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Abstract

In this manuscript, we define the first type of non-archimedean pseudo-differential operator
associated with the fractional Fourier transform and Bessel potentials, denoted by J“, w > 1 and
second type of non-archimedean pseudo-differential operator A“ on D(Q,). We show that these
operators holds the positive maximum principle and a strongly continuous, positive, contraction
semigroup on Cy(Q,). Also, we solve Cauchy problem ( the inhomogeneous initial value problem )

related to fractional Fourier transform and these operators.
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1. Introduction

The connections of non-archimedean pseudo-differential operators with certain p-adic
pseudo-differential equations that describe certain physical models [1-9]. Therefore, non-archimedean
pseudo-differential operators have received a lot of attention in two decades.Non-archimedean
pseudo-differential operators have gained popularity in recent years due to their utility in studying
certain equations associated with new physical models/Models in physical form [10-16]. The interest
in pseudo-differential operators in the p-adic context has grown significantly in recent years as a
result of their utility in modelling various types of physical phenomena. For example, modelling
geological processes (such as the formation of petroleum micro-scale reservoirs and fluid flows in
porous media such as rock); the dynamics of complex systems such as macromolecules, glasses, and
proteins; the study of Coulomb gases, etc. [17-22]. Nonlocal diffusion problems arise in a wide range
of applications in the archimedean setting, including biology, image processing, particle systems, and

coagulation models. This work is motivated/ inspired by the works of Ismael Gutiérrez Garcia and
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Anselmo Torresblanca-Badillo [14,21,23]. In 2020, Ismael Gutiérrez Garcia and Anselmo
Torresblanca-Badillo studied a class of non-archimedean pseudo-differential operators associated via
Fourier transform to the Bessel potentials [14].

In the present manuscript, we introduce notion of non-archimedean pseudo-differential operators
associated with Fractional Fourier transform and fractional Bessel potential. Let Q, be the set of
p-adic numbers and D’(Q,) be the space of distributions in Q,. If ¢ € D'(Q,) and w € C, we

introduce one dimensional p-adic fractional Bessel potential of i of order w as follows:

—

(T<9)s(0) = (max {1, 1Z]})™“P(2) = (max {1 [Z]}) ™ (Fey)(2), VL € Qy, @)

where 1, is the fractional Fourier transform of i in [24-28]. The first type of non-archimedean pseudo-
differential operator associated with the fractional Fourier transform and Bessel potentials will be
denoted by J“, w > 1. Let D(Q,) be the space of locally constant functions on Q, with compact

support. Taking inverse fractional Fourier transform on both sides of (1), we get that

(T“)o(n) = Fy ' [(max {1, |21} 9o (2)] (1) = Fy ' [(max {1, [Z[})~“(Fep) (D] (1), ()

Vip € D(Qp), V11 € Qp.

It implies that J¢“ is an non-archimedean pseudo-differential operator related to the symbol
(max {1,|Z]})“, ¢ € Qp. The interaction of non-archimedean pseudo-differential operators and
stochastic processes on p-adics has received a lot of attention in recent decades because of the
connection of the p-adic pseudo-differential equations associated with certain physical models, see
[29-31]. This fact sparked a great deal of interest in the possibility of obtaining second type of
non-archimedean pseudo-differential operators associated with certain stochastic processes on
p-adics, resulting in second type of non-archimedean pseudo-differential operators related to Bessel
potentials and fractional Fourier transform. This also motivates to define second type of
pseudo-differential operators related to Bessel potentials and fractional Fourier transform, denoted by

A%, w > 0. This operator A% is defined as follows:

(A“Y)(Q) = (—T“P)(Q) +v(0)
= Fy'[{1 - (max{1, [7]})"“}Pa(n)](Q), V¢ € D(Qp), VI € Q,. 3)

The symbol 1 — (max{1, |7|})~%, 1 € Q, defines second type of non-archimedean pseudo-differential
operator A“ on D(Q,).
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2. Mathematical Background of Fractional Fourier Analysis on Q,

