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Abstract

This manuscript gives methods of constructing multifactor BAFDs of type II. Multi-factor BAFDS

of type II are constructed from two factor BAFDs. Two methods of construction are given. The

first method is the product of balanced arrays which is similar to the product of orthogonal arrays

defined by [4]. The second methods was given by [28] which generates a BAFD from two given

BAFD’s. These methods can provide efficient BAFD’s if efficient two factor BAFD’s are used. The

designs constructed are balanced with orthogonal factorial structure.

Keywords: Balanced Arrays; Orthogonal Arrays; effiecient BAFD’s; Designs; Balance; Orthogonal

Factorial Structure; BAFD’s.

1. Introduction

In many situations there arise scenarios when an experimenter has to use factors at different levels.

The problem of obtaining confounded plans for such cases has received a good deal of attention. To

this extent, [37], by trial and hit methods obtained confounded plans of the type 3m × 2n, where m and

n are any positive integers. Using orthogonal arrays of strength 2 [25] gave methods for constructing

Extended Group Divisible Designs {EGD} for s1 × s2 experiments in blocks of size s1 < s2. [33]

starting from a basic s1 × s2 design in blocks of size s2 (s2 < s1, s1 being a prime number or power

of prime) obtained three factor designs. [27] constructed some series of designs from orthogonal

latin squares for s1 × s2 experiments in block of size s1 and s2 − 1 replications. [32] gave a class of

balanced designs with OFS. [23] considered the use of balanced incomplete block designs for the

construction of s1 × s2 balanced factorial designs with OFS when s1 > s2. Informative accounts

and subsequent developments have been done by [14,19,31]. [29] proposed a general method of

obtaining block designs for asymmetrical confounded factorial experiments using block designs for
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symmetrical factorial experiments. [15] describes a general method of construction of supersaturated

designs for asymmetric factorials obtained by exploiting the concept of resolvable orthogonal arrays

and Hadamard matrices. [12] considered three forms of a general null hypothesis Ho on the factorial

parameters of a general asymmetrical factorial paired comparison experiment in order to determine

optimal or efficient designs. [18] constructed designs by using confounding through equation methods.

Construction of confounded asymmetrical factorial experiments in row-column settings and efficiency

factor of confounded effects was worked out. [1] attempted to construct asymmetrical factorial type

switch over designs having strip type arrangement of combination of the levels. To start with, two

factors at different levels were considered. [11] described a method of constructing cost-efficient

response surface designs (RSDs) as compared to the replicated central composite designs (RCCDs), that

are useful for modelling and optimization of the asymmetric experiments. [34] identified a Kronecker

product structure for a particular class of asymmetric factorial designs in blocks, including the classes

of designs generated by several of the classical methods in literature. [8] focuses on the construction

and analysis of an extra ordinary type of asymmetrical factorial experiment which corresponds to

a fraction of symmetrical factorial experiment as indicated by [9]. [6] establishes a lower bound to

measure optimality with respect to a main effects model in a general asymmetric factorial experiment.

[21] conceptualized the fundamental aspects of the Complete, Fractional, Central Composite Rotational

and Asymmetrical factorial designs. Recent applications of these powerful tools were described.

[3] developed a method for the construction of p × 3 × 2 asymmetrical factorial experiments with

(p − 1) replications. [30] proposed a general method of obtaining block designs for asymmetrical

confounded factorial experiments using the block designs for symmetrical factorial experiments. [38]

Constructed asymmetrical factorial designs containing clear effects. [22] explained how to choose an

optimal (s2)sn design for the practical need, where s is any prime or prime power and accordingly

considered the clear effects criterion for selecting good designs. [24] dealt with situations where there

was a need for designing an asymmetrical factorial experiment involving interactions. Failing to get

a satisfactory answer to this problem from the literature, the authors developed an adhoc method

of constructing the design. It is transparent that the design provides efficient estimates for all the

required main effects and interactions. The later part of this paper deals with the issues of how

this method is extended to more general situations and how this adhoc method is translated into

a systematic approach. [26] developed The R package DoE.base which can be used for creating full

factorial designs and general factorial experiments based on orthogonal arrays. Besides design creation,

some analysis functionality is also available, particularly (augmented) half-normal effects plots. [17]

