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Abstract

Penalty shootouts represent one of the most decisive and psychologically demanding moments in

competitive soccer, often determining outcomes of tournaments at the highest level. This study

presents a data-driven approach to optimizing a goalkeeper’s decision-making process during

penalty shootouts by analyzing 161 penalties from the UEFA Champions League spanning the last

20 years. Using statistical tools such as entropy, logistic regression, Chi-Square tests, and Pearson’s

correlation coefficient, the paper investigates patterns in ball placement, shooter’s dominant foot,

and dive strategies. The results highlight significant correlations between shooting foot and ball

placement, revealing exploitable tendencies that enhance prediction accuracy. Further, an

optimized strategy based on probabilistic modeling shows that goalkeepers can more than double

their expected number of saves compared to random guessing. These findings underscore the

practical value of mathematical modeling in sports, providing goalkeepers with actionable insights

to improve performance in high-pressure scenarios, while also contributing to the broader dialogue

on the application of statistics in real-world decision-making.

Keywords: penalty shootouts; goalkeeper optimization; probability; logistic regression; Chi-Square

test; Pearson correlation; entropy.

1. Rationale

It was the 120th minute of the finals in the Surf Cup San Diego Soccer tournament. The whistle blew,

yet the game was tied. This entailed a penalty shootout, one of the most pressure-inducing situations in

soccer. In a penalty shootout, both teams bring forth 5 shooters to shoot on the other team’s goalkeeper,

alternating after each shot. The team with most goals out of 5 wins the shootout and consequently

wins the game. My team stepped up to shoot and missed 2 shots, putting us in a losing position. If

our goalkeeper saves this next shot, we still may have a chance at winning the championship, but if he

does not, we lose immediately. The other team’s shooter takes his shot, and our goalkeeper dives the

wrong way, and the ball hits the back of the net, leaving my team at a meager second place. This is
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not an uncommon occurrence in soccer, but it is one that I would have liked to prevent. I desperately

wished for weeks after that game that my goalkeeper would have saved that shot. For that reason, I

authored this paper to increase a goalkeeper’s chances of saving shots in a penalty shootout.

2. Aim

The aim of this math paper is to optimize a goalkeeper’s chances of saving shots in a penalty shootout.

To achieve this, I have taken 161 shots of data, recording every penalty shootout from the last 20 years

in the Champions League. The Champions League is the highest level of soccer worldwide, with the

best teams in Europe vying for its prestigious prize. Using these 161 shots, I will use probability and

statistics to achieve my goal of aiding a goalkeeper in saving more shots in a penalty shootout. In this

paper, I use entropy, Chi-Squared, and Pearson’s correlation coefficient.

3. Introduction

Any edge gained in a penalty shootout can easily be the cause of winning a trophy, as all it takes is one

extra save to change the entire scope of the shootout. Hearing many different narratives from coaches,

I wondered which of the many factors affected a goalkeeper’s ability to save shots the most. To ensure

I could collect a full representation of statistics that could aid a goalkeeper, I tracked many things,

including if the shots were a goal, where the keeper dove, where the ball went, and the shooting foot

of the penalty taker. This is an excerpt of the data I collected.

Goal? GK Direction Ball Placement Shooting Foot Early Dive Shooter Order
Yes Left Right Right Yes 1
No Middle Middle Left No 2
No Left Left Right Yes 3
Yes Right Left Left Yes 4
Yes Left Left Left No 5
. . . ... . . . . . . . . . · · ·

**To clarify, this data was taken from the perspective of the penalty taker.

4. Definitions of Important Terms:

Stutter run-up penalty: When a player runs up to take the penalty, pauses before shooting as they wait

for the goalkeeper to dive early, and then proceeds to shoot the opposite direction of the goalkeeper’s

dive.

Early dive: When a goalkeeper dives before the shooter takes the penalty to reach the ball earlier

(denoted by "Yes" on the Early Dive column). These dives are complete guesses. This strategy is weak

against players who use employ a stuttered run-up.

