Available Online: http://ijmaa.in

Notion of Non-archimedean Pseudo-differential Operators Associated with Fractional

Fourier Transform

Abhisekh Shekhar^{1,*}, Annu Kumari²

¹Department of Mathematics, C. M. Science College, Darbhanga, Bihar, India

²Research Scholar, University Department of Mathematics, L.N.M.U. Darbhanga, Bihar, India

Abstract

In this manuscript, we define the first type of non-archimedean pseudo-differential operator associated with the fractional Fourier transform and Bessel potentials, denoted by \mathcal{J}^{ω} , $\omega > 1$ and second type of non-archimedean pseudo-differential operator \mathcal{A}^{ω} on $\mathcal{D}(\mathbb{Q}_p)$. We show that these operators holds the positive maximum principle and a strongly continuous, positive, contraction semigroup on $\mathbb{C}_0(\mathbb{Q}_p)$. Also, we solve Cauchy problem (the inhomogeneous initial value problem) related to fractional Fourier transform and these operators.

Keywords: Non-archimedean analysis; Pseudo-differential operators; Fractional Fourier transform; M-dissipative operators; The positive maximum principle.

2020 Mathematics Subject Classification: 26E30, 35S05, 46E35, 47G30, 46F12.

1. Introduction

The connections of non-archimedean pseudo-differential operators with certain p-adic pseudo-differential equations that describe certain physical models [1–9]. Therefore, non-archimedean pseudo-differential operators have received a lot of attention in two decades. Non-archimedean pseudo-differential operators have gained popularity in recent years due to their utility in studying certain equations associated with new physical models/Models in physical form [10–16]. The interest in pseudo-differential operators in the p-adic context has grown significantly in recent years as a result of their utility in modelling various types of physical phenomena. For example, modelling geological processes (such as the formation of petroleum micro-scale reservoirs and fluid flows in porous media such as rock); the dynamics of complex systems such as macromolecules, glasses, and proteins; the study of Coulomb gases, etc. [17–22]. Nonlocal diffusion problems arise in a wide range of applications in the archimedean setting, including biology, image processing, particle systems, and coagulation models. This work is motivated/ inspired by the works of Ismael Gutiérrez García and

^{*}Corresponding author (abhi08.iitkgp@gmail.com)

Anselmo Torresblanca-Badillo [14,21,23]. In 2020, Ismael Gutiérrez García and Anselmo Torresblanca-Badillo studied a class of non-archimedean pseudo-differential operators associated via Fourier transform to the Bessel potentials [14].

In the present manuscript, we introduce notion of non-archimedean pseudo-differential operators associated with Fractional Fourier transform and fractional Bessel potential. Let \mathbb{Q}_p be the set of p-adic numbers and $\mathcal{D}'(\mathbb{Q}_p)$ be the space of distributions in \mathbb{Q}_p . If $\psi \in \mathcal{D}'(\mathbb{Q}_p)$ and $\omega \in \mathbb{C}$, we introduce one dimensional p-adic fractional Bessel potential of ψ of order ω as follows:

$$\widehat{(\mathcal{J}^{\omega}\psi)}_{\theta}(\zeta) = (\max\{1,|\zeta|\})^{-\omega}\widehat{\psi}_{\theta}(\zeta) = (\max\{1,|\zeta|\})^{-\omega}(\mathcal{F}_{\theta}\psi)(\zeta), \quad \forall \zeta \in \mathbb{Q}_{p},$$
 (1)

where $\widehat{\psi}_{\theta}$ is the fractional Fourier transform of ψ in [24–28]. The first type of non-archimedean pseudodifferential operator associated with the fractional Fourier transform and Bessel potentials will be denoted by \mathcal{J}^{ω} , $\omega > 1$. Let $\mathcal{D}(\mathbb{Q}_p)$ be the space of locally constant functions on \mathbb{Q}_p with compact support. Taking inverse fractional Fourier transform on both sides of (1), we get that

$$(\mathcal{J}^{\omega}\psi)_{\vartheta}(\eta) = \mathcal{F}_{\vartheta}^{-1} \big[(\max\{1, |\zeta|\})^{-\omega} \widehat{\psi}_{\vartheta}(\zeta) \big](\eta) = \mathcal{F}_{\vartheta}^{-1} \big[(\max\{1, |\zeta|\})^{-\omega} (\mathcal{F}_{\vartheta}\psi)(\zeta) \big](\eta), \tag{2}$$

