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Abstract

The Oregonator model represents the dynamics of the Belousov-Zhabotinsky (BZ) reaction,

simplifying it to five species and nonlinear equations. This study uses the Variational Iteration

Method (VIM) to solve these equations, examining stability and convergence. It evaluates how

changes in the parameter q affect system stability by analyzing equilibrium points through

eigenvalues. A numerical comparison shows VIM’s effectiveness against the Shooting Method,

confirming that VIM offers reliable approximations with good convergence properties. The

research highlights VIM’s role in computing solutions for nonlinear problems and its relevance for

reaction-diffusion models and complex systems in mathematics.

Keywords: Oregonator Model; Field-Körös-Noyes (FKN) mechanism; Variational Iteration Method;

solving differential equations.

2020 Mathematics Subject Classification: 34C25, 34C23, 65L05.

1. Introduction

The Oregonator model serves as a mathematical representation of the complex chemical dynamics

observed in the Belousov-Zhabotinsky (BZ) reaction, a well-known example of non-equilibrium

oscillatory reactions. Developed as a simplified version of the Field-Körös-Noyes (FKN) mechanism,

the Oregonator reduces the intricate reaction network into a manageable system of nonlinear ordinary

differential equations that capture the essential features of the oscillatory behavior [1]. The

dimensionless form of the Oregonator model is:

dx
dt

=
1
ϵ
(qy − xy + x(1 − x)) (1)

dy
dt

= xy − qy (2)

where ϵ and q are positive constants, and x(t), y(t) represent intermediate concentrations.
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The BZ reaction, discovered in the 1950s by Boris Belousov and further investigated by Anatol

Zhabotinsky, demonstrated unexpected periodic changes in color, defying classical equilibrium

thermodynamics [2]. The reaction involves oxidation-reduction processes governed by a complex set

of intermediates and autocatalytic steps. In an effort to provide a more tractable mathematical

framework for studying this phenomenon, Richard J. Field and Endre Körös collaborated with

Richard M. Noyes in the 1970s to introduce the FKN mechanism, a comprehensive model detailing

the reaction kinetics [3]. Recognizing the need for a simpler, yet effective model, Field and Noyes

subsequently formulated the Oregonator, named after their affiliation with the University of Oregon.

This model condenses the reaction mechanism into five essential species and corresponding

differential equations, effectively capturing the oscillatory nature of the reaction while maintaining

analytical tractability [1]. The Oregonator has played a pivotal role in advancing the study of

nonlinear chemical dynamics and pattern formation [4]. By providing a foundational understanding

of autocatalytic processes and oscillatory reactions, it has contributed to broader applications in fields

such as biological systems, reaction-diffusion models, and even neural activity simulations [5]. The

model’s ability to exhibit limit cycle behavior, excitability, and periodic oscillations makes it a

valuable tool for studying chemical and biological systems exhibiting similar dynamic properties.

The nonlinear ordinary differential equations governing the Oregonator model often require

specialized techniques for analytical or numerical solutions. The Variational Iteration Method (VIM)

provides an effective semi-analytical approach for solving such nonlinear systems. By constructing

correction functionals with Lagrange multipliers, VIM iteratively refines approximate solutions and

yields rapidly convergent series representations with less computational effort compared to

conventional numerical integration methods [6,7]. Applying VIM to the Oregonator model allows

researchers to investigate oscillatory characteristics, equilibrium states, and stability conditions of the

system. The approximate analytical solutions derived through VIM not only capture the essential

nonlinear dynamics but also offer insights into the chemical species interactions, thereby supporting

both theoretical predictions and experimental validations of reaction kinetics.

2. Equilibrium Points and Stability Analysis

To analyze the equilibrium points of the system, we set the time derivatives to zero:

dx
dt

=
1
ϵ
(qy − xy + x(1 − x)) = 0, (3)

dy
dt

= xy − qy = 0. (4)

Solving the second equation:

y(x − q) = 0 ⇒ y = 0 or x = q.



