢ 45 a4 43 a2 : a9 41 415 414 413 412 411 410
a a1 4ag a4y dg A5 44 43 : a0 49 a1 415 414 413 412 411
a3 42 a4y 4ag 4y Ag 45 44 : a1 410 49 416 415 414 413 412
a4 43 a4 4y 4ag ay 4dg 45 : 412 411 a0 49 A1 415 414 413
as 44 a3 a4 4y ag a4z 4dg : a3 412 411 410 49 a1 415 a4
46 45 44 4z 4 A 4g 4y : a4 M3 a2 411 4o A9 416 415
a7 4¢ A5 44 43 4y 41 4ag : a5 di4 413 412 411 410 49 16
ag a4z 4 as 44 43 a4z M : Me 415 A14 413 412 411 410 49
a9 M 15 414 a3 412 411 410 : ap  ag 4y 4¢ 45 44 43 42
a0 49 A1 415 414 413 412 411 : a a1 4g a4y 4dg 45 a4 43
a1 410 d9 a1 415 414 413 412 : az a4 a4 ag 4z dg as 44
a2 411 410 A9 d1e 415 414 413 : a4 a3 4 a1 4ag 4y 4e 45
a3 412 411 410 49 A1 415 414 : as a4 43 a4z 41 4g a4y 4dg
a14 413 412 411 410 49 A1 415 : ¢ 45 44 a3 a4 4 ag az
a5 414 M3 412 411 410 49 d16 : a7 4¢ 45 a4 43 4p 41 4ag
L a6 415 414 413 412 411 410 49 : ag a4z 4 as 44 43 42 @M ]

(i) Cy(a) x C4 (B) = {1,a,0%, a3, B, aB, 0B, 0B, B2, af?, 0B, 032, B3, a3, 0% B3, a3 B3 }.

w = a1+ ara + aza® + aza’® + asp + agaf + aytxzﬁ + a8a3ﬁ + agﬁZ + alozxﬁz + anzx2ﬁ2 + a120c3ﬁ2 + ﬂ13ﬁ3
+ ayga B’ + ay5a2B° + aya’ g

[w] = M (M(ay,az,a3,a4), M(as, ag, a7, ag), M(aq, ayg, a11,a12), M(a13, a14, a15,a16))

i M (ay,az,a3,a4) : M (ay3,a14,015,016) - M (a9, a10,411,a12) : M (as, aq,az,as) ]
M(ﬂ5, 0-1;/.0;7./.‘1.8) M(alr b-l;,.é;a.,.ﬂ.z;) M (.61.1.3., -61-1;,;1.5., .‘116) M %0.19.,.61.1.0., .61.1;6;12)
Mlsmotnn) © Mlstorma) | M) | Mo
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a as as an as as ay ag
ar ay as as ae as as azy
as ar ai as ay ag as as
ay as ar a as ay ae as
as as ay ag a ay as as
ag as as ay ar ay as as
ay ae as as as an ai as
as ay ae as as as ar ai
a9 412 411 410 : a13 416 415 414
a0 49 412 411 : a4 413 A1 415
a1 410 49 412 : a5 414 413 416
a2 411 410 49 : A6 415 d14 413
a3 de 415 414 : a9 412 411 410
a4 M3 a1 415 : a0 49 412 Aan
a5 A4 413 4a1e : a1 dip 49 a1z
| 416 M5 414 413 : a2 411 410 49

a9 412 411 410 : a13 416 415 414
a0 49 di2 an : a14 413 A1 415
a1 410 49 412 : a5 414 M3 16
a2 411 410 49 : a6 415 d14  a13
a13 416 415 414 : ag a1z 411 410
a4 413 d16 415 : a0 49 412 Aan
a5 414 413 416 : a1 410 a9 a1
a6 d15 414 413 : a2 d1i1 410 49
ai as as ar as as ay ae
an a as as ae as as ay
as an ay ay ay ag as as
as as a ai as ay ag as
as as ay ae ai as as ar
ae as as ay an a as as
azy ae as as as ar ay as
as ay ae as as as an ai

(V) Co(a) x C2(B) x Ca (1) x C2{0) = (w,B,7,0: 0> =p> =9 =0 =1,pa=ap,ya = ay,yp = pvy,0a =

wd, 0B = Bo, 0y = vd) = {1,a,B,aB, v, a, By, «By,6,a8, B6, aBé, 6, ayd, Byo, a Byd}

w = m1+axn + a3f + asaf + asy + aenry + aypry + aga Py + agd + aroad + a11p6 + appaPé + ai37yo

+ ayaeyd + a5 yS + ajenfyd

[w] =M (M (M (M (ﬂl, az) , M (613, Ll4)) ,M (M (ﬂ5, ﬂ6) , M ((17, ﬂg))) ,M (M (M (ag, am) , M (a11,a12)) ,

M (M (a13,a14) , M (ﬂ15/ﬂ16)>)) .

M (M (M (a9, a10) , M (a11,a12)) , M (M (a13,a14) , M (15, 016)))

M (M (M (a9, a10) , M (a11,a12)) , M (M (413, a14) , M (415, 416))) |
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ai az : as ag : as ag : azy as : ag aio : an ap : a13 aia : ais a16
a 4 . a4 a3 . ae a . ag ay . ajp A9 . A2 Al . 44 M3 . A1 415
a a4 . m A . az ag . 45 4 . a1 4z . A9 Ay - 415 M . A3 A4
a a3 . Ay a4 . asg a; . a4 as . a4 . A 49 . dlg M5 . A4 413
as  ag . a7  4ag : a a . a3 a4 o 43 44 . M5 A . A9 A . A 41
a a5 . ag 4z . az a . a4 a3 . M4 413 . Me A5 - 4o 49 . A a4
az ag . a5 dg : azag o om A4y . M5 A - M3 A4 . A A o 49 Ay
ag ay L ag as . ay a3 LM a Lo a1 a5 . a4 a3 . 4y a1y . Ay Ay
a a4y . 411 412 .Mz M4 o m5 A4y . M a2 o 43 4y . A5 g . Ay 4g
ayg a9 Loap  an . a14 a3 Loa  ais o - ap ay . ay as . ag as . ag ay
a4 . 49 Ay . a5 a4 . M3 A4 . A3 44 o m 4y o a4y ag o a5 g
aio a1 ) ag . a16 ais Loau a3 . as az . ap aq . ag azy . ag as
a3 A . a5 A1 : ag a9 Loann ap as ag : ay ag : ap ap : a3 ay
ay a3 . A1 a15 : aig ag Loap a1 . ag as : ag ay : ap a . as a3
a5 A . 413 A4 . a1 a1 . a9 ap - ay ag . as ag . a3 ay . ay ap
L 416 ais : a4 a13 : an ai - : ao ag . as azy : ag as : ag as . az ay
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