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Abstract

Two concepts of VH-sets and almost VH-sets are introduced to study connected ordered topological

spaces (COTS). We show that every R(i) subset of a connected space is an almost VH-set. Two

characterizations of COTS with endpoints using the concept of almost VH-set have been obtained. It

is also proved that if X is a connected non-cut point inclined space and the removal of any two-point

disconnected set of it leaves the space disconnected, then each one of H ∪ {a, b} and K ∪ {a, b} has

exactly two non-cut points, and is homeomorphic to a finite connected subspace of the Khalimsky

line where H and K are separating sets of X \ {a, b}, a, b ∈ X.
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1. Introduction

Topological spaces having at least three points are assumed to be connected for any consideration of

cut points. The concept of COTS (= connected ordered topological space), is defined by Khalimsky,

Kopperman and Meyer in [8]. Some properties of COTS are studied in [8] and [7]. Several

characterizations of COTS with endpoints are obtained in [2–6]. In notation and terminology, we will

follow [6] and [9]. In this paper, we introduce two concepts namely VH-set and almost VH-set to

study connected ordered topological spaces (COTS). The main results of the paper appear in Sections

2, 3 and 4. In Section 2, we prove that if H is a VH-set of a COTS, then H ⊂ S[a, b] for some a and b of

H. Using this result, it is shown that if H is a VH-set of COTS X, then there exist a and b in H such

that H is contained in a COTS with endpoints a and b. In Section 3, we show that every R(i) subset of

a connected space is an almost VH-set. Also, we prove that if a connected space X has a

non-degenerate almost VH-set H such that there is no proper regular closed connected subset of X

the interior of which contains H, then there is no proper non-empty cut point convex subset of X

containing all the non-cut points of X. Thus Theorem 4.2 of [6] is strengthened since R(i) subsets of
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connected spaces are almost VH-sets. A connected space X is a COTS with endpoints iff X has at

most two non-cut points and an almost VH-set H such that there is no proper regular closed,

connected subset of X the interior of which contains H. In Section 4, it is proved that if X is a

connected non-cut point inclined space and the removal of any two-point disconnected set of it leaves

the space disconnected, then each one of H ∪ {a, b} and K ∪ {a, b} has exactly two non-cut points, and

is homeomorphic to a finite connected subspace of the Khalimsky line where H and K are separating

sets of X \ {a, b}, a, b ∈ X.

2. VH-sets and COTS

We say that a non-degenerate subset H of a topological space X is a VH-set if for every non-empty

cut point convex subset Y of X such that ∅ ̸= (H \ Y) ⊂ ctX, there exists some q ∈ H \ Y such that

H ⊂ clX((Aq(Y))+q).

In view of Lemma 3.13 of [6], if X is connected, then every non-degenerate H-set is VH-set. In

fact, every non-degenerate cut point H-set [6] of a connected space is VH-set. Therefore, following

Theorems 2.1, 2.2, 2.3, 2.4 and Corollary 2.5 strengthens Lemma 3.13, Theorems 3.14, 3.15, 3.20 and

Corollary 3.21 of [6] respectively. We also note that the proofs of following theorems 2.1, 2.2, 2.3, 2.4

and Corollary 2.5 follow on the lines of proofs of Lemma 3.13, Theorems 3.14, 3.15, 3.20 and Corollary

3.21 of [6] respectively. For completeness, we have included the proofs.

Theorem 2.1. Let X be a connected space. If H is a non-degenerate VH-set of X, then for every non-empty

cut point convex subset Y of X such that ∅ ̸= (H \ Y) ⊂ ctX, there exists some z ∈ H \ Y such that

H ⊂ (Az(Y))+z.