Reaction dive: When a goalkeeper dives immediately as a penalty taker shoots (denoted by "No" on

the Early Dive column). These dives can be guesses. These types of dives combat against players who
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use stuttered run-ups as that strategy relies on a goalkeeper diving early. However, this dive is slower

at reaching the edges of the goal.

Ball placement: Refers to where in the goal the penalty taker shoots the ball from the point of view of

the shooter

5. Mathematical Analysis

5.1 Calculating Randomness of Ball Placement:

Looking at the data, there are some initial key takeaways to be seen. These are the statistics of ball

placement.

P(Left) = 74
161 ≈ 0.4596 P(Middle) = 16

161 ≈ 0.0994 P(Right) = 71
161 ≈ 0.4410

With this data of where shooters tend to strike the ball, I decided to calculate entropy for this set of

data. Entropy could measure the level randomness in the probabilities of where a penalty taker would

place the ball. Where pi is the probability of the ith event and n is the total number of outcomes,

entropy H is calculated as H = −
n
∑

i=1
pi log2 (pi).

To begin these calculations, I decided to find the maximum entropy, to have a number to compare my

results to. Since I am using 3 probabilities, left, right, and middle, I tested the maximum entropy using
1
3 as a probability. Since each probability is equal, there is no way to predict which probability will

occur, meaning this maximum entropy represents complete randomness. Through substituting 1
3 as a

probability first, I maximized entropy and could compare something to complete randomness.

p1 = p2 = p3 =
1
3

H = −
(

1
3

log2

(
1
3

)
+

1
3

log2

(
1
3

)
+

1
3

log2

(
1
3

))
H = −3 · 1

3
· log2

(
1
3

)
= − log2

(
1
3

)
= log2 3

H = log2 3 ≈ 1.585 bits

So, with 1.585 bits as the maximum entropy for 3 probabilities established, I proceeded to do this same

process with my penalty data.

H = − [P(left) · log2 P(left) + P(middle) · log2 P(middle) + P(right) · log2 P(right)]

H = − [0.4596 · log2(0.4596) + 0.0994 · log2(0.0994) + 0.4410 · log2(0.4410)]

H ≈ −[0.4596 · (−1.119) + 0.0994 · (−3.330) + 0.4410 · (−1.170)]

H ≈ −(−0.513 − 0.331 − 0.515)

H ≈ 1.359 bits
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The entropy value of 1.359 bits is lower than my previously calculated maximum entropy: 1.585

, meaning that ball placement is not completely random. However, the entropy is relatively high,

indicating moderate uncertainty and unpredictability in shooting direction. Because of this, I realized

I couldn’t only look at the basic probabilities of ball placement and had to expand to other factors.

5.2 Logistic Regression

Realizing that I had to look at more factors, I decided to look at what heightens the probability of a

goal in a penalty shootout. Utilizing logistic regression, I modeled the probability of a goal based on

various factors a penalty kick: the shooter’s shooting foot, ball placement, goalkeeper dive direction,

and the order in which the player took the shot. I loaded my data as a comma-separated value file,

cleaned the values, and trained my model through the Python library, "sklearn". I then applied the

function "model.coef_" to interpret how each feature changes the chance of a goal.

Feature Coefficient

Shooting Foot 0.211275

Goalkeeper Direction 0.439279

Ball Placement 0.263445

Shooter Order -0.052797

To interpret this data, if the number is positive, the factor results in a higher chance of a goal. According

to the Champions League data, I was able to make a few broad statements. My model suggests that

penalty kicks are more successful if:

1. They’re taken by right-footed shooters

2. The ball is placed to the right

3. The goalkeeper dives away from the shot

4. The shooter is earlier

Because the coefficients aren’t huge, these effects are not dramatic. However, they do present subtle

advantages within the high-stake environment of a penalty shootout. For a goalkeeper, learning how

the opponent can increase their chances of scoring is essential to understanding the optimal method of

approaching a penalty shootout. The coefficients were not significant enough to provide concrete

methods for the goalkeeper, but by applying a basic Logistic Regression model, I already began to see

patterns within my data. I continued by examining a new factor, early dives.