 $\forall \psi \in \mathcal{D}(\mathbb{Q}_p), \ \forall \eta \in \mathbb{Q}_p.$

It implies that \mathcal{J}^{ω} is an non-archimedean pseudo-differential operator related to the symbol $(\max\{1,|\zeta|\})^{-\omega}$, $\zeta\in\mathbb{Q}_p$. The interaction of non-archimedean pseudo-differential operators and stochastic processes on p-adics has received a lot of attention in recent decades because of the connection of the p-adic pseudo-differential equations associated with certain physical models, see [29–31]. This fact sparked a great deal of interest in the possibility of obtaining second type of non-archimedean pseudo-differential operators associated with certain stochastic processes on p-adics, resulting in second type of non-archimedean pseudo-differential operators related to Bessel potentials and fractional Fourier transform. This also motivates to define second type of pseudo-differential operators related to Bessel potentials and fractional Fourier transform, denoted by \mathcal{A}^{ω} , $\omega > 0$. This operator \mathcal{A}^{ω} is defined as follows:

$$(\mathcal{A}^{\omega}\psi)(\zeta) = (-\mathcal{J}^{\omega}\psi)(\zeta) + \psi(\zeta)$$

$$= \mathcal{F}_{\vartheta}^{-1} \big[\big\{ 1 - (\max\{1, |\eta|\})^{-\omega} \big\} \widehat{\psi}_{\vartheta}(\eta) \big](\zeta), \ \forall \psi \in \mathcal{D}(\mathbb{Q}_p), \ \forall \zeta \in \mathbb{Q}_p.$$
 (3)

The symbol $1 - (\max\{1, |\eta|\})^{-\omega}$, $\eta \in \mathbb{Q}_p$ defines second type of non-archimedean pseudo-differential operator \mathcal{A}^{ω} on $\mathcal{D}(\mathbb{Q}_p)$.

2. Mathematical Background of Fractional Fourier Analysis on \mathbb{Q}_p

Definition 2.1 (The field of p-adic numbers). Let p be a prime number. Through out this manuscript p will denote a prime number. Firstly we define p-adic norm $|.|_p$ on \mathbb{Q} as follows

$$|\eta|_p = \left\{ egin{array}{ll} 0, & \mbox{if } \eta = 0, \\ p^{- au}, & \mbox{if } \eta = p^{ au} rac{
ho}{\sigma}, \end{array}
ight.$$

where ρ and σ are integers coprime with p. The integer $\tau := ord(\eta)$, with $ord(0) := +\infty$, is called the p-adic order of η . The unique expansion of any p-adic number $\eta \neq 0$ is of the form

$$\eta = p^{ord(\eta)} \sum_{i=0}^{\infty} \eta_i p^i, \tag{4}$$

where $\eta_i \in \{0, 1, 2, ..., p-1\}$ and $\eta_0 \neq 0$. Using (4), we define the fractional part of $\eta \in \mathbb{Q}_p$, denoted by $\{\eta\}_p$, as the rational number

$$\{\eta\}_p = \left\{ egin{array}{ll} 0, & ext{if } \eta = 0 ext{ or } ord(\eta) \geq 0, \\ p^{ord(\eta)} \sum\limits_{i=0}^{-ord_p(\eta)-1} \eta_i p^i, & ext{if } ord(\eta) < 0. \end{array}
ight.$$

Extention of the p-adic norm on \mathbb{Q}_p is given by

$$||\eta||_p = |\eta|, \quad \forall \eta \in \mathbb{Q}_p.$$

Let $r_0 \in \mathbb{Z}$ and $a_0 \in \mathbb{Q}_p$. We consider $I_{r_0}(\eta_0) = \{ \eta \in \mathbb{Q}_p : ||\eta - \eta_0||_p \le p^{r_0} \}$. The empty set and the points are the only connected subsets of \mathbb{Q}_p . Therefore, the topological space $(\mathbb{Q}_p, ||.||_p)$ is totally disconnected. The necesssary and sufficient condition for the compactness of a subset of \mathbb{Q}_p is that bounded and closed subdet of \mathbb{Q}_p , see e.g [8].

3. Few Functional Spaces

A function $f: \mathbb{Q}_p \to \mathbb{C}$ is called locally constant if for any $\eta \in \mathbb{Q}_p$ there exists an integer $r(\eta) \in \mathbb{Z}$ such that $f(\eta + \eta') = f(\eta)$ for all $\eta' \in I_{r(\eta)}$. A function $f: \mathbb{Q}_p \to \mathbb{C}$ is called a test function (or a Bruhat-Schwartz function) if it is a compact support with locally constant. The set of all complex valued test functions on \mathbb{Q}_p is denoted by $\mathcal{D}(\mathbb{Q}_p)$ or simply \mathcal{D} . The set of all distributions (all continous functionals) on \mathcal{D} is denoted by $\mathcal{D}'(\mathbb{Q}_p)$ or simply \mathcal{D}' . The mapping $\langle U, \psi \rangle : \mathcal{D}'(\mathbb{Q}_p) \times \mathcal{D}(\mathbb{Q}_p) \to \mathbb{C}$ for $U \in \mathcal{D}'(\mathbb{Q}_p)$ and $\psi \in \mathcal{D}(\mathbb{Q}_p)$ is defined as follows:

$$\langle U, \psi \rangle = \int_{\mathbb{Q}_n} U(\zeta) \psi(\zeta) d\zeta.$$

Definition 3.1 (Regular Distribution). Let M be an arbitrary compact subset of \mathbb{Q}_p . i.e. $M \subset \mathbb{Q}_p$. Then

 $L^1_{loc}(\mathbb{Q}_p) = \{\phi | \phi : \mathbb{Q}_p \to \mathbb{C} \text{ such that } \phi \in L^1(M)\}.$ A distribution $\phi \in \mathcal{D}(\mathbb{Q}_p)$ is defined by every function $\phi \in L^1_{loc}(\mathbb{Q}_p)$ according to the formula

$$\langle \phi, \psi \rangle = \int_{\mathbb{Q}_p} \phi(\zeta) \psi(\zeta) d\zeta.$$

This type of distributions is known as regular distributions.