Proof. Let Y be a non-empty cut point convex subset of X such that ∅ ̸= (H \ Y) ⊂ ctX. Since H is

VH-set, there exists some q ∈ H \Y such that H ⊂ clX((Aq(Y))+q). If H ̸⊂ (Aq(Y))+q, then there exists

some p ∈ H ∩ Bq. Since Aq(Y) ∩ Bq = ∅, p ∈ H \ Y and so p is a cut point of X. Since (Aq(Y))+q is

connected by Lemma 2.1 of [6] and (Aq(Y))+q ⊂ X \ {p}, we have (Aq(Y))+q ⊂ Ap(Y), where Ap(Y) is

the separating set of X \ {p} containing Y. Therefore H ⊂ clX((Aq(Y))+q) ⊂ clX(Ap(Y)) ⊂ (Ap(Y))+p,

the last containment is in view of Lemma 2.1 (a) of [4]. The proof is complete.

Theorem 2.2. Let X be a connected space. Let H ⊂ X be a non-degenerate VH-set such that H ⊂ ctX.

(i) Let z ∈ H. There is some qz ∈ H such that H ⊂ (Aqz)
+qz .

(ii) If H is not connected, then for each connected component K of H, there exists qK ∈ H \ K such that

H ⊂ (AqK(K))
+qK . Therefore, H ⊂ ⋂{(AqK(K))

+qK : K is a connected component of H}.

Proof. (i) If H ̸⊂ (Az)+z, then H \ (Az)+z ̸= ∅. Now (Az)+z is cut point convex by Proposition

3.1(i) of [5]. Since H is VH-set, so using Theorem 2.1, there is some qz ∈ H \ (Az)+z such that H ⊂

(Aqz((Az)+z))+qz .
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(ii) K is cut point convex by Proposition 3.1 (i) of [5], and H \ K ̸= ∅ as H is not connected. Therefore

using Theorem 2.1, there is some qK ∈ H \ K such that H ⊂ (AqK(K))
+qK as H is VH-set. Thus

H ⊂ ⋂{(AqK(K))
+qK : K is a connected component of H}.

Theorem 2.3. Let X be a connected space and H ⊂ X is a non-degenerate VH-set.

(i) If z ∈ H is such that H \ {z} ⊂ ctX, then there exist distinct points q and p of H such that either

H ⊂ S[p, q] ⊂ (Aq(p))+q, or H ⊂ (Aq(z))+q ∩ (Ap(S[z, q]))+p.

(ii) If H ⊂ ctX, then for each z ∈ H, there exist distinct points q and p of H such that H ⊂ S[p, q] ⊂

(Aq(p))+q ∩ (Ap(q))+p, or H ⊂ (Aq(z))+q ∩ (Ap(S[z, q]))+p.

Proof. (i) By Theorem 2.1, there is some q ∈ H \ {z} such that H ⊂ (Aq(z))+q. If H ⊂ S[z, q], then the

result hold by taking z = p and by Proposition 3.1(i) of [5]. Otherwise H \ S[z, q] ̸= ∅. S[z, q] is a cut

point convex set using Lemma 2.1(II) of [2], so, by Theorem 2.1, there is some p ∈ H \ S[z, q] such that

H ⊂ (Ap(S[z, q]))+p.

(ii) Let z ∈ H. Since H ⊂ ctX, H \ {z} ⊂ ctX. Therefore, by (i), there exist distinct points q and p

of H such that either H ⊂ S[p, q] ⊂ (Aq(p))+q, or H ⊂ (Ap(S[z, q]))+p ∩ (Aq(z))+q. Since H ⊂ ctX,

p ∈ ctX. Ap(q)+p being connected by Lemma 2.1 of [6], is cut point convex by Proposition 3.1(i) of [5].

So S[p, q] ⊂ Ap(q)+p. This completes the proof of (ii).

Theorem 2.4. Let X be a COTS. If H is an VH-set of X, then H ⊂ S[a, b] for some a, b ∈ H.

Proof. By Proposition 2.5 of [8], X has at most two non-cut points. So we can find a, b ∈ H, with

a < b in the given total order ≤ of X, such that H \ {a, b} ⊂ ctX. If H ⊂ S[a, b], we are done.