Testing Correlation Between Dive Type and Outcome of a Penalty:

One of the things that piqued my interest the most was the relationship between an early dive and a

reaction dive. I have heard many things regarding these two types of dives from coaches. Some of my
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coaches have advised never to use an early dive, while others have advocated for it voraciously. So, I

tracked whether a dive was an early dive or a reaction dive when compiling my data. Furthermore,

I tracked whether the dive resulted in a goal or a save. With this data, I calculated the Pearson’s

Correlation Coefficient to find if the type of dive used correlates with a goal or save. I calculated the

r value, which ranges from -1 to 1 . Its value determined the strength and direction of the correlation

between the two variables. The strength of an r value can most easily be viewed using a table:

−1 < r < −0.5 Strong negative correlation

−0.5 ≤ r < −0.3 Moderate negative correlation

−0.3 ≤ r < 0 Weak negative correlation

r = 0 No correlation

0 < r ≤ 0.3 Weak positive correlation

0.3 < r ≤ 0.5 Moderate positive correlation

0.5 < r < 1 Strong positive correlation

Pearson’s Correlation Coefficient r is calculated with the following formula:

r = ∑ (Xi − X̄) (Yi − Ȳ)√
∑ (Xi − X̄)

2 · ∑ (Yi − Ȳ)2

To calculate r, I first defined my variables using binary (0 s or 1 s). I defined X as the dive type ( 1 =

Early, 0 = Reaction) and Y as the outcome of the penalty ( 1 = Goal, 0 = Save). I organized my data

utilizing a table.

Dive Type (X) Outcome (Y) Count

Early (1) Goal (1) 55

Early (1) Save (0) 17

Reaction (0) Goal (1) 65

Reaction (0) Save (0) 24

From this table, I found the total number of early dives and reaction dives using addition. There were

72 early dives and 89 reaction dives. To continue to find rI calculated the mean values of X and Y. I

calculated the mean value of X.

X̄ =
∑ Xi

n

X̄ =
(55 · 1) + (17 · 1) + (65 · 0) + (24 · 0)

161
=

72
161

≈ 0.447

Next, I calculated the mean value of Y.

Ȳ =
∑ Yi

n
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Ȳ =
(55 · 1) + (17 · 0) + (65 · 1) + (24 · 0)

161
=

55 + 65
161

=
120
161

≈ 0.746

Then, I calculated the standard deviations away from the mean by substituting my mean values into

Xi − X̄ and Yi − Ȳ. This is most easily shown using a table.

Early (1) Xi − X̄ = 1 − 0.447 = 0.553

Reaction (0) Xi − X̄ = 0 − 0.447 = −0.447

Goal (1) Yi − Ȳ = 1 − 0.746 = 0.254

Save (0) Yi − Ȳ = 0 − 0.746 = −0.746

My next step in the process was to calculate the cross products for each type of data. For this, I

multiplied the standard deviations away from the mean to each other using (Xi − X̄) (Yi − Ȳ).

(Xi − X̄) (Yi − Ȳ) Cross-Product

Early (1), Goal (1) (0.553)(0.254) = 0.141

Early (1), Save (0) (0.553)(−0.746) = −0.412

Reaction (0), Goal (1) (−0.447)(0.254) = −0.114

Reaction (0), Save (0) (−0.447)(−0.746) = 0.334

I continued by summing the cross-products:

∑ (Xi − X̄) (Yi − Ȳ) = (55 · 0.141) + (17 · −0.412) + (65 · −0.114) + (24 · 0.334)

= 7.755 − 7.004 − 7.410 + 8.016 = 1.357

1.357 is the value of the numerator, so I proceeded to solve for the denominator of r. This is solved

through this expression: √
∑ (Xi − X̄)

2 · ∑ (Yi − Ȳ)2

To solve the denominator for X:

∑ (Xi − X̄)
2
=

[
72 · (0.553)2]+ [

89 · (−0.447)2] = 39.80

To solve the denominator for Y:

∑ (Yi − Ȳ)2
=

[
120 · (0.254)2]+ [

41 · (−0.746)2] = 30.56

Now, to multiply the two values together:

∑ (Xi − X̄)
2 · ∑ (Yi − Ȳ)2

= 1216.29

To find the square root: √
∑ (Xi − X̄)

2 · ∑ (Yi − Ȳ)2
= 34.875
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Finally, with my denominator solved, I proceeded to solve for r.

r = ∑ (Xi − X̄) (Yi − Ȳ)√
∑ (Xi − X̄)

2 · ∑ (Yi − Ȳ)2

r =
1.357
34.875

r = 0.039

This r value follows in between the range of 0 < r ≤ 0.25, making this r value fall under the category

of ’very weak positive correlation". Thus, there is barely any correlation between dive types and an

outcome of a penalty kick. This means that a goalkeeper could use both dive types and have a similar

chance of saving the shot. Because of this, I conclude that goalkeepers should stick with the style they

are comfortable with, as according to this test, there isn’t a correlation between a certain dive type and

making a save. Instead of succumbing to coaching pressure, goalkeepers should use a strategy that

works for them. Measures such as height, hand size, and time it takes to dive to the far side of the goal

could affect the decision of which dive to use, but those factors are out of the scope of this paper.

5.3 Correlation Between Shooting Foot and Ball Placement

Another crucial factor I decided to look at is preferences of left-footed and right-footed shooters. I

wanted to find if there was a correlation between where a player shot and whether they used their left

or right foot. I determined that a Chi-Square test would be apt for this analysis. Firstly, I created my

null and alternative hypotheses.

H0 : A penalty taker’s shooting foot (left or right) is independent of the direction in which the ball is

shot

H1 : A penalty taker’s shooting foot is associated with the direction in which the ball is shot.

To find the probability of a player shooting a certain way on their shooting foot, I used conditional

probability to find the probability of where shooters would place the ball based on their shooting foot.

I used the conditional probability formula, where A represents where in the goal the shooter is striking

the ball, and B is the shooter’s shooting foot. To do this, I tracked whether the player went left or right

and their shooting foot.

P(A | B) =
P(A ∩ B)

P(B)

Probability Table

Left Right
Right Foot (RF) P(Left| RF) = 59

103 P(Right| RF) = 44
103

Left Foot (LF) P(Left| LF) = 15
42 P(Right| LF) = 27

42
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For this test I didn’t include shots to the middle, as when I performed a Chi-Squared Test, I got a value

less than 5 in my expected frequency table. This rendered the test less effective, so as I proceeded in

calculating my Chi-Squared value I removed the shots to the middle.

With this data I created two contingency tables to proceed with my Chi-Squared Test.

Observed Frequency Table

Left Right Sum
Right Foot (RF) 59 44 103
Left Foot (LF) 15 27 42
Sum 74 71 145

Next, I created my expected frequency table, using the expected value formula.

Expected Value =
Row Total · Column Total

Total Number

6. Expected Frequency Table

Left Right Sum

Right Foot (RF) 74·103
145 = 52.6 71·103

145 = 50.4 103

Left Foot (LF) 74·42
145 = 21.4 71·42

145 = 20.6 42

Sum 74 71 145

I used x2
calc = ∑ ( fo− fe)

2

fe
to test dependence, with fo representing the observed frequency and fe

representing the expected frequency.

fo fe fo − fe ( fo − fe)
2 ( fo− fe)

2

fe

59 52.6 6.4 40.96 0.7787

44 50.4 -6.4 40.96 0.8127

15 21.4 -6.4 40.96 1.9140

27 20.6 6.4 40.96 1.9883

Total: 5.4937

The x2
calc value must be lower than the critical value to reject the alternative hypothesis. To acquire the

critical value, I calculated degrees of freedom ( d f ) through this formula using rows ( r ) and columns

(c):

d f = (r − 1)(c − 1)