Published a monograph that is an outcome of the research works on the construction of factorial

experiments (symmetrical and asymmetrical). In this booklet, construction frameworks have been

described for factorial experiments. The construction frameworks include general construction method

of pn factorial experiments, construction methods with confounded effects and detection methods of

confounded effects in a confounded plan.
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The concepts of combinatorial, matrix operations and linear equation technique have been deployed

to develop the methods. [8] discussed an Alternative Method of Construction and Analysis of

Asymmetrical Factorial Experiment of the type 6 × 22 in Blocks of Size 12. [8] focuses on the

construction and analysis of an extra ordinary type of asymmetrical factorial design which

corresponds to fraction of a symmetrical factorial design as indicated by [9]. For constructing this

design, they used 3 choices and for each choice they used 5 different cases. Finding the block contents

for each case shows that there are mainly two different cases for each choice. In case of analysis of

variance, is seen that, for the case where the highest order interaction effect is confounded in 4

replications, the loss of information is same for all the choices. [16] in his book chapter discusses

different methods of constructing systems of confounding for asymmetrical factorial designs,

including: Combining symmetrical systems of confounding via the Kronecker product method, use of

pseudo-factors, the method of generalized cyclic designs, method of finite rings (this method is also

used to extend the Kempthorne parameterization from symmetrical to asymmetrical factorials), and

the method of balanced factorial designs. He showed the equivalence of balanced factorial designs

and extended group divisible partially balanced incomplete block designs, establishing again a close

link between incomplete block designs and confounding in factorial designs. [10] in her book chapter

discusses confounding in single replicate experiments in which at least one factor has more than two

levels. First, the case of three-levelled factors is considered and the techniques are then adapted to

handle m-levelled factors, where m is a prime number.

Next, pseudofactors are introduced to facilitate confounding for factors with non-prime numbers of

levels. Asymmetrical experiments involving factors or pseudofactors at both two and three levels are

also considered, as well as more complicated situations where the treatment factors have a mixture of

2, 3, 4, and 6 levels. Analysis of an experiment with partial confounding is illustrated using the SAS

and R software packages. [13] shows that Asymmetrical single replicate factorial designs in blocks are

constructed using the deletion technique. Results are given that are useful in simplifying expressions

for calculating loss of information on main effects and interactions, due to confounding with blocks.

Designs for estimating main effects and low order interactions are also given. [20] in his work

presents the results of a systematic literature review (SLR) and a taxonomical classification of studies

about run orders for factorial designs published between 1952 and 2021.

The objective here is to describe the findings, main and future research directions in this field. The

main components considered in each study and the methodologies they used to obtain run sequences

are also highlighted, allowing professionals to select an appropriate ordering for their problem. This

review shows that obtaining orderings with good properties for an experimental design with any

number of factors and levels is still an unresolved issue. [36] in his present book gives, for the first

time, a comprehensive and up-to-date account of the modern theory of factorial designs.

Many major classes of designs are covered in the book. While maintaining a high level of

mathematical rigor, it also provides extensive design tables for research and practical purposes. [2] in
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his work discusses the construction of ‘inter-class orthogonal’ main effect plans (MEPs) for

asymmetrical experiments. In such a plan, the factors are partitioned into classes so that any two

factors from different classes are orthogonal. The researcher also defined the concept of “partial

orthogonality” between a pair of factors. In many of his plans, partial orthogonality has been

achieved when (total) orthogonality is not possible due to divisibility or any other restriction. He

presented a method of obtaining inter-class orthogonal MEPs. Using this method and also a method

of ‘cut and paste’ he obtained several series of inter-class orthogonal MEPs. One of them happens to

be a series of orthogonal MEP (OMEPs), which includes an OMEP for a 330 experiment on 64 runs.

[7] in his book, provides a rigorous, systematic, and up-to-date treatment of the theoretical aspects of

factorial design. To prepare readers for a general theory, the author first presents a unified treatment

of several simple designs, including completely randomized designs, block designs, and row-column

designs. As such, the book is accessible to readers with minimal exposure to experimental design.