Otherwise H \ S[a, b] ̸= ∅. In view of Lemma 2.1(II) of [2], S[a, b] is a cut point convex set. Therefore,

H ⊂ (Ap(S[a, b]))+p for some p ∈ H \ S[a, b] using Theorem 2.1 as H is VH-set. Since p ∈ ctX,

Ap(S[a, b]) equals L(p) or R(p) in view of Theorem 2.7 of [8].

Case 1: Ap(S[a, b]) = L(p). For every h ∈ H, h < p, and a < b < p. If H ⊂ S[a, p], we are done.

Otherwise H \ S[a, p] ̸= ∅. In view of Lemma 3.19 of [6], b ∈ S(a, p), so H \ S[a, p] ⊂ ctX. S[a, p]

is cut point convex, so H ⊂ (At(S[a, p]))+t for some t ∈ H \ S[a, p] using Theorem 2.1 since H is

VH-set. Since t ∈ ctX, in view of Theorem 2.7 of [8], (At(S[a, p]))+t equals L(t) or R(t). But t < p, so

(At(S[a, p]))+t = R(t). This implies that for every h ∈ H, t < h. Therefore H ⊂ S[t, p] using Lemma

3.19 of [6].

Case 2: Ap(S[a, b]) = R(p). In this case, p < a < b, and, for every h ∈ H, p < h. If H ⊂ S[p, b], we are

done. Otherwise H \ S[p, b] ̸= ∅. In view of Lemma 3.19 of [6], a ∈ S(p, b), so H \ S[p, b] ⊂ ctX. S[p, b]

is cut point convex, so H ⊂ (At(S[p, b]))+t for some t ∈ H \ S[p, b] using Theorem 2.1 as H is VH-set.

Since t ∈ ctX, So (At(S[p, b]))+t equals L(t) or R(t). But p < t. So (At(S[p, b]))+t = L(t). Therefore

H ⊂ S[p, t] using Lemma 3.19 of [6]. The proof is complete.
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Corollary 2.5. Let X be a COTS. If H is a VH-set of X, then there exist a and b in H such that H is contained

in a COTS with endpoints a and b.

Proof. By Theorem 2.4, H ⊂ S[a, b] for some a, b ∈ H. Since by Theorem 3.2(b) of [8], S[a, b] is a COTS,

the result follows.

3. Almost VH-sets and COTS

Call a non-degenerate subset H of a topological space X an almost VH-set if for every non-empty

cut point convex subset Y of X such that ∅ ̸= (X \ Y) ⊂ ctX, there exists some q ∈ X \ Y such that

H ⊂ clX((Aq(Y))+q). In view of Lemma 3.1 of [6], we note that every non-degenerate subset of a

connected space with endpoints is an almost VH-set.

Theorem 3.1. Let X be a connected space. If H is an R(i) subset of X, then H is an almost VH-set.

Proof. Let Y be a proper non-empty cut point convex set such that ∅ ̸= (X \Y) ⊂ ctX. As X \Y ⊂ ctX,

by Theorem 3.7 of [6], there exists an infinite chain α of proper regular closed connected sets of the

form (Ax(Y))+x where x ∈ X \ Y, x a closed point of X, covering X. Since H is R(i), H ∩ Bx = ∅ for

some (Ax)+x ∈ α using Lemma 4.1 of [6]. Therefore H ⊂ Ax(Y)+x. Thus H is an almost VH-set.

In view of Theorem 3.1, the following result strengthens Theorem 4.2 of [6].

Theorem 3.2. If a connected space has a non-degenerate almost VH-set H such that there is no proper regular

closed connected subset of X the interior of which contains H, then there is no proper non-empty cut point convex

subset of X containing all the non-cut points of X.

Proof. We prove the result by contradiction. Let Y be a proper non-empty cut point convex set of X

with X \ Y ⊂ ctX. Then there exists some q ∈ X \ Y such that H ⊂ clX((Aq(Y))+q) as H is almost

VH-set. So in view of Remark 2.3 of [4] and Lemma 3.5 (i) of [6], we have H ⊂ Ay(Y)+y for some

closed point y ∈ X \ Y. Take z ∈ By. Then z ∈ ctX. So Ay(Y)+y ⊂ Az(Y). Therefore H ⊂ Az(Y).