Let $\sigma \in [0, \infty)$. Then the set $L^{\sigma}(\mathbb{Q}_p, dx) = \{h : \mathbb{Q}_p \to \mathbb{C} \text{ such that } \int_{\mathbb{Q}_p} |h(x)|^{\sigma} dx < \infty \}$, the set $L^{\infty}(\mathbb{Q}_p, dx) = \{h : \mathbb{Q}_p \to \mathbb{C} \text{ such that essential supremum of } |h| < \infty \}$, the set $C(\mathbb{Q}_p, \mathbb{C}) = \{h : \mathbb{Q}_p \to \mathbb{C} \text{ and } h \text{ is a continous function}\}$, and the set

$$C_0(\mathbb{Q}_p,\mathbb{C}) = \{h : \mathbb{Q}_p \to \mathbb{C} \text{ and } h \text{ is a continous function and } \lim_{||\zeta||_p \to \infty} h(\zeta) = 0\}$$

are complex vector space under the binary operation vector addition (+) and scalar multiplication (.). It also implies that $(C_0(\mathbb{Q}_p,\mathbb{C}), ||.||_{L^{\infty}})$ is a Banach space.

4. Fractional Fourier Transform on \mathbb{Q}_p

In this chapter, we introduce the definition of fractional Fourier transform on the field of p-adic numbers \mathbb{Q}_p . Firstly, the map $\chi_p^{\theta}(.,.)$ is defined on \mathbb{Q}_p as follows: $\forall \zeta, \eta \in \mathbb{Q}_p$,

$$\chi_p^{\theta}(\zeta,\eta) = \left\{ egin{array}{ll} C^{\theta} e^{rac{i(\zeta^2 + \eta^2)\cot{\theta}}{2} - i\zeta\eta\cos{\theta}}, & \theta
eq n\pi, n \in \mathbb{Z} \ & rac{1}{\sqrt{2\pi}} e^{-i\zeta\eta}, & \theta = rac{\pi}{2}, \end{array}
ight.$$
 $C^{\theta} = \sqrt{rac{1 - i\cot{\theta}}{2\pi}}.$

If $\psi \in L^1(\mathbb{Q}_p)$, its fractional Fourier transform of one dimension is defined as follows:

$$(\mathcal{F}_{\vartheta}\psi)(\eta) = \widehat{\psi}_{\vartheta}(\eta) = \int_{\mathbb{Q}_p} \chi_p^{\vartheta}(\zeta, \eta) \psi(\zeta) d\zeta, \quad \text{for } \eta \in \mathbb{Q}_p.$$
 (5)

The inverse fractional Fourier transform of a map $\phi \in L^1(\mathbb{Q}_p)$ is

$$(\mathcal{F}_{\vartheta}^{-1}\phi)(\zeta) = \int_{\mathbb{Q}_p} \chi_p^{-\vartheta}(\zeta, \eta)\phi(\eta)d\eta, \quad \text{for } \zeta \in \mathbb{Q}_p.$$
 (6)

The fractional Fourier transform is an isomorphism, continuous and linear map of $\mathcal{D}(\mathbb{Q}_p)$ onto itself holding

$$(\mathcal{F}_{\vartheta}(\mathcal{F}_{\vartheta}^{-1}\phi))(\zeta) = (\mathcal{F}_{\vartheta}^{-1}(\mathcal{F}_{\vartheta}\phi))(\zeta) = \phi(\zeta),\tag{7}$$

for every $\phi \in \mathcal{D}(\mathbb{Q}_p)$.

5. The Fractional Fourier Transform Related to Non-archimedean Pseudo-differential Operator \mathcal{J}^ω

We define first type of non-archimedean pseudo-differential operator \mathcal{J}^{ω} , $\omega > n$ associated with fractional Fourier transform to the Bessel potentials in this chapter.

Definition 5.1. If $\psi \in \mathcal{D}(\mathbb{Q}_p)$, $\omega \in \mathbb{C}$, we discuss the one dimensional p-adic Bessel potential related to fractional Fourier transform of order ω of ψ as follows:

$$\widehat{(\mathcal{J}^{\omega}\psi)}_{\vartheta}(\zeta) = (\max\{1,|\zeta|\})^{-\omega}\widehat{\psi}_{\vartheta}(\zeta) = (\max\{1,|\zeta|\})^{-\omega}(\mathcal{F}_{\vartheta}\psi)(\zeta), \quad \forall \zeta \in \mathbb{Q}_{p}.$$
 (8)

The one dimensional p-adic gamma function Γ_p is defined as

$$\Gamma_p(\omega) = \frac{1 - p^{\omega - 1}}{1 - p^{-\omega}} \text{ for } \omega \neq 0 \in \mathbb{C}.$$