The contingency table for my data set had 2 rows and 2 columns, so I substituted the values into the

formula:

d f = (2 − 1)(2 − 1) = 1
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I used the table below to determine if my alternative hypothesis was rejected or not. I used the

significance value 0.05. If the x2
calc value was lower than the critical value, there would be moderate

evidence that the alternative hypothesis was rejected. The critical value is in red:

Significance Level

Degrees of Freedom 0.10 0.05 0.01

1 2.706 3.841 6.635

2 6.251 7.815 11.345

5.4937 > 3.841

The x2
calc value is greater, thus, the alternative hypothesis failed to be rejected. This alludes to a

correlation between a player’s shooting foot and where they place a penalty. However, when the

x2
calc value isn’t significantly greater than the critical value, another test called the Yate’s Continuity

Correction Test can be used. This test would lessen the x2
calc value, helping prevent overestimation of

correlation. If the x2
Yates value is less than the critical value, the alternative hypothesis will be rejected.

The equation for x2
Yates is as follows:

x2
Yates = ∑

(| fo − fe| − 0.5)2

fe

I substituted my data into a table:

fe | fo − fe| (| fo − fe| − 0.5) (| fo − fe| − 0.5)2 (| fo− fe|−0.5)2

fe

52.6 6.4 5.9 34.81 0.6618

50.4 6.4 5.9 34.81 0.6907

21.4 6.4 5.9 34.81 1.6266

20.6 6.4 5.9 34.81 1.6898

Total: 4.7049

I compared this to the critical value: 4.7049 > 3.841. This result entails that there is strong evidence

of correlation between a player’s shooting foot and where they will shoot the ball. From this, there

is strong evidence that right footed players tend to shoot left and left footed players tend to shoot

right. Knowing that this correlation could help optimize a goalkeeper’s chances, I decided to use these

probabilities.

6.1 Optimizing a Goalkeeper’s Chances with the Correlation

First, I wanted to calculate the number of saves I needed to beat with my data. This is the probability

of a save:

P(save) =
46
161

≈ 0.286
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To find the expected number of saves that a goalkeeper makes, I used the expected value formula:

E(x) = ∑ xP(X = x)

To calculate this value, I used a table. In this table, I used the binomial probability formula where n

represents the number of penalties and x indicates the number of penalties saved:

Px =

(
n
x

)
px(1 − p)n−x

x (Number Saved) P(X = x) = (5
x)0.286x0.7145−x x · P(X = x)

0 (5
0)0.28600.7145−0 = 0.1856 0

1 (5
1)0.28610.7145−1 = 0.3716 0.3716

2 (5
2)0.28620.7145−2 = 0.2977 0.5954

3 (5
3)0.28630.7145−3 = 0.1193 0.3579

4 (5
4)0.28640.7145−4 = 0.0239 0.0956

5 (5
5)0.28650.7145−5 = 0.0190 0.0950

E(x) = ∑ xP(X = x) 1.5155

The expected number of saves a goalkeeper is to make is 1.5155 , and I wanted to try to improve that

with my knowledge of a correlation between a player’s shooting foot and where they place the ball.

Looking back on my probabilities:

Left Right

Right Foot (RF) P(Left | RF) = 59
103 ≈ 0.573 P(Right | RF) = 44

103 ≈ 0.427

Left Foot (LF) P(Left | LF) = 15
42 ≈ 0.357 P(Right | LF) = 27

42 ≈ 0.643

Through these probabilities, I observed that left footed players are more likely to shoot right than left,

and right footed players are more likely to shoot left than right. I decided to find out how many

penalties a goalkeeper could guess correctly if they dove right for left footed players and dove left for

right footed players.

To start, I calculated the expected value of left footed and right footed players there would be per 5

shooters in the shootout. From my data, I found these probabilities:

P(LF) =
47

161
≈ 0.292 P(RF) =

114
161

≈ 0.708

Using the expected value formula E(x) = np, where n is the number of penalty shooters and p

represents the probability that a player is left footed, I found the expected number of left footers.