Solution of Oregonator Model by Variational Iteration Method / Sarita Pippal, Shelly Kalsi 153

For y = 0, substituting into the first equation:

1
ϵ
(q(0)− x(0) + x(1 − x)) = 0 ⇒ x(1 − x) = 0.

Thus, x = 0 or x = 1, leading to equilibrium points:

(0, 0), (1, 0).

For x = q, substituting into the first equation:

1
ϵ
(qy − qy + q(1 − q)) = 0.

Since qy − qy = 0, we get:

q(1 − q) = 0.

Thus, for q ̸= 0, another equilibrium point is:

(q, q).

Note: The parameter ϵ is included in the first equation because it represents the separation of timescales

within the Oregonator model. In chemical kinetics, small ϵ indicates that certain reactions occur much

faster than others, allowing the system to be analyzed under singular perturbation methods. This

approach helps in distinguishing fast and slow variables, making stability analysis more tractable. By

incorporating ϵ, researchers can examine equilibrium points under different reaction conditions and

assess the nonlinear dynamics of the system. The stability of these equilibrium points is determined by

evaluating the Jacobian matrix and its eigenvalues, which provide insights into whether perturbations

will decay or grow over time.

2.1 Jacobian Matrix

Evaluating the Jacobian at the equilibrium points enables us to determine their stability by analyzing

the eigenvalues of J. If the real parts of all eigenvalues are negative, the equilibrium is stable; otherwise,

instability may arise. This approach is essential in understanding the behavior of the Oregonator model

and its nonlinear oscillatory properties. To assess the stability of these equilibrium points, we compute

the Jacobian matrix, given by:

J =

 ∂ f1
∂x

∂ f1
∂y

∂ f2
∂x

∂ f2
∂y

 ,
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where:

f1(x, y) =
1
ϵ
(qy − xy + x(1 − x)) , (5)

f2(x, y) = xy − qy. (6)

Computing partial derivatives:

∂ f1

∂x
=

1
ϵ
(−y + (1 − 2x)) ,

∂ f1

∂y
=

1
ϵ
(q − x),

∂ f2

∂x
= y,

∂ f2

∂y
= x − q.

Thus, the Jacobian matrix becomes:

J =

 1
ϵ (−y + 1 − 2x) 1

ϵ (q − x)

y x − q

 .

Evaluating J at the equilibrium points allows us to determine their stability by computing the

eigenvalues. If the real parts of all eigenvalues are negative, the equilibrium is stable; otherwise,

instability may arise. Hence, evaluate at (x, y) = (1, 0): J(1, 0) =

− 1
ϵ

q−1
ϵ

0 1 − q

 .

2.2 Stability and Bifurcation Analysis

Bifurcation analysis is used to study the qualitative changes in the stability of equilibrium points as the

system parameters vary. In this case, the parameter q governs the transition between stable, unstable,

and saddle-node behaviors. The eigenvalues are the diagonal entries for the upper triangular matrix:

λ1 = − 1
ϵ , λ2 = 1 − q. A bifurcation occurs when the stability properties of an equilibrium point

change, i.e., when one eigenvalue crosses zero:

λ2 = 0 ⇒ q = 1.

Types of Bifurcation

When q passes the critical value qc = 1, the nature of equilibrium points changes:

• For q < 1: Both eigenvalues are negative, leading to a stable node at (1, 0).

• For q = 1: One eigenvalue is zero, marking a bifurcation point.
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• For q > 1: One eigenvalue becomes positive, leading to a saddle-node bifurcation. The

equilibrium at (1, 0) changes into a saddle point.

Mathematical Justification

From the eigenvalues:

λ1 = −1
ϵ

, λ2 = 1 − q.

• If λ1 < 0 and λ2 < 0, the equilibrium is stable.

• If λ1 < 0 and λ2 > 0, the equilibrium is a saddle point.

• If both eigenvalues are positive, the system is fully unstable.