In [5], Lee discrepancy has wide applications in design of experiments, which can be used to measure

the uniformity of fractional factorials. An improved lower bound of Lee discrepancy for asymmetrical

factorials with mixed two-, three- and four-level is presented. The new lower bound is more accurate

for a lot of designs than other existing lower bounds, which is a useful complement to the lower

bounds of Lee discrepancy and can be served as a benchmark to search uniform designs with mixed

levels.

In this manuscript, we going to use already known methods and some known balanced factorial

designs to construct multifactor balanced asymmetrical factorial designs of Type II. We are especially

interested in designs in which main effects and lower order interactions can be estimated with higher

efficiencies.

Definition 1.1. An experiment involving m≥2 factors F1, F2, . . ., Fm that appear at s1, . . ., sm(≥ 2) levels is

called an s1×· · ·×sm factorial experiment (or an s1×· · ·×sm factorial for brevity).

The purpose of this paper is to give simplified methods of constructing multifactor asymmetrical

factorial designs of type II that are characterized by balance with orthogonal factorial structure.

In this paper we shall involve well known arrangements of arrays such as Difference Schemes,

Orthogonal Arrays, Balanced Arrays, Transitive Arrays, and Hadarmard Matrices whose definitions

are given below.

Definition 1.2. An r × c array D with entries from A is called a difference scheme based on (A,+) if it has

the property that for all i and j with 1 ≤ i, j ≤ c, the vector difference between the ith and jth columns contains

every element of A equally often if i ̸= j
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0 0 0 0 0 0 0 0 0
0 1 2 0 1 2 0 1 2
0 2 1 0 2 1 0 2 1
0 0 0 1 1 1 2 2 2
0 1 2 1 2 0 2 0 1
0 2 1 1 0 2 2 1 0
0 0 0 2 2 2 1 1 1
0 1 2 2 0 1 1 2 0
0 2 1 2 1 0 1 0 2

Table 1: This difference scheme is derived from (GF(3),+)

Where GF(3) is a galois Field with 3 elements.

Definition 1.3. A k × b array A with entries from a set of v symbols is called an orthogonal array of strength t

if each t × b subarray of A contains all possible vt column vectors with the same frequency λ = b
vt . It is denoted

OA(b, k, v, t; λ); the number λ is called the index of the array. The numbers b and k are known as the number of

assemblies and constraints of the orthogonal array respectively.

Example 1.4.

0 1 1 1 1 0 0 0

1 0 1 1 0 1 0 0

1 1 0 1 0 0 1 0

1 1 1 0 0 0 0 1
OA(8, 4, 2, 3; 1)

Definition 1.5. Let A be a k × b array with entries from a set of v symbols. Consider the vt ordered t-tuples

(x1, . . . , xt) that can be formed from a t-rowed subarray of A, and let there be associated a non-negative integer

λ(x1, . . . , xt) that is invariant under permutations of x1, . . . , xt. If for any t-rowed subarray of A the vt ordered

t-tuples (x1, . . . , xt), each occur λ(x1, . . . , xt) times as a column, then A is said to ba a balanced array of strength

t. It is denoted by BA(b, k, v, t) and the numbers λ(x1, . . . , xt) are called the index parameters of the array.

Clearly a BA(b, k, v, t) with λ(x1, . . . , xt) = λ for all t-tuples (x1, . . . , xt) is simply an orthogonal array

OA(b, k, v, t; λ).

Example 1.6.

0 1 0 1 0 1 0 1 0 1

1 1 1 0 1 1 0 0 0 0

0 0 1 1 1 0 0 0 1 1

1 1 0 0 0 0 1 0 1 1

0 0 0 0 1 1 1 1 1 0
BA(10, 5, 2, 2)

In this manuscript we are going to construct multi-factor BAFDs using balanced arrays of strength

t = 2 with parameters λ(x, y) = λ1 or λ2 according as x = y or not. In particular we are interested
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in the BA[(ks − 1)sλ, ks, s, 2] with parameters λ(x, y) = (k − 1)λ or kλ according as x = y or not. For

brevity we shall call it the balanced array of type T with index λ and denote it by BA[T][k, s, λ]. It is

clear that a

BA[T][1, s, λ] = BA[λs(s − 1), s, s, 2]

= TA[λs(s − 1), s, s, 2].