Definition 2.1 (The field of p-adic numbers). Let p be a prime number. Through out this manuscript p will

denote a prime number. Firstly we define p-adic norm |.|, on Q as follows

) oo rn=0
My = )
pt, if p=pTE,

where p and o are integers coprime with p. The integer T := ord(n), with ord(0):=+o00, is called the p-adic order

of n. The unique expansion of any p-adic number 1 # 0 is of the form
n=p" " Y mip, )
i=0

where 17; € {0,1,2,...,p — 1} and ng # 0. Using (4), we define the fractional part of 1 € Q,, denoted by {1},

as the rational number

0, ify=0 orord(y) >0,

{n}y = " )fordpw)—l

poraim - gy, if ord(n) <O0.
i=0

Extention of the p-adic norm on Q, is given by

llp =11, V1 € Q.

Let ro € Z and ay € Qp. We consider I, (10) = {n € Qp : || —1ol|p, < p'°}. The empty set and the points
are the only connected subsets of Q,. Therefore, the topological space (Qp, ||.||,) is totally disconnected. The
necesssary and sufficient condition for the compactness of a subset of Q, is that bounded and closed subdet of

Qyp, seeeg [8].

3. Few Functional Spaces

A function f : Q, — C is called locally constant if for any 77 € Q, there exists an integer () € Z
such that f(7 +#') = f(y) for all ' € I,. A function f : Q, — C is called a test function (or
a Bruhat-Schwartz function ) if it is a compact support with locally constant. The set of all complex
valued test functions on Q, is denoted by D(Q,) or simply D. The set of all distributions (all continous
functionals) on D is denoted by D’'(Q)) or simply D’. The mapping (U, ¢) : D'(Q,) x D(Q,) — C for
U e D'(Qp) and ¢ € D(Q,) is defined as follows:

(U, p) = /(D () (g)dg.

Definition 3.1 (Regular Distribution). Let M be an arbitrary compact subset of Qp. ie. M C Qp. Then
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L}.(Qp) = {¢|¢ : Qy — C such that ¢ € L'(M)}. A distribution ¢ € D(Q,) is defined by every function
¢ € L}, .(Qp) according to the formula

loc

(09) = | @@

4
This type of distributions is known as reqular distributions.
Let o € [0, co). Then the set L7(Q,, dx) = {h : Q, — C such that pr |h(x)|7dx < oo}, the set
L*(Qp, dx) = {h : Q, — C such that essential supremum of |h| < oo}, the set C(Q,,C) = {h :
Q,—C and h is a continous function}, and the set

Co(Qp,C) = {h:Q, — C and h is a continous function and lim h({) =0}

[11]p—>e0
are complex vector space under the binary operation vector addition (+) and scalar multiplication (.). It also
implies that (Co(Qp,C), ||.||r~) is a Banach space.
4. Fractional Fourier Transform on Q,

In this chapter, we introduce the definition of fractional Fourier transform on the field of p-adic

numbers Q,. Firstly, the map )(g(. , .) is defined on Qy as follows:

Vg, 17 € Qpl
ﬂew_igch O£ nm,ne€Z
X0(§ n) = , —,
pl6, 1 ity 9=1=
V2r ’ 2

1—icotd
o _
C’ = o

If p € L'(Q,), its fractional Fourier transform of one dimension is defined as follows:

(Fow) (1) = o) = /Q X)L, forn € Qp. (5)

The inverse fractional Fourier transform of a map ¢ € L'(Q,) is

(F5'9)(Q) = /Q (@ me(ndy,  for{ € Q. (6)

The fractional Fourier transform is an isomorphism, continuous and linear map of D(Q,) onto itself

holding
(Fo(Fy'9))(Q) = (F5 {(Fo)) (D) = ¢(2), 7)

for every ¢ € D(Q,).
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5. The Fractional Fourier Transform Related to Non-archimedean Pseudo-differential

Operator J¢“

We define first type of non-archimedean pseudo-differential operator J“, w > n associated with

fractional Fourier transform to the Bessel potentials in this chapter.

Definition 5.1. If ¢ € D(Q,), w € C, we discuss the one dimensional p-adic Bessel potential related to

fractional Fourier transform of order w of ¥ as follows:

(T9)4(2) = (max {1,12]})Ps(£) = (max {1,121})"“(Fop)(©), Y €Q, ®)

The one dimensional p-adic gamma function T, is defined as

1— pwfl

Fp(w)zl_ o forw#0eC.