Implications of Bifurcation Analysis

This analysis provides significant insights into how the equilibrium state evolves as the bifurcation

parameter q changes. In physical and chemical systems, such bifurcations often correspond to

spontaneous transitions between different dynamic behaviors, such as oscillatory motion or

steady-state reactions. The transition from stable equilibrium to saddle points and unstable nodes

suggests that for q > 1, the system is more sensitive to perturbations, leading to divergent trajectories.

Understanding these bifurcation points is essential for controlling nonlinear oscillatory reactions and

analyzing pattern formation in reaction-diffusion systems.

2.3 MATLAB Code

The following MATLAB script computes the stability of equilibrium points using eigenvalue analysis

of the Jacobian matrix and visually distinguishes stable, unstable, and saddle points.

clc; clear; close all;

% Define parameter range for q

q_vals = linspace(0, 2, 100); % q varies from 0 to 2

epsilon = 0.1; % Small epsilon for singular perturbation analysis

% Initialize stability classification

stability = zeros(length(q_vals), 1);

for i = 1: length(q_vals)

q = q_vals(i);

% Jacobian at (x, y) = (1,0)

J = [-1/epsilon , (q - 1)/epsilon;
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0, (1 - q)];

% Compute eigenvalues

eigenvalues = eig(J);

% Stability Classification

if real(eigenvalues (1)) < 0 && real(eigenvalues (2)) < 0

stability(i) = 1; % Stable node

elseif real(eigenvalues (1)) < 0 && real(eigenvalues (2)) > 0

stability(i) = 0; % Saddle point (unstable)

else

stability(i) = -1; % Completely unstable

end

end

% Plot stability regions

figure;

hold on;

plot(q_vals(stability == 1), ones(sum(stability == 1) ,1), 'go', 'MarkerSize ',

8, 'DisplayName ', 'Stable ');

plot(q_vals(stability == -1), ones(sum(stability == -1) ,1), 'ro', 'MarkerSize ',

8, 'DisplayName ', 'Unstable ');

plot(q_vals(stability == 0), ones(sum(stability == 0) ,1), 'bo', 'MarkerSize ',

8, 'DisplayName ', 'Saddle Point');

xlabel('q Parameter ');

ylabel('Stability Condition ');

title('Stable vs. Unstable Regions with Saddle Points ');

legend;

grid on;

hold off;

Figure 1 illustrates the stability behavior of equilibrium points in the given nonlinear system as the

parameter q varies. The analysis is based on the eigenvalues of the Jacobian matrix evaluated at

the equilibrium point (x, y) = (1, 0). This bifurcation behavior is visually represented in Figure 1,

showing how equilibrium states evolve as q varies, with green markers denoting stability, blue markers

indicating saddle points, and red markers highlighting unstable regions. The presence of bifurcation in

the system is significant in understanding spontaneous transitions between steady-state and oscillatory

behaviors in nonlinear dynamics, chemical reactions, and biological processes. The bifurcation diagram

confirms that control of q directly influences the system’s stability, affecting real-world applications

such as reaction-diffusion models, pattern formation, and self-organized chemical structures.
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Figure 1: Visualization of stability regions in the system based on the parameter q. Green points
represent stable equilibrium regions, red points indicate unstable regions, and blue points mark saddle
points where one eigenvalue is positive and the other is negative.

3. Variational Iteration Method (VIM)

The Variational Iteration Method (VIM) is an analytical technique used for solving nonlinear

differential equations. Unlike purely numerical methods, VIM provides an explicit approximating

sequence that rapidly converges to the exact solution. The key advantage of this method is its ability

to handle nonlinear terms efficiently without requiring linearization or small perturbations. The

Variational Iteration Method is based on the construction of correction functionals. Consider a general

differential equation:
dx
dt

= f (x, t), (7)

where f (x, t) is a nonlinear function of x. We define a correction functional as:

xn+1(t) = xn(t) +
∫ t

0
λ

(
dxn

dt
− f (xn, t)

)
dt, (8)

where λ is the Lagrange multiplier, which is determined optimally such that the error term is

minimized.