Definition 5.2. First type of non-archimedean pseudo-differential operator $\mathcal{J}^{\omega}: \mathcal{D}(\mathbb{Q}_p) \to \mathcal{D}(\mathbb{Q}_p)$, $\omega > n$ associated with fractional Fourier transform to the Bessel potentials is defined as follows:

$$(\mathcal{J}^{\omega}\psi)_{\vartheta}(\eta) = \mathcal{F}_{\vartheta}^{-1} \left[(\max\{1,|\zeta|\})^{-\omega} \widehat{\psi}_{\vartheta}(\zeta) \right](\eta) = \mathcal{F}_{\vartheta}^{-1} \left[(\max\{1,|\zeta|\})^{-\omega} (\mathcal{F}_{\vartheta}\psi)(\zeta) \right](\eta), \tag{9}$$

 $\forall \psi \in \mathcal{D}(\mathbb{Q}_p), \ \forall \eta \in \mathbb{Q}_p$, with the symbol $(\max\{1, |\zeta|\})^{-\omega}$.

Lemma 5.3. Let t be a possitive real number. Then, the symbol $e^{-t(\max\{1,|\zeta|\})^{-\omega}} \in L^1(\mathbb{Q}_p)$.

Proof. For $r \ge 1$, we obtain $e^{-tp^{-r\omega}} \le 1$. Now, we get that

$$\int_{\mathbb{Q}_p} e^{-t(\max\{1,|\zeta|\})^{-\omega}} d\zeta = e^{-t} + (1-p^{-1}) \sum_{r=1}^{\infty} e^{-tp^{-r\omega}} p^r
\leq e^{-t} + \sum_{r=1}^{\infty} (p^r - p^{r-1})
= e^{-t} - 1 < \infty.$$

Therefore, the symbol $e^{-t(\max\{1,|\zeta|\})^{-\omega}} \in L^1(\mathbb{Q}_p)$.

Lemma 5.4. The Cauchy problem involving fractional Fourier transform

$$\begin{cases} \frac{\partial \varphi(\zeta, t)}{\partial t} = \mathcal{J}^{\omega} \varphi(\zeta, t), & 0 \leq t < \infty, \quad \zeta \in \mathbb{Q}_p \\ \varphi(\zeta, 0) = \varphi_0(\zeta) \in \mathcal{D}(\mathbb{Q}_p). \end{cases}$$

Then

$$\varphi(\zeta, t) = \int_{\mathbb{Q}_p} \chi_p^{-\vartheta}(\zeta, \eta) \frac{e^{-t(\max\{1, |\eta|\})^{-\omega}}}{C^{-\vartheta}} (\mathcal{F}_{\vartheta} \varphi_0)(\eta) d\eta$$

is a classical solution of the above Cauchy problem.

Proof. Since, we have

$$\begin{split} \frac{\partial \varphi(\zeta, t)}{\partial t} &= \mathcal{J}^{\omega} \varphi(\zeta, t) \\ &= \mathcal{F}_{\vartheta}^{-1} \big[(\max\{1, |\zeta|\})^{-\omega} \frac{e^{-t(\max\{1, |\eta|\})^{-\omega}}}{C^{-\vartheta}} (\mathcal{F}_{\vartheta} \varphi_0)(\eta) \big](\zeta) \\ &= \int_{\mathbb{Q}_{\vartheta}} \chi_{\varrho}^{-\vartheta}(\zeta, \eta) (\max\{1, |\zeta|\})^{-\omega} \frac{e^{-t(\max\{1, |\eta|\})^{-\omega}}}{C^{-\vartheta}} (\mathcal{F}_{\vartheta} \varphi_0)(\eta) d\eta, \end{split}$$

for $0 \le t < \infty$, $\zeta \in \mathbb{Q}_p$. The formula is based on the fact that

$$\left|\chi_p^{-\vartheta}(\zeta,\eta)\frac{e^{-t(\max\{1,\,|\eta|\})^{-\omega}}}{C^{-\vartheta}}(\mathcal{F}_\vartheta\varphi_0)(\eta)\right| \leq \left|(\mathcal{F}_\vartheta\varphi_0)(\eta)\right| \in L^1(\mathbb{Q}_p)$$

and that

$$\left|\chi_p^{-\vartheta}(\zeta,\eta)(\max\{1,|\zeta|\})^{-\omega}\frac{e^{-t(\max\{1,|\eta|\})^{-\omega}}}{C^{-\vartheta}}(\mathcal{F}_{\vartheta}\varphi_0)(\eta)\right| \leq \left|(\mathcal{F}_{\vartheta}\varphi_0)(\eta)\right| \in L^1(\mathbb{Q}_p).$$