In constructing a BA[T][k, s, λ] for any given k and s we would like λ to be as small as possible so that

the size of the balanced array is not too large. However if there is no restriction on λ, we can always

construct a BA[T][k, s, λ] for any k and s.

Definition 1.7. A transitive array TA(b, k, v, t; λ) is a k × b array of v symbols such that for any choice of t

rows, the v!
(v−t)! ordered t-tuples of distinct symbols each occur λ times as a column.

Example 1.8.

0 1 2 3 0 1 2 3 0 1 2 3

1 0 3 2 2 3 0 1 3 2 1 0

2 3 0 1 3 2 1 0 1 0 3 2

3 2 1 0 1 0 3 2 2 3 0 1
TA(12, 4, 4, 2; 1)

Definition 1.9. A Hadamard matrix of order n is an n × n matrix Hn of +1′s and −1′s whose rows are

orthogonal, that is, which satisfies

HnHT
n = nIn (1)

For example, here are Hadamard matrices of order 1, 2 and 4.

H1 = [1], H2 =

1 1

1 −1

 , H4 =


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

 (2)

Theorem 1.10. For all k and s,there always exists a BA[T][k, s, λ] for some λ. Where BA[T][k, s, λ] is a

balanced array with parameters λ(x, y) = (k − 1) or kλ accordingly as x = y or not.

Proof. For all k and s, there exists a TA[(ks− 1)ksn, ks, ks, 2] for some n. Let the symbols of the transitive

array be denoted by [0, 1, ..., ks − 1]. If we replace each symbol in the transitive array by x(modk). Then

the transitive array becomes a BA[(ks − 1)ksn, ks, s, 2] with parameters λ(x, y) = (k − 1)kn or k2n

according as x = y or not, which is a BA[T][ks, s, kn]. The method of construction in Theorem 1.10

does not usually provide balanced arrays with a small number of assemblies as we desire.
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Definition 1.11. An orthogonal array OA[N, k, s, 2] is said to be a-resolvable if it is statistically equivalent

to the juxtaposition of N
as arrays such that each factor occurs in each of these arrays a times at each level. A

1-resolvable orthogonal array is also called completely resolvable, otherwise it is called Partly resolvable.

Definition 1.12. A v × v matrix G where v = Πsi will be said to have property A if it is of the form G =

∑
y∈Ω∗

h(y)Zy, where h(y), y ∈ Ω∗, are real numbers, Ω∗ is a set of all m component binary vectors.

Let Ω∗ be the set of all m− component binary vectors, that is Ω∗ = Ω ∪ {(0, 0, . . . , 0)} where Ω is the

set of all none null binary component vectors for y = (y1, y2, . . . , ym) ∈ Ω then

Zy = ⊗m
i=1Zi

yi (3)

where for 1 ≤ i ≤ m, and

Zyi
i = Ii if yi = 1 (4)

= Ji if yi = 0 (5)

where I is an identity matrix and J is matrix of 1′s both of order m × m. From (3) and (4) we can

ultimately obtain

C = r(⊗m
i=1 Ii)− k−1NN′ (6)

where C is the design matrix and N is the incidence matrix of a BAFD. (6) shows that the design has

property A see [35]. For connected equireplicate designs with property A and a common replication

number r the interaction efficiencies are given by

E(y) = 1 − 1
rk

g(y) and E(y) = 1 if and only if g(y) = 0 (7)

2. Type II Designs

Let sm = n1s1 = n2s2 = . . . = nm−1sm−1 and there exists BA(T)[ni, si, 1] for i = 1, 2, . . . , m − 1. By

Theorem A.5 there exists an s1 × s2 × . . . × sm BAFD with k = sm, b = (sm − 1)m−1s1s2 . . . sm−1, r =