Consider the system of equations:

dx
dt

=
1
ϵ
(qy − xy + x(1 − x)) , (9)

dy
dt

= xy − qy. (10)

Using the Variational Iteration Method, we construct the correction functionals:

xn+1(t) = xn(t) +
∫ t

0
λx

(
dxn

dt
− 1

ϵ
(qyn − xnyn + xn(1 − xn))

)
dt, (11)
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yn+1(t) = yn(t) +
∫ t

0
λy

(
dyn

dt
− (xnyn − qyn)

)
dt. (12)

Determining the optimal multipliers λx = 1 and λy = 1, the iterative formulas simplify to:

xn+1(t) = xn(t) +
∫ t

0

(
dxn

dt
− 1

ϵ
(qyn − xnyn + xn(1 − xn))

)
dt, (13)

yn+1(t) = yn(t) +
∫ t

0

(
dyn

dt
− (xnyn − qyn)

)
dt. (14)

The solution is iteratively approximated using a series expansion:

x(t) =
N

∑
k=0

Xktk, (15)

y(t) =
N

∑
k=0

Yktk. (16)

The nonlinear term xy is expanded using a convolution sum:

xy =
N

∑
k=0

k

∑
m=0

XmYk−mtk. (17)

Similarly, x2 follows the expansion:

x2 =
N

∑
k=0

k

∑
m=0

XmXk−mtk. (18)

The recurrence relations for VIM are derived as:

(k + 1)Xk+1 =
1
ϵ

[
qYk −

k

∑
m=0

XmYk−m + Xk −
k

∑
m=0

XmXk−m

]
, (19)

(k + 1)Yk+1 =
k

∑
m=0

XmYk−m − qYk. (20)

• First-Order Terms

For k = 0, we take initial guesses:

X0 = a, Y0 = b. (21)

• For k = 1, using the differential equations:

X1 =
1
ϵ
(qY0 − X0Y0 + X0(1 − X0)), (22)

Y1 = X0Y0 − qY0. (23)
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Substituting X0 and Y0:

X1 =
1
ϵ
(qb − ab + a(1 − a)), (24)

Y1 = ab − qb. (25)

• Second-Order Terms

For k = 2, applying recurrence relations:

X2 =
1
2ϵ

[qY1 − (X0Y1 + X1Y0) + X1 − (X0X1 + X1X0)] . (26)

Substituting X1 and Y1:

X2 =
1
2ϵ

[
q(ab − qb)− (a(ab − qb) + (qb − ab + a − a2)b) + (qb − ab + a − a2)

− (a(qb − ab + a − a2) + (qb − ab + a − a2)a)
]

. (27)

Similarly, for Y2:

Y2 =
1
2
[(X0Y1 + X1Y0)− qY1] . (28)

Substituting X1 and Y1:

Y2 =
1
2
[
(a(ab − qb) + (qb − ab + a − a2)b)− q(ab − qb)

]
. (29)

In the same manner other series terms can be computed. The above equations represent the iterative

expansion of x(t) and y(t) using the Variational Iteration Method (VIM). Higher-order terms can be

derived similarly by following the recurrence relations.

The figures 2 compare the Variational Iteration Method (VIM) and the Shooting Method for solving a

system of nonlinear ordinary differential equations, for q = 0.9. The solid lines represent solutions

obtained using VIM, whereas the dashed lines represent results from the Shooting Method. A close

alignment between the two methods indicates that VIM provides a reliable approximation, while any

divergence suggests numerical instability or parameter sensitivity. The figures help visualize the

dynamic behavior of the system across different computational approaches. The Variational Iteration

Method provides an efficient framework for solving nonlinear differential equations by iteratively

improving the solution. The use of series expansions and convolution sums ensures accurate

representation of nonlinear terms, making VIM a valuable technique in computational mathematics.
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Figure 2: Comparison of VIM and Shooting Method for x(t) and y(t).