Now, using the Dominated Convergence Theorem and [16], Lemma 1-(i), we have

$$\varphi(\zeta,.) \in C^1([0,\infty)).$$

Since

$$\mathcal{J}^{\omega}\varphi(\zeta, t) = \int_{\Omega_{n}} \chi_{p}^{-\vartheta}(\zeta, \eta) (\max\{1, |\zeta|\})^{-\omega} \frac{e^{-t(\max\{1, |\eta|\})^{-\omega}}}{C^{-\vartheta}} (\mathcal{F}_{\vartheta}\varphi_{0})(\eta) d\eta$$

for $0 \le t < \infty$, $\zeta \in \mathbb{Q}_p$. The formula is based on the fact that

$$\varphi(\zeta, t) = \mathcal{F}_{\vartheta}^{-1} \left[(\max\{1, |\zeta|\})^{-\omega} \frac{e^{-t(\max\{1, |\eta|\})^{-\omega}}}{C^{-\vartheta}} (\mathcal{F}_{\vartheta} \varphi_0)(\eta) \right](\zeta) \in L^2(\mathbb{Q}_p),$$

for any $t \in \mathbb{R}_+$ and that

$$(\max\{1,|\zeta|\})^{-\omega}\frac{e^{-t(\max\{1,|\eta|\})^{-\omega}}}{C^{-\vartheta}}(\mathcal{F}_{\vartheta}\varphi_0)(\eta)\in L^2(\mathbb{Q}_p)$$

for any $t \in \mathbb{R}_+$, by [16], Lemma 1 (i). It implies that

$$\varphi(\zeta, t) = \int_{\mathbb{Q}_p} \chi_p^{-\vartheta}(\zeta, \eta) \frac{e^{-t(\max\{1, |\eta|\})^{-\omega}}}{C^{-\vartheta}} (\mathcal{F}_{\vartheta} \varphi_0)(\eta) d\eta$$

is a classical solution of the above Cauchy problem.

6. On $\mathbb{C}_0(\mathbb{Q}_p)$, the Positive Maximum Principle and a Strongly Continuous, Positive, Contraction Semigroup

In this section, we will demonstrate that the operator $-\mathcal{J}^{\omega}$ holds the positive maximum principle on $\mathbb{C}_0(\mathbb{Q}_p)$, as well as that the closure $-\overline{\mathcal{J}^{\omega}}$ of the operator $-\mathcal{J}^{\omega}$ on $\mathbb{C}_0(\mathbb{Q}_p)$ is single-valued and generates a strongly continuous, positive, contraction semigroup $\{U(\zeta)\}$ on $\mathbb{C}_0(\mathbb{Q}_p)$.

Definition 6.1 ([14]). An operator $\Phi : \mathbb{C}_0(\mathbb{Q}_p) \to \mathbb{C}_0(\mathbb{Q}_p)$ is said to satisfy the positive maximum principle if whenever $\phi \in domain \ of \ \Phi \subseteq \mathbb{C}_0(\mathbb{Q}_p)$, $\zeta_0 \in \mathbb{Q}_p$, and $\sup_{\zeta \in \mathbb{Q}_p} \phi(\zeta) = \phi(\zeta_0) \ge 0$ we have $\Phi(\phi(\zeta_0)) \le 0$.

Theorem 6.2. $On \mathbb{C}_0(\mathbb{Q}_p)$,

(i) the operator

$$(-\mathcal{J}^{\omega}\psi)(\eta) = -\mathcal{F}_{\vartheta}^{-1}\big[(\max\left\{1,|\zeta|\right\})^{-\omega}\widehat{\psi}_{\vartheta}(\zeta)\big](\eta) = -\mathcal{F}_{\vartheta}^{-1}\big[(\max\left\{1,|\zeta|\right\})^{-\omega}(\mathcal{F}_{\vartheta}\psi)(\zeta)\big](\eta),$$

 η , $\zeta \in \mathbb{Q}_p$ and $\psi \in \mathcal{D}(\mathbb{Q}_p)$ holds the positive maximum principle.

(ii) The closure $-\overline{\mathcal{J}^{\omega}}$ of the operator $-\mathcal{J}^{\omega}$ on $\mathbb{C}_0(\mathbb{Q}_p)$ is single-valued and generates a strongly continuous, positive, contraction semigroup $\{U(\zeta)\}$ on $\mathbb{C}_0(\mathbb{Q}_p)$.

Proof. The proof of the Theorem 6.1 is similar to the one given in [14,32,33].

Definition 6.3. The graph of $-\mathcal{J}^{\omega}$ is denoted by $\mathbb{G}(-\mathcal{J}^{\omega})$, defined as follows:

$$\mathbb{G}(-\mathcal{J}^{\omega}) = \bigg\{ (\phi, \Psi) \in L^2(\mathbb{Q}_p) \times L^2(\mathbb{Q}_p); \phi \in \mathcal{D}(-\mathcal{J}^{\omega}) \text{ and } \Psi = -\mathcal{J}^{\omega}\phi \bigg\}.$$

It is also closed in $L^2(\mathbb{Q}_p)$.

Definition 6.4. An operator Ψ with domain $D(\Psi)$ in $L^2(\mathbb{Q}_p)$ is said to be dissipative if $re\langle \Psi \phi, \phi \rangle \leq 0$, where $L^2(\mathbb{Q}_p)$ is the Hilbert space with the inner product

$$\langle \phi, \varphi \rangle = \int_{\mathbb{Q}_p} \phi(\zeta) \overline{\phi(\zeta)} d\zeta, \quad \phi, \ \varphi \in L^2(\mathbb{Q}_p).$$

Theorem 6.5. The operator $-\mathcal{J}^{\omega}$ is dissipative in $L^2(\mathbb{Q}_p)$.