Now by remark 2.3 of [4], H ⊂ intX(Az(Y)+z). So H ⊂ intX(clX(Az(Y)+z)). By Lemma 3.5(ii) of [6],

clX(Az(Y)+z) is a proper connected regular closed subset of X. This gives a contradiction to the given

condition. The proof is complete.

Theorem 3.3. If a connected space has a non-degenerate almost VH-set H such that there is no proper regular

closed connected subset of X the interior of which contains H, then X has at least two non-cut point.

Theorem 3.4. A connected space X has at most two non-cut points and an almost VH-set H such that there is

no proper regular closed, connected subset of X the interior of which contains H iff X is a COTS with endpoints.

Proof. If X has an almost VH-set H such that there is no proper regular closed, connected subset of

X containing H, then, by Theorem 3.3, X has at least two non-cut points. Therefore, by the given

condition, X has exactly two non-cut points, say, a and b. Let x ∈ X \ {a, b}. Then x ∈ ctX. Since
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each of (Ax)+x and (Bx)+x is connected, so using Theorem 3.2, there is no proper connected subset of

X containing X \ ctX. But X \ ctX = {a, b}. So a ∈ Ax and b ∈ Bx or conversely. This implies that

x ∈ S(a, b). Hence X = S[a, b]. Now by Theorem 3.2 of [2], X is a COTS with endpoints a and b.

Conversely suppose that X is a COTS with endpoints. Then X is a connected space with endpoints,

say, a and b. Therefore, by Lemma 3.1 of [6], there is no proper cut point convex set of X containing

{a, b} since using theorem 3.1 of [2], a and b are the only non-cut points of X. This implies that there

is no proper regular closed, connected subset of X the interior of which contains {a, b} = H. Also, H

is almost VH-set. The proof is complete.

Theorem 3.5. If a connected space has a non-degenerate almost VH-set H such that there is no proper regular

closed connected subset of X the interior of which contains H, then for each x ∈ ctX, Ax contains a non-cut

point of X.

Proof. If we suppose to the contrary, then Ax ⊂ ctX. This implies that X \ ctX ⊂ (Bx)+x, where Bx is

the other separating set of X \ {x}. But this contradicts Theorem 3.2 as (Bx)+x is connected.

Theorem 3.6. If a connected and locally connected space X has at most two non-cut points and a non-degenerate

almost VH-set such that there is no proper regular closed connected subset of X the interior of which contains H,

then X is a compact COTS with endpoints.

Proof. By Theorem 3.4, X is a COTS with endpoints. Now the theorem follows by Theorem 4.4 of

[3].

Theorem 3.7. If a T1 separable, connected and locally connected space X has at most two non-cut points and a

non-degenerate almost VH-set such that there is no proper regular closed connected subset of X the interior of

which contains H, then X is homeomorphic to the closed unit interval.

Proof. By Theorem 3.4, X is a COTS with endpoints. Now the theorem follows by Corollary 6.2 (i) of

[3].

The following result is an analogous to Theorem 2.1.

Theorem 3.8. Let X be a connected space. If H is a non-degenerate almost VH-set of X, then for every non-

empty cut point convex subset Y of X such that ∅ ̸= (X \ Y) ⊂ ctX, there exists some z ∈ X \ Y such that

H ⊂ (Az(Y))+z.

The following results are analogous to Theorems 3.2 and 3.3 respectively.

Theorem 3.9. Let P be a cut point hereditary property. If a connected space having the property P has a non-

degenerate almost VH-set H such that there is no proper regular closed connected subset having the property P,

of X the interior of which contains H, then there is no proper non-empty cut point convex subset of X containing

all non-cut points of X.
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Proof. Let Y be a proper non-empty cut point convex set of X with X \ Y ⊂ ctX. Then there exists

some q ∈ X \ Y such that H ⊂ (Aq(Y))+q using Theorem 3.8 as H is almost VH-set. By Lemma 3.5

of [1], Bq contains a closed point, say z of X. Then z ∈ ctX. Since P is cut point hereditary, it follows

that Aq(Y)+q ⊂ Az(Y) and Az(Y)+z has Property P. Therefore H ⊂ Az(Y). Now by Remark 2.3 of

[4], H ⊂ intX(Az(Y)+z) which is a contradiction to given condition as Az(Y)+z is a proper connected

regular closed subset having property P, of X. The proof is complete.