4. MATLAB Code

The following MATLAB script compares the Variational Iteration Method (VIM) and the Shooting

Method for solving the nonlinear system:

Listing 1: Comparison of VIM and Shooting Method

% Define parameters

epsilon = 0.01;

q_values = [0.5, 0.9]; % Two values of q for comparison

tspan = [0 1]; % Time interval

x0 = 1; % Initial condition for x

y0 = 1; % Initial condition for y

N_iter = 100; % Number of VIM iterations

% Time discretization

t_vals = linspace(tspan (1), tspan (2), 100);

% Initialize storage for both q values

x_vim = zeros(length(q_values), length(t_vals));

y_vim = zeros(length(q_values), length(t_vals));

x_shoot = cell(length(q_values), 1);

y_shoot = cell(length(q_values), 1);

% Loop over both values of q

for q_idx = 1: length(q_values)

q = q_values(q_idx);

x_vals = zeros(N_iter , length(t_vals));
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y_vals = zeros(N_iter , length(t_vals));

% Initial guess for VIM

x_vals(1, :) = x0;

y_vals(1, :) = y0;

% Variational Iteration Method Loop

for n = 1:N_iter -1

for i = 2: length(t_vals)

dt = t_vals(i) - t_vals(i-1);

% Apply VIM correction formulas

x_vals(n+1, i) = x_vals(n, i) + dt * (1/ epsilon) * (q * y_vals(n, i

) - x_vals(n, i) * y_vals(n, i) + x_vals(n, i) * (1 - x_vals(n,

i)));

y_vals(n+1, i) = y_vals(n, i) + dt * (x_vals(n, i) * y_vals(n, i) -

q * y_vals(n, i));

end

end

x_vim(q_idx , :) = x_vals(end , :);

y_vim(q_idx , :) = y_vals(end , :);

% Solve using Shooting Method with ode45

ode_system = @(t, vars) [

(q * vars (2) - vars (1) * vars (2) + vars (1) - vars (1)^2) / epsilon;

(vars (1) * vars (2) - q * vars (2))

];

[t_shoot , solution] = ode45(ode_system , tspan , [x0 , y0]);

% Store Shooting Method results

x_shoot{q_idx} = solution(:, 1);

y_shoot{q_idx} = solution(:, 2);

end

% Plot x(t) comparison for both methods in the same figure

figure;

hold on;

plot(t_vals , x_vim(1, :), 'b', 'LineWidth ', 2);

plot(t_vals , x_vim(2, :), 'g', 'LineWidth ', 2);

plot(t_shoot , x_shoot {1}, '--r', 'LineWidth ', 2);

plot(t_shoot , x_shoot {2}, '--k', 'LineWidth ', 2);
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xlabel('t'); ylabel('x(t)');

title('Comparison of VIM and Shooting Method for x(t)');

legend('VIM , q = 0.5', 'VIM , q = 0.9', 'Shooting , q = 0.5', 'Shooting , q = 0.9'

);

grid on;

% Plot y(t) comparison for both methods in the same figure

figure;

hold on;

plot(t_vals , y_vim(1, :), 'b', 'LineWidth ', 2);

plot(t_vals , y_vim(2, :), 'g', 'LineWidth ', 2);

plot(t_shoot , y_shoot {1}, '--r', 'LineWidth ', 2);

plot(t_shoot , y_shoot {2}, '--k', 'LineWidth ', 2);

xlabel('t'); ylabel('y(t)');

title('Comparison of VIM and Shooting Method for y(t)');

legend('VIM , q = 0.5', 'VIM , q = 0.9', 'Shooting , q = 0.5', 'Shooting , q = 0.9'

);

grid on;

5. Convergence Analysis

The Variational Iteration Method (VIM) provides an iterative approach to solving nonlinear differential

equations. To ensure its effectiveness, we analyze its convergence by examining how successive

approximations behave over iterations.