Proof.

$$\begin{split} \langle -\mathcal{J}^{\omega}\phi,\phi\rangle &= & \left\langle -\mathcal{F}_{\vartheta}^{-1}\big[(\max\left\{1,|\zeta|\right\})^{-\omega}\widehat{\psi}_{\vartheta}(\zeta)\big](\eta),\psi\right\rangle \\ &= & \left\langle -(\max\left\{1,|\zeta|\right\})^{-\omega}\widehat{\psi}_{\vartheta}(\zeta),\widehat{\psi}_{\vartheta}(\zeta)\right\rangle \\ &= & -\int_{\mathbb{Q}_{v}}(\max\left\{1,|\zeta|\right\})^{-\omega}|\widehat{\psi}_{\vartheta}(\zeta)|^{2}d\zeta \leq 0. \end{split}$$

The proof of the Theorem 6.5 is achieved.

Definition 6.6 ([34]). An operator Ψ in $L^2(\mathbb{Q}_p)$ is m-dissipative if

- (i) Y is dissipative;
- (ii) for all $\rho > 0$ and all $\phi \in L^2(\mathbb{Q}_p)$, there exists φ belongs to domain of Ψ such that $\varphi \rho \Psi \varphi = \phi$.

Theorem 6.7. The operator $-\mathcal{J}^{\omega}$ is self-adjoint. It implies that

$$\langle -\mathcal{J}^{\omega}\phi, \psi \rangle = \langle \phi, -\mathcal{J}^{\omega}\psi \rangle, \quad \forall \phi, \psi \in L^2(\mathbb{Q}_p).$$

Proof. Let $\phi, \psi \in L^2(\mathbb{Q}_p)$. Using the Parseval-Steklov equality, we obtain that

$$\begin{split} \langle -\mathcal{J}^{\omega}\phi,\psi\rangle &= \left\langle -\mathcal{F}_{\vartheta}^{-1}[(\max\{1,|\zeta|\})^{-\omega}\widehat{\phi}_{\vartheta}(\zeta)],\psi\right\rangle \\ &= -\int_{\mathbb{Q}_{p}}(\max\{1,|\zeta|\})^{-\omega}\widehat{\phi}_{\vartheta}(\zeta)\overline{\widehat{\psi}_{\vartheta}(\zeta)}d\zeta \\ &= -\int_{\mathbb{Q}_{p}}\overline{(\max\{1,|\zeta|\})^{-\omega}}\widehat{\phi}_{\vartheta}(\zeta)\left[\int_{\mathbb{Q}_{p}}\chi_{p}^{\vartheta}(\eta,\zeta)\overline{\psi(\eta)}d\eta\right]d\zeta \\ &= \int_{\mathbb{Q}_{p}}\widehat{\phi}_{\vartheta}(\zeta)\overline{(\max\{1,|\zeta|\})^{-\omega}}\widehat{\widehat{\psi}_{\vartheta}(\zeta)}d\zeta \\ &= \left\langle \phi, -\mathcal{F}_{\vartheta}^{-1}[(\max\{1,|\zeta|\})^{-\omega}\widehat{\psi}_{\vartheta}(\zeta)]\right\rangle \\ &= \langle \phi, -\mathcal{J}^{\omega}\psi\rangle, \quad \forall \phi,\psi \in L^{2}(\mathbb{Q}_{p}). \end{split}$$

The proof of the Theorem 6.7 is achieved.

Theorem 6.8. *M-dissipative property is satisfied by the operator* $-\mathcal{J}^{\omega}: L^{2}(\mathbb{Q}_{p}) \to L^{2}(\mathbb{Q}_{p}).$

Proof. The proof of the Theorem 6.8 is followed by the Theorem 6.5 and Theorem 6.7, some well-understood results in the theory of dissipative operator [34].

7. Second Type of Non-archimedean Pseudo-differential Operator \mathcal{A}^ω on $\mathcal{D}(\mathbb{Q}_p)$

We will define second type of non-archimedean pseudo-differential operator \mathcal{A}^{ω} , $\omega > 0$ on $\mathcal{D}(\mathbb{Q}_p)$ with the help of fractional Fourier transform and Bessel potentials in this chapter. This operator is combined by a linear combination of the Bessel potentials and the Identity operator.