Theorem 3.10. Let P be a cut point hereditary property. If a connected space having the property P has a non-

degenerate almost VH-set H such that there is no proper regular closed connected subset having the property P,

of X the interior of which contains H, then X has at least two non-cut point.

The following theorems are analogous to Theorems 3.4, 3.6 and 3.7 respectively.

Theorem 3.11. Let P be a cut point hereditary property. A connected space X having the property P has at most

two non-cut points and an almost VH-set H such that there is no proper regular closed, connected subset having

property P, of X the interior of which contains H iff X is a COTS with endpoints.

Theorem 3.12. Let P be cut point hereditary. If a connected and locally connected space X has at most two

non-cut points and a non-degenerate almost VH-set such that there is no proper regular closed connected subset

having property P, of X the interior of which contains H, then X is a compact COTS with endpoints.

Theorem 3.13. Let P be a cut point hereditary property. If a T1 separable, connected and locally connected space

X has at most two non-cut points and a non-degenerate almost VH-set such that there is no proper regular closed

connected subset having property P of X the interior of which contains H, then X is homeomorphic to the closed

unit interval.

4. Non-cut Points and Finite Connected Subspaces of the Khalimsky Line

In Theorem 3.5 of [3], it is assumed that cd(X) is finite, which is too stringent a condition. Assuming

a space to be non-cut point inclined [6] is comparatively weaker. To prove a result like Theorem 3.5 of

[3] by assuming the space to be non-cut point inclined we need the help of following lemma.

Lemma 4.1. For a connected space X, let a, b ∈ X with a ̸= b be non-cut points of X. Let H be a separating set

of X \ {a, b}. Then

(1) cd(H ∪ {a, b}) ⊂ cd(X).

(2) If B is a regular closed connected subset of H ∪ {a, b}, then either B is regular closed in X or clX(B) is

regular closed in X.

(3) If X has non-cut point inclined property, then H ∪ {a, b} has non-cut point inclined property.



A Note on Non-cut Points, VH-sets, Almost VH-sets and COTS / Devender Kumar Kamboj 135

Proof. Let K be the other separating set of X \ {a, b} corresponding to H. Following the proof of

Lemma 3.11(I) of [3], we have either clX(H) = H and clX(K) = K or clX(H) = H ∪ {a, b} and clX(K) =

K ∪ {a, b} or clX(H) = H ∪ {a} and clX(K) = K ∪ {a} or clX(H) = H ∪ {b} and clX(K) = K ∪ {b}.

(1) To prove (1), it suffices to show that a, b ∈ cd(X) whenever a, b ∈ cd(H ∪ {a, b}). Suppose that

a ∈ cd(H ∪ {a, b}). Then a ∈ cd(H ∪ {a}). If clX(H) = H ∪ {a, b} or clX(H) = H ∪ {a}, then we

are done. If clX(H) = H, then H ∪ {a} becomes disconnected which is not possible because using

Lemma 2.1 of [6], H ∪ {a} is connected as b ∈ X \ ctX. Finally consider the case clX(H) = H ∪ {b}

and clX(K) = K ∪ {b}. This implies that {a} is open in X, and so {a} is open in H ∪ {a} which

gives a contradiction as a ∈ cd(H ∪ {a}) and H ∪ {a} is connected. Thus a ∈ cd(X). Similarly,

b ∈ cd(X) if b ∈ cd(H ∪ {a, b}). This completes proof of (1).

(2) Using given conditions, a ∈ ct(X \ {b}) and b ∈ ct(X \ {a}). So, using Lemma 2.2 (e) of [4], the

following four cases arise.