E(x) = np

E(x) = (5)(0.292) = 1.46
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This gave me an expected 1.46 left footed players per 5 shooters in a penalty shootout. Repeating this

with right footed players, I got an expected value of 3.54 right footed players. Using these expected

values with my previous probabilities regarding where a shooter would shoot based on their preferred

foot, I hoped to create a higher number of saved penalties. To do this, I needed to calculate how many

correctly guessed penalties a goalkeeper could achieve per 1.46 left footed players. I continued through

the usage of the expected value formula and binomial probability formula:

Px =

(
n
x

)
px(1 − p)n−x E(x) = ∑ xP(X = x)

In this case, n would represent the expected number of left footed players (1.46), and p would represent

the probability a left footed player shoots right (0.643). x entailed the number of left footed players

shooting right. I set x to 0,1 , and 2 because after 2 , the probabilities became miniscule and insignificant

to the expected value.

However, I ran into a problem. When using (n
x) mathematicians typically use only positive integers. It

is denoted as such: (
n
x

)
=

n!
x!(n − x)!

This is because factorials (!) don’t operate without positive integers. Since my n value was 1.46, I

couldn’t use this formula to find the (n
x) value. Looking online, I found a formula to find (n

x). This way

included the usage of the gamma function, a function that allows mathematicians to find the factorial

of complex numbers. Gamma is noted as such:

Γ(x) =
∫ ∞

0
tx−1e−tdt

And the formula is adjusted for the gamma function as so:

(
n
x

)
=

Γ(n + 1)
Γ(x + 1) · Γ(n − x + 1)

Calculating gamma by hand is an arduous ordeal and is something I’m not able to do with my current

knowledge of math. However, using python code, I wrote a method to solve for (n
x).

def generalized_binomial_coefficient(n, k):

return gamma(n + 1) / (gamma(k + 1) * gamma(n - k + 1))

print(generalized_binomial_coefficient(n,k))

Using this, I was able to find (n
x) and continue with my calculations to find the expected number of

correctly guessed penalties a goalkeeper would have if they dove right for left footed penalty takers.

Using my code, I got the following values for (n
x).

(
1.46

0

)
= 1,

(
1.46

1

)
= 1.46,

(
1.46

2

)
= 0.336
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x P(X = x) = (1.46
x )0.643x0.3571.46−x x · P(X = x)

0 (1.46
0 )0.64300.3571.46−0 = 0.222 0

1 (1.46
1 )0.64310.3571.46−1 = 0.585 0.585

2 (1.46
2 )0.64320.3571.46−2 = 0.242 0.484

E(x) = ∑ xP(X = x) 1.069

I repeated this process with right footed players, with their tendency to shoot left.

P(Left | RF) =
59
103

≈ 0.573

x P(X = x) = (3.54
x )0.573x0.4273.54−x x · P(X = x)

0 (3.54
0 )0.57300.4273.54−0 = 0.049 0

1 (3.54
1 )0.57310.4273.54−1 = 0.234 0.234

2 (3.54
2 )0.57320.4273.54−2 = 0.398 0.796

3 (3.54
3 )0.57330.4273.54−3 = 0.274 0.822

4 (3.54
4 )0.57340.4273.54−4 = 0.050 0.200

E(x) = ∑ xP(X = x) 2.052

For left footed players, I obtained an expected value of 1.069 correctly guessed penalties and for right

footed players I obtained an expected value of 2.052 . Since these are independent events, I was able to

add them together to find the total expected value of correctly guessed penalties for my strategy.

E(Total) = 1.069 + 2.052 = 3.121

Using the strategy of diving left for right footed players and left for right footed players gave me an

expected value of 3.121 correctly guessed penalties, which is far above the 1.5155 expected saves. If

a goalkeeper uses this strategy to correctly guess and save penalties, it is much more optimal than

guessing without a strategy.