• Convergence Criteria VIM is considered convergent if:

1. The sequence of approximations xn(t) and yn(t) approaches the exact solution as n → ∞.

2. The error term En = xn(t)− xn−1(t) and Fn = yn(t)− yn−1(t) decreases over iterations.

• Error Function Analysis To evaluate the accuracy of VIM, we define the error functions:

En = |xn(t)− xn−1(t)| , Fn = |yn(t)− yn−1(t)| . (30)

If En → 0 and Fn → 0, the method is stable and convergent.

• Theoretical Convergence Justification Applying the Banach Fixed-Point Theorem, VIM

converges under the conditions:

– The nonlinear operator satisfies a contraction mapping property.

– The correction functional is designed to progressively reduce the residual error.
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For the given our system the correction functionals are:

xn+1(t) = xn(t) +
∫ t

0

(
dxn

dt
− 1

ϵ
(qyn − xnyn + xn(1 − xn))

)
dt, (31)

yn+1(t) = yn(t) +
∫ t

0

(
dyn

dt
− (xnyn − qyn)

)
dt. (32)

Since the residual term decreases over time, this guarantees exponential decay of error functions.

• Numerical Convergence Verification To confirm convergence numerically, we track the error

decay over iterations using MATLAB:

Listing 2: MATLAB Code for Convergence Analysis

% Convergence analysis of VIM

N_iter = 100; % Number of iterations

error_x = zeros(1, N_iter);

error_y = zeros(1, N_iter);

for n = 2: N_iter

error_x(n) = max(abs(x_vals(n, :) - x_vals(n-1, :)));

error_y(n) = max(abs(y_vals(n, :) - y_vals(n-1, :)));

end

% Plot error decay over iterations

figure;

subplot (2,1,1);

semilogy (1: N_iter , error_x , 'b', 'LineWidth ', 2);

xlabel('Iteration '); ylabel('Error in x');

title('Convergence Analysis: Error Decay for x(t)');

grid on;

subplot (2,1,2);

semilogy (1: N_iter , error_y , 'r', 'LineWidth ', 2);

xlabel('Iteration '); ylabel('Error in y');

title('Convergence Analysis: Error Decay for y(t)');

grid on;

• Result Figure 3 illustrates the error decay for x(t) and y(t) over iterations, demonstrating the

convergence of the Variational Iteration Method (VIM). The exponential decrease in the error

suggests that VIM successfully refines the solution at each step.

• Conclusion
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Figure 3: Convergence of VIM: Error decay over iterations for x(t) and y(t).

– If the error decreases exponentially, VIM is convergent.

– If the error oscillates or diverges, parameter tuning (e.g., adjusting ϵ, q) is required.

Thus, VIM ensures a stable and efficient approximation for solving nonlinear differential

equations.

6. Conclusion

The stability analysis presented though figure highlights the behavior of equilibrium points as the

parameter q varies. By evaluating the eigenvalues of the Jacobian matrix at the equilibrium point

(x, y) = (1, 0), we observe transitions between stable, saddle, and unstable states. This bifurcation

behavior emphasizes the critical role of q in nonlinear dynamics, chemical reactions, and biological

systems. Furthermore, the comparative study in has also been shown by one figure, which

demonstrates the effectiveness of the Variational Iteration Method (VIM) and Shooting Method for

solving nonlinear ordinary differential equations. The close alignment between the two methods

validates the reliability of VIM as an approximation technique, while any divergence underscores the

need for numerical stability considerations. The exponential error decay observed by one figure and

confirms the convergence of VIM. The method efficiently refines solutions through iterative

corrections, ensuring accuracy while avoiding unnecessary computational complexity. The use of

series expansions and convolution sums allows precise representation of nonlinear terms, making

VIM a valuable tool in computational mathematics.
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Overall, this study reinforces the importance of parameter sensitivity in nonlinear systems and

establishes VIM as a robust methodology for tackling differential equations. These findings have

significant implications for applications such as reaction-diffusion models, pattern formation, and

self-organized structures in complex systems.
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