Definition 7.1. Let $\psi \in \mathcal{D}_p(\mathbb{Q}_p)$. We will define and denote the non-archimedean pseudo-differential operator \mathcal{A}^{ω} , $\omega > 0$ as follows:

$$(\mathcal{A}^{\omega}\psi)(\zeta) = (-\mathcal{J}^{\omega} + \mathcal{I})\psi(\zeta), \quad \zeta \in \mathbb{Q}_p,$$

where \mathcal{I} is the identity operator. Now, we get that

$$\begin{split} (\mathcal{A}^{\omega}\psi)(\zeta) &= (-\mathcal{J}^{\omega}\psi(\zeta) + \psi(\zeta) \\ &= -\mathcal{F}_{\vartheta}^{-1} \left[(\max\{1,|\zeta|\})^{-\omega} \widehat{\psi}_{\vartheta}(\zeta) \right] + \psi(\zeta) \end{split}$$

$$= -\mathcal{F}_{\vartheta}^{-1} \left[(\max\{1, |\zeta|\})^{-\omega} \widehat{\psi}_{\vartheta}(\zeta) - \widehat{\psi}_{\vartheta}(\zeta) \right]$$

$$= \mathcal{F}_{\vartheta}^{-1} \left[\left\{ 1 - (\max\{1, |\zeta|\})^{-\omega} \right\} \widehat{\psi}_{\vartheta}(\zeta) \right],$$

i.e, using the symbol $1-(\max\{1,|\zeta|\})^{-\omega}$, $\omega>0$, $\zeta\in\mathbb{Q}_p$, second type of non-archimedean pseudo-differential operator \mathcal{A}^{ω} on $\mathcal{D}(\mathbb{Q}_p)$ is defined.

Lemma 7.2. The Cauchy problem involving the inverse of the fractional Fourier transform

$$\begin{cases} \frac{\partial \psi(\zeta, t)}{\partial t} = -(\mathcal{A}^{\omega} \psi)(\zeta, t), & 0 \le t < \infty, \quad \zeta \in \mathbb{Q}_p \\ \psi(\zeta, 0) = \psi_0(\zeta) \in \mathcal{D}(\mathbb{Q}_p). \end{cases}$$

Then

$$\psi(\zeta, t) = \int_{\mathbb{Q}_p} \chi_p^{-\vartheta}(\zeta, \eta) \frac{e^{-t(\max\{1, |\eta|\})^{-\omega}}}{C^{-\vartheta}} (\mathcal{F}_{\vartheta} \psi_0)(\eta) d\eta$$

is a classical solution of the above Cauchy problem.

Proof. Proof of the Lemma 7.2 is similar to the Lemma 5.4.

8. Conclusion

We will show that the heat equation associated to the operator \mathcal{J}^{ω} , $\omega > 1$, describes the cooling (or loss of heat) in a given region over time, since the fundamental solution $\mathcal{Z}(\zeta,t)$ (explicitly represented), of real positive time variable and p-adic spatial variables satisfies either $\mathcal{Z}(\zeta,t) \geq 0$ or $\mathcal{Z}(\zeta,t) \leq 0$. We will also study Feller semigroups and stochastic processes related to the second type of non-archimedean pseudo-differential operator \mathcal{A}^{ω} on $\mathcal{D}(\mathbb{Q}_p)$.

Discussion for Further Research

There are potential directions for future research of my manuscript by using many types of integral transformations.

Acknowledgement

I thank reviewers for their helpful suggestions, insightful comments, and valuable feedback. The author would also like to thank the editor of the journal for his constructive suggestions.

References

[1] Sergio Albeverio, A. Yu Khrennikov and Vladimir M Shelkovich, *Theory of p-adic distributions: linear and nonlinear models*, Number 370, Cambridge University Press, (2010).

- [2] Alexandra V. Antoniouk, Andrei Yu Khrennikov and Anatoly N Kochubei, *Multidimensional* nonlinear pseudo-differential evolution equation with padic spatial variables, Journal of Pseudo-Differential Operators and Applications, 11(2020), 311-343.
- [3] Branko Dragovich, A. Yu Khrennikov, Sergei V Kozyrev and Igor V. Volovich, *On p-adic mathematical physics*, P-Adic Numbers, Ultrametric Analysis, and Applications, 1(2009), 1-17.
- [4] Andrei Khrennikov, Klaudia Oleschko and Maria de Jesus Correa Lopez, Modeling fluid's dynamics with master equations in ultrametric spaces representing the treelike structure of capillary networks, Entropy, 18(7)(2016), 249.
- [5] Anatoly N. Kochubei, Pseudo-differential equations and stochastics over non Archimedean fields, CRC Press, (2001).
- [6] Klaudia Oleschko and A. Yu Khrennikov, *Applications of p-adics to geophysics: Linear and quasilinear diffusion of water-in-oil and oil-in-water emulsions*, Theoretical and Mathematical Physics, 190(1)(2017), 154-163.
- [7] Ehsan Pourhadi, Andrei Khrennikov, Reza Saadati, Klaudia Oleschko and María de Jesús Correa Lopez, Solvability of the p-adic analogue of navierstokes equation via the wavelet theory, Entropy, 21(11)(2019), 1129.
- [8] Vasiliĭ Vladimirov, *p-adic Analysis and Mathematical Physics*, Series on Soviet and East European Mathematics: Volume 1, (1994).
- [9] Wilson A. Zúñiga-Galindo, Pseudodifferential equations over nonArchimedean spaces, Volume 2174, Springer, (2016).
- [10] Victor A Aguilar-Arteaga and Samuel Estala-Arias, *Pseudodifferential operators and markov processes on adèles*, p-Adic Numbers, Ultrametric Analysis and Applications, 11(2019), 89-113.
- [11] Victor A Aguilar-Arteaga, Manuel Cruz-López, and Samuel Estala-Arias. *Non-archimedean analysis and a wave-type pseudodifferential equation on finite adèles*, Journal of Pseudo-Differential Operators and Applications, 11(3)(2020), 1139-1181.
- [12] Alexandra V Antoniouk, Klaudia Oleschko, Anatoly N Kochubei and Andrei Yu Khrennikov, *A stochastic p-adic model of the capillary flow in porous random medium*, Physica A: Statistical Mechanics and its Applications, 505(2018), 763-777.
- [13] Ismael Gutiérrez García and Anselmo Torresblanca-Badillo, Strong markov processes and negative definite functions associated with non-archimedean elliptic pseudo-differential operators, Journal of Pseudo-Differential Operators and Applications, 11(1)(2020), 345-362.