Definition 5.2. First type of non-archimedean pseudo-differential operator 7« : D(Q,) — D(Qp), w > n

associated with fractional Fourier transform to the Bessel potentials is defined as follows:

(T)o(n) = Fo ' [(max {1,121})"“$a(2)] (1) = Fy ' [(max {1,121}) = (Foy) ()] (n), ©)

Vip € D(Qp), Yy € Qp, with the symbol (max {1,|C|})~¢
Lemma 5.3. Let t be a possitive real number. Then, the symbol e~t(mex {LIEIN™ € 11(Q,).

Proof. For r > 1, we obtain e P < 1. Now, we get that

e—t(max {1,|§\})“"d _ e—t+ 1— -1 - e—tp"“’ 7
, ; A=y HLe™"p

P
< Zp—p

= -1<

Therefore, the symbol e~ (max {LIZ[H™ ¢ LY(Q,). O

Lemma 5.4. The Cauchy problem involving fractional Fourier transform

WL — gop(g, 1), 0<t<o, [€Q,

9(Z, 0) = 9o(Z) € D(Qp).

Then

» max{1, [y|})
¢(g, t) =[D Xy (C1) = (Fopo) (n)dn

is a classical solution of the above Cauchy problem.
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Proof. Since, we have

(g, t)
ot

= jwq)(gl t)

p—Hmax{1, [y]})~
= F;'[(max {1,]]}) = (Fogo) ()] ()

» etmax{1, [y}
= Jo, X (¢,m)(max {1,|C|}) = (Fowo) (17)dy,
P

for 0 <t < oo, € Qp. The formula is based on the fact that

e tmax{1, ) 1
G (Fag))| < |(Fagu) )] € (@)

and that

.  emtlmax{, ) :
X € max (1,111 g (Fagn) )| < [(Fogu) )] € L@

Now, using the Dominated Convergence Theorem and [16], Lemma 1-(i), we have

(Z,.) € CY([0. )).

Since
. Y e tmax{L [yl
TP 1= | 1 n)max {1, j2l}) i (Fopo) ()

for 0 <t < oo, ¢ € Qp. The formula is based on the fact that

e—Hmax{1, [5|})~
(0 1) = Fy ' [(max {1101} ——== (Fopo) ()] (2) € L*(Qp),

for any t € R and that

—t(max{1, |7[})~
(max {1, ]¢]}) ™ ——z=5——(Fogo) (1) € LA(Q,)

for any t € R, by [16], Lemma 1 (i). It implies that

» e tmax{1, [g]})
@l t) = o, X7 (& n) = (Fopo) (17)dn
P

is a classical solution of the above Cauchy problem.



Notion of Non-archimedean Pseudo-differential Operators Associated... / Abhisekh Shekhar, Annu Kumari 181

6. On Cy(Qyp), the Positive Maximum Principle and a Strongly Continuous, Positive,

Contraction Semigroup

In this section, we will demonstrate that the operator — 7 holds the positive maximum principle on
Co(Qy), as well as that the closure — 7 of the operator — 7% on Co(Q,) is single-valued and generates

a strongly continuous, positive, contraction semigroup {U({)} on Co(Qp).

Definition 6.1 ([14]). An operator ® : Co(Q,) — Co(Qp) is said to satisfy the positive maximum principle if
whenever ¢ € domain of ® C Co(Qy), Co € Qp, and sup;.q ¢(C) = ¢(Zo) = 0 we have B(P(Zo)) < 0.

Theorem 6.2. On Co(Q,),

(i) the operator

(=T“P) () = —F5 ' [(max {1,121})"Pe(0)] (1) = —Fy * [(max {1, |Z1}) = (Fo) ()] (),

1, ¢ € Qpand ¢ € D(Qp) holds the positive maximum principle.