Case (i): {a} is open in X \ {b} and {b} is open in X \ {a}. This implies that a, b /∈ clX(K). So, K is

closed in X as clX(K) ⊂ K ∪ {a, b}. Thus H ∪ {a, b} is open in X. Therefore clX(B) is regular closed

in X by Remark 2.3(b)(i) of [6].

Case (ii): {a} is closed in X \ {b} and {b} is closed in X \ {a}. Then a, b ∈ clX(H) ∩ clX(K).

Therefore clX(H) = H ∪ {a, b} and clX(K) = K ∪ {a, b}. This implies that H ∪ {a, b} is regular

closed in X. Therefore, B is regular closed in X by Lemma 2.4 of [6].

Case (iii): {a} is closed in X \ {b} and {b} is open in X \ {a}. Then a ∈ clX(H) ∩ clX(K) and b /∈

clX(H)∪ clX(K). This implies that {a} is closed in X and H ∪ {b} is open in X. Let B = clH∪{a,b}(G)

for some G open in H ∪ {a, b}. Since H ∪ {a, b} is connected, G \ {a} ̸= ∅. Also, G \ {a} is open in

H ∪ {a, b} as G \ {a} ⊂ H ∪ {b} and H ∪ {b} is open in X. If a /∈ G, then B = clH∪{a,b}(G \ {a}).

If a ∈ G, then, since B = (clH∪{a,b}(G \ {a})) ∪ {a} and B is connected, a ∈ clH∪{a,b}(G \ {a}). So,

B = clH∪{a,b}(G \ {a}). Use of Remark 2.3(a) of [6] now implies clX(B) is regular closed in X.

Case (iv): {a} is open in X \ {b} and {b} is closed in X \ {a}. In this case, clX(B) is regular closed

in X follows on the lines of case (iii). The proof of (2) is complete.

(3) Let B be a proper non-degenerate regular closed connected subset of H ∪ {a, b}. Then by part (2),

either B or clX(B) is regular closed in X. Also, clX(B) ̸= X as B is a proper subset of H ∪ {a, b}.

Therefore, by given condition, cd(X) ∩ B is finite. Using part (I), cd(H ∪ {a, b}) ∩ B is finite.

In the outcome of the above lemma, H ∪ {a, b} and K ∪ {a, b} behave alike. Also, we note below that

if a connected space has non-cut point inclined property, then H ∪ {a, b} and K ∪ {a, b} behave alike

regarding non-cut points and being COTS. The following is a result like Theorem 3.5 of [3] proved

under weaker assumption.
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Theorem 4.2. Let X be a connected non-cut point inclined space and the removal of any two-point disconnected

set of it leaves the space disconnected. If H and K are separating sets of X \ {a, b}, a, b ∈ X, then each one of

H ∪ {a, b} and K ∪ {a, b} has exactly two non-cut points, and is homeomorphic to a finite connected subspace

of the Khalimsky line.

Proof. By Corollary 5.9 of [6], ctX = ∅. So each one of H ∪ {a, b} and K ∪ {a, b} is connected by

Lemma 3.3 of [3]. Using Lemma 4.1 (3), each one of H ∪ {a, b} and K ∪ {a, b} has non-cut point

inclined property. By part (i) of Theorem 3.4 of [3], one of H ∪ {a, b} and K ∪ {a, b} has exactly two

non-cut points. If H ∪ {a, b} has exactly two non-cut points, then using Theorem 5.6 of [6], H ∪ {a, b}

is homeomorphic to a finite connected subspace of the Khalimsky line. So, H ∪ {a, b} is a COTS by

definition of the Khalimsky line ([1]). Thus, in view of Theorem 3.4 (ii) of [3], each one of H ∪ {a, b}

and K ∪ {a, b} has exactly two non-cut points. Now using Theorem 5.6 of [6], each one of H ∪ {a, b}

and K ∪ {a, b} is homeomorphic to a finite connected subspace of the Khalimsky line.
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