- [14] Ismael Gutiérrez García and Anselmo Torresblanca-Badillo, Some classes of non-archimedean pseudo-differential operators related to bessel potentials, Journal of Pseudo-Differential Operators and Applications, 11(3)(2020), 1111-1137.
- [15] Anselmo Torresblanca-Badillo and W. A. Zúñiga-Galindo, Non-archimedean pseudodifferential operators and feller semigroups, p-Adic Numbers, Ultrametric Analysis and Applications, 10(2018), 57-73.
- [16] Anselmo Torresblanca-Badillo and W. A. Zúñiga-Galindo, *Ultrametric diffusion*, *exponential landscapes*, *and the first passage time problem*, Acta Applicandae Mathematicae, 157(1)(2018), 93-116.
- [17] V. A. Avetisov, A. Kh Bikulov and V. Al Osipov, *p-adic description of characteristic relaxation in complex systems*, Journal of Physics A: Mathematical and General, 36(15)(2003), 4239.
- [18] L. F. Chacón-Cortés, Ismael Gutiérrez-García, Anselmo Torresblanca-Badillo and Andrés Vargas, Finite time blow-up for a p-adic nonlocal semilinear ultradiffusion equation, Journal of Mathematical Analysis and Applications, 494(2)(2021), 124599.
- [19] Andrei Khrennikov and Klaudia Oleschko, *An ultrametric random walk model for disease spread taking into account social clustering of the population*, Entropy, 22(9)(2020), 931.
- [20] Anselmo Torresblanca-Badillo, Non-archimedean generalized bessel potentials and their applications, Journal of Mathematical Analysis and Applications, 497(2)(2021), 124874.
- [21] Anselmo Torresblanca-Badillo, Non-archimedean pseudo-differential operators on sobolev spaces related to negative definite functions, Journal of Pseudo-Differential Operators and Applications, 12(1)(2021).
- [22] WA Zúñiga-Galindo and Sergii M. Torba, *Non-archimedean coulomb gases*, Journal of Mathematical Physics, 61(1)(2020), 013504.
- [23] Anselmo Torresblanca-Badillo and Edwin A Bolaño-Benitez, *New classes of p-adic evolution equations and their applications*, Journal of PseudoDifferential Operators and Applications, 14(1)(2023).
- [24] Ahmed I Zayed, On the relationship between the fourier and fractional fourier transforms, IEEE signal processing letters, 3(12)(1996), 310-311.
- [25] Ahmed I Zayed, A convolution and product theorem for the fractional fourier transform, IEEE Signal processing letters, 5(4)(1998), 101-103.
- [26] Luis B. Almeida, *The fractional fourier transform and time-frequency representations*, IEEE Transactions on signal processing, 42(11)(1994), 3084-3091.
- [27] Ahmed I. Zayed, *Fractional fourier transform of generalized functions*, Integral Transforms and Special Functions, 7(3-4)(1998), 299-312.

- [28] A. C. McBride and F. H. Kerr, *On namias's fractional fourier transforms*, IMA Journal of Applied Mathematics, 39(2)(1987), 159-175.
- [29] Albert Kh Bikulov, On solution properties of some types of p-adic kinetic equations of the form reaction-diffusion, P-Adic Numbers, Ultrametric Analysis, and Applications, 2(2010), 187-206.
- [30] B. Dragovich, A. Yu Khrennikov, S. V. Kozyrev, I. V. Volovich, and E. I. Zelenov, *p-adic mathematical physics: the first 30 years*, P-Adic numbers, Ultrametric Analysis and Applications, 9(2017), 87-121.
- [31] Sergei Vladimirovich Kozyrev, *Methods and applications of ultrametric and p-adic analysis: from wavelet theory to biophysics*, Sovremennye Problemy Matematiki, 12(2008), 3-168.
- [32] Stewart N. Ethier and Thomas G. Kurtz, *Markov processes: characterization and convergence*, John Wiley & Sons, (2009).
- [33] M. H. Taibleson. Fourier analysis on local fields, Princeton University Press, (1975).
- [34] Thierry Cazenave and Alain Haraux, *An introduction to semilinear evolution equations*, Volume 13, Oxford University Press on Demand, (1998).