(ii) The closure —J< of the operator — T on Co(Qy) is single-valued and generates a strongly continuous,

positive, contraction semigroup {U({)} on Co(Qp).
Proof. The proof of the Theorem 6.1 is similar to the one given in [14,32,33]. O

Definition 6.3. The graph of —J% is denoted by G(—J*), defined as follows:
G(-7) = {(99) € 12(Q)) ¥ L(Q)ig € D(-T*) and ¥ = ~T 9}

It is also closed in L*(Q,).

Definition 6.4. An operator ¥ with domain D(¥) in L*(Qy) is said to be dissipative if re(¥¢, ¢) < 0, where
L?(Qy) is the Hilbert space with the inner product

(9, 9) = /‘D P(0)9(Q)d, ¢, ¢ € LX(Q,).

P

Theorem 6.5. The operator —J* is dissipative in L*(Q,).

Proof.

(= Fy (max {1,1211)~“$s(2)] (n), 9)
= (—(max {1,1Z1})"“Pe(2), $o(2))
- - /Q (max {1,[Z]})~“|e () Pdg < 0.

(=T“¢,¢)

The proof of the Theorem 6.5 is achieved. O
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Definition 6.6 ([34]). An operator ¥ in L*(Q,) is m-dissipative if
(1) Y is dissipative;
(i) forall p > 0 and all ¢ € L*(Q,), there exists ¢ belongs to domain of ¥ such that ¢ — p¥ ¢ = ¢.

Theorem 6.7. The operator —J“ is self-adjoint. It implies that

(TP, ) = (¢, —T“Y), Vo, € L*(Qp).

Proof. Let ¢, €€ L*(Q,). Using the Parseval-Steklov equality, we obtain that

(TG p) = <—f;1[<max{1,|§|}>-waﬁ<a>],w>
= - /Q (max{1,[Z]})~“s({) B0 (0)dC

_ ‘/Qp<max{1,r§r} o (¢ )1”(’7”’7]‘%

_ /(D 430<g><max{1,|g|}>—ww< > c

- <4>,—f;1[<max{1,|z;|}>-%<@>]>
= (p,=T“YP), Vo, p € L*(Qp).

The proof of the Theorem 6.7 is achieved. O

Theorem 6.8. M-dissipative property is satisfied by the operator —J% : L*(Q,) — L?(Qy).

Proof. The proof of the Theorem 6.8 is followed by the Theorem 6.5 and Theorem 6.7, some well-

understood results in the theory of dissipative operator [34]. O

7. Second Type of Non-archimedean Pseudo-differential Operator .A“ on D(Q,)

We will define second type of non-archimedean pseudo-differential operator A%, w > 0 on D(Q,)
with the help of fractional Fourier transform and Bessel potentials in this chapter. This operator is

combined by a linear combination of the Bessel potentials and the Identity operator.

Definition 7.1. Let i € D,(Q,). We will define and denote the non-archimedean pseudo-differential operator
A%, w > 0 as follows:

(A“P)(Q) = (=T +D)p(Q), {€Qy,

where 1T is the identity operator. Now, we get that

(A“P)(Q) = (=TY() + ()
= —Fy | (max{1,1Z])"“Ps(0) | +(C)
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=75 nax 1, 121D Fol) -~ Folc)]
= 7 {1 o),

i.e, using the symbol 1 — (max{1,||})™%, w >0, { € Q, second type of non-archimedean pseudo-differential
operator A“ on D(Q,) is defined.

Lemma 7.2. The Cauchy problem involving the inverse of the fractional Fourier transform

WL — _(Avy)(g, 1), 0<t<co, (€Q,
(2, 0) =¢o(0) € D(Qp).

Then
—t(max{1, |y[})~¢

R R e e L

is a classical solution of the above Cauchy problem.

Proof. Proof of the Lemma 7.2 is similar to the Lemma 5.4. O

8. Conclusion

We will show that the heat equation associated to the operator 7, w > 1, describes the cooling (or loss
of heat) in a given region over time, since the fundamental solution Z((,t) (explicitly represented), of
real positive time variable and p-adic spatial variables satisfies either Z(,t) > 0or Z({,t) < 0. We will
also study Feller semigroups and stochastic processes related to the second type of non-archimedean

pseudo-differential operator A“ on D(Q,).

Discussion for Further Research

There are potential directions for future research of my manuscript by using many types of integral

transformations.
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