[sm − 1]m−1, λ(y1, y2, . . . ym−1, 0) = 0 and λ(y1, y2, . . . ym−1, 1) = ∏m−1
i=1 nxi

i (ni − 1)1−xi . By Theorem A.6

the eigenvalues of the NNT of the BAFD are given by

g[y1, y2, . . . , ym] = r + ∑
x∈Ω

λ(x)
{

∏m
i=1[(1 − yi)si − 1]xi

}
(8)

= r + ∑
x∈Ω

m−1

∏
i−1

nxi
i (ni − 1)1−xi

{
∏m

i=1[(1 − yi)si − 1]xi

}
(9)
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Let ym = 1, yi = 0 for i = 1, 2, . . . ,m − 1 in equation (9)

g(0, 0, . . . , 0, 1) = r +



λ1(x1, x2, . . . , xm−1, 1)


{
(1 − 0)s1 − 1

}x1
{
(1 − 0)s2 − 1

}x2

. . .
{
(1 − 1)sm − 1

}1

+

λ2(x1, x2, . . . xm−1, 1)


{
(1 − 0)s1 − 1

}x1
{
(1 − 0)s2 − 1

}x2

. . .
{
(1 − 1)sm − 1

}1

+

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+

λm−1(x1, x2, . . . , xm−1, 1)


{
(1 − 0)s1 − 1

}x1
{
(1 − 0)s2 − 1

}x2

. . .
{
(1 − 1)sm − 1

}1





(10)

where λh(x1, x2, . . . xm−1, 1), h = 1, 2, . . ., m − 1 is the hth distinct term of λ(x1, x2, . . . , xm−1, 1) and

hence we have 2m − 1 distinct terms of λ(x1, x2, . . . , xm−1, 1). After expanding equation (10) we have

g(0, 0, . . . , 0, 1) = r +
{
−sm−1

m + (m − 1)sm−2
m − (m−1)(m−2)

2 sm−3
m + . . . − s0

m(−1)m−1
}

= r −
{

sm−1
m − (m − 1)sm−2

m + (m−1)(m−2)
2 sm−3

m − . . . + s0
m(−1)m−1

}
= r −

m−1c0sm−1
m (−1)0 +m−1 c1sm−2

m (−1)1 +m−1 c2sm−3
m (−1)2 + . . .+

m−1cm−1s0
m(−1)m−1


= r − (sm − 1)m−1 = r − r = 0

similarly we can show that g(1, 0, 0, . . . , 0) = g(0, 1, 0, . . . , 0) = . . . = g(0, 0, 0, . . . , 1, 0) = 0. Thus all

main effects are estimated with full efficiency. Let ym−1 = ym = 1 and yi = 0 for i = 1, 2, . . . m − 2 then

(9) becomes

g(0, 0, . . . , 0, 1, 1) = r +



λ1(x1, x2, . . . , xm−1, 1)


{
(1 − 0)s1 − 1

}x1
{
(1 − 0)s2 − 1

}x2

. . . (a)
{
(1 − 1)sm − 1

}1



+λ2(x1, x2, . . . xm−1, 1)


(1 − 0)

s1 − 1


x1 {

(1 − 0)s2 − 1
}x2

. . . (a)
{
(1 − 1)sm − 1

}1

+ . . .

+λ2m−1(x1, x2, . . . , xm−1, 1)
{
(1 − 0)s1 − 1

}x1
{
(1 − 0)s2 − 1

}x2

. . .
{
(1 − 1)sm−1 − 1

}xm−1 {
(1 − 1)sm − 1

}1



(11)

(In the above equation (11), let
{
(1 − 1)sm−1 − 1

}xm−1
be a value represented by (a)), where

λh(x1, x2, . . . , xm−1, 1), h = 1, 2, . . . , 2m − 1 is the hth distinct term of λ(x1, x2,. . . , xm−1, 1) and hence we
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have 2m − 1 distinct terms of λ(x1, x2, . . . , xm−1, 1). After expanding equation (11) we have

g(0, 0, . . . , 0, 1, 1) = r +
{

sm−2
m − (m − 2)sm−3

m + (m−2)(m−3)
2 sm−4

m − . . . + s0
m(−1)m−2

}
= r +

m−2c0sm−2
m (−1)0 +m−2 c1sm−3

m (−1)1 +m−2 c2sm−4
m (−1)2 + . . .+

m−2cm−2s0
m(−1)m−2


= r + (sm − 1)m−2

= (sm − 1)m−1 + (sm − 1)m−2

In general, when ∑m
i=1 yi = q equation (9) is

g(y1, y2, . . . , ym) = (sm − 1)m−1 + (−1)q(sm − 1)m−q (12)