7. Conclusion

Through thorough calculations, I discovered a correlation between a player’s shooting foot and ball

placement. With this, I created a strategy which gave an expected value of 3.121 saves per 5 shots. This

did help me optimize a goalkeeper’s penalty saving ability, and it is something that I will be telling the

goalkeeper on my team. However, I realized this strategy comes with limitations. The Chi-Squared test

I did didn’t include players shooting the ball to the middle, which could have changed this strategy

entirely. Furthermore, even if a goalkeeper correctly guesses a penalty, it doesn’t mean the goalkeeper

will save the penalty. If a penalty is hit with enough pace and accuracy, there’s a chance it can still go

in. Also, teams can pick up on this strategy and counter it, rendering it useless.
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Other factors such as the crowd, pressure, and even the type of ball can hinder a goalkeeper’s ability to

save a penalty. These are just a few examples, something like home field advantage can also completely

change the situation for a goalkeeper psychologically. For future studies, I recommend collecting data

from different competitions and tournaments to have more data points to work with. To get the most

comprehensive analysis of how to optimize a goalkeeper’s penalty saving ability, many metrics need

to be measured. Through many correlation tests of a breadth of factors, a stronger optimization can

be created. Although I created a strategy for a goalkeeper to correctly guess 3.121 penalties out of

5 in a penalty shootout, there are a myriad of factors that could prevent this strategy from working.

Despite meticulous planning for penalty shootouts, the passion, tension, and nerves of soccer that

keep the game alive will ensure that no two penalty shootouts are the same. This interplay between

unpredictability and strategy is what makes soccer renowned for being the beautiful game.

References

[1] Gamma Function, Wolfram Mathworld, mathworld.wolfram.com/GammaFunction.html, (2025).

[2] How to calculate binomial coefficients with non-integer numbers, Stack Overflow, Prosus, (2017),

stackoverflow.com/questions/47725238/how-to-calculate-binomial-coefficents-with-non-integer-

numbers.

[3] Evan Pierce, Understanding Entropy: A Comprehensive Guide with Examples, Medium, Medium

Corporation, (2023), medium.com/@mrthinger/understanding-entropy-a-comprehensive-guide-

with-examples-f014cd3c6cc7.

[4] Shaun Turney, Chi-Square (X2) Table | Examples & Downloadable Table, Scribbr, Learneo, (2022),

www.scribbr.com/statistics/chi-square-distribution-table/.

[5] ———, Pearson Correlation Coefficient (r) | Guide & Examples, Scribbr, Learneo, (2022),

www.scribbr.com/statistics/pearson-correlation-coefficient/.

[6] UEFA Champions League - Penalty Shoot-out, transfrmarket.us, www.transfermarkt.us/uefa-

champions-league/elfmeterschiessen/pokalwettbewerb/CL, (2025).

[7] Yates Correction: Definition, Examples, Statistics How To, www.statisticshowto.com/what-is-the-

yates-correction/, (2025).

http://mathworld.wolfram.com/GammaFunction.html
http://stackoverflow.com/questions/47725238/how-to-calculate-binomial-coefficents-with-non-integer-numbers
http://stackoverflow.com/questions/47725238/how-to-calculate-binomial-coefficents-with-non-integer-numbers
http://medium.com/@mrthinger/understanding-entropy-a-comprehensive-guide-with-examples-f014cd3c6cc7
http://medium.com/@mrthinger/understanding-entropy-a-comprehensive-guide-with-examples-f014cd3c6cc7
http://www.scribbr.com/statistics/chi-square-distribution-table/
http://www.scribbr.com/statistics/pearson-correlation-coefficient/
http://transfrmarket.us
http://www.transfermarkt.us/uefa-champions-league/elfmeterschiessen/pokalwettbewerb/CL
http://www.transfermarkt.us/uefa-champions-league/elfmeterschiessen/pokalwettbewerb/CL
http://www.statisticshowto.com/what-is-the-yates-correction/
http://www.statisticshowto.com/what-is-the-yates-correction/

	Rationale
	Aim
	Introduction
	Definitions of Important Terms:
	Mathematical Analysis
	Calculating Randomness of Ball Placement:
	Logistic Regression
	Correlation Between Shooting Foot and Ball Placement

	Expected Frequency Table
	Optimizing a Goalkeeper's Chances with the Correlation

	Conclusion