hence by Corollary A.7

E[y1, y2, . . . , ym] = 1 − g[y1, y2, . . . , ym]

rk

= 1 − (sm − 1)m−1 + (−1)q(sm − 1)m−q

(sm − 1)m−1sm

= 1 − 1
sm

− (−1)q

sm(sm − 1)q−1 (13)

where ∑m
i=1 yi = q. It can be seen that equation (13) is the same as the equation (23) with sm = s,

hence the efficiencies are equal to those of sm
m symmetrical balanced factorial design in Lemma A.8

with j = m.

Example 2.1. A BA(T)(3, 2, 1) given in Example A.17 can be used to construct a 22 × 6 BAFD with k = 6,

b = 100, r = 25, λ(1, 0) = λ(2, 0) = 0, λ(0, 1) = 4, λ(1, 1) = 6, λ(2, 1) = 9. The efficiencies are;

E[0, 1] = E[1, 0] = 1.0

E[1, 1] = E[2, 0] =
4
5

E[2, 1] =
21
25

Example 2.2. A BA(T)(2, 3, 1) given in Example A.14 can be used to construct a 33 × 6 BAFD with k =

6, b = 3, 375, r = 125, λ(1, 0) = λ(2, 0) = λ(3, 0) = 0, λ(0, 1) = 1, λ(1, 1) = 2, λ(2, 1) = 4, λ(3, 1) = 8.

The efficiencies are;

E[0, 1] = E[1, 0] = 1.0

E[1, 1] = E[2, 1] =
4
5

E[2, 1] =
21
25
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E[3, 1] =
104
125

Example 2.3. Example A.18 is also of this type. Other examples include 2 × 2 × 4, 2 × 4 × 4, 3 × 3 × 6,

2 × 5 × 10, . . . and so on.

The following example is also a 22 × 6 BAFD with only 5 replications;the main effects are estimated

with full efficiencies and some interactions are not estimable.

Example 2.4. A 22 × 6 BAFD with k = 6, b = 20, r = 5, λ(1, 1) = λ(1, 0) = λ(2, 0) = 0 and λ(0, 1) = 2,

λ(2, 1) = 3. The efficiencies are; E[0, 1] = E[1, 0] = E[2, 1] = 1.0; E[1, 1] = 4
5 , E[2, 0] = 0 can be constructed

using Theorem A.19 and by letting N be the incidence matrix of the 2 × 6 BAFD that was corresponding to a

BA(T)[3, 2, 1] which was given in Example A.17.

In this case, we shall let N∗ be the incidence matrix of the following 22 design with block size 1.

00 11 01 10

Table 2: resolvable 22 Symmetrical design

and if we let N∗
22 be the following 22 balanced factorial design with interaction confounded

00 01
11 10

Table 3: 22 balanced factorial design with interactions confounded

Applying Theorem A.19 we get the following 22 × 6 BAFD.

Blocks 1 2 3 4 5 6 7 8 9 10
Levels of F3 Levels of F1 and F2

0 00 00 00 00 00 11 11 11 11 11
1 00 00 11 11 11 00 00 00 11 11
2 11 00 00 11 11 11 11 00 00 00
3 00 11 11 00 11 00 11 11 00 00
4 11 11 11 00 00 11 00 00 00 11
5 11 11 00 11 00 00 00 11 11 00

Blocks 11 12 13 14 15 16 17 18 19 20
Levels of F3 Levels of F1 and F2

0 01 01 01 01 01 10 10 10 10 10
1 01 01 10 10 10 01 01 01 10 10
2 10 01 01 10 10 10 10 01 01 01
3 01 10 10 01 10 01 10 10 01 01
4 10 10 10 01 01 10 01 01 01 10
5 10 10 01 10 01 01 01 10 10 01

Table 4: 22 × 6 BAFD
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Example 2.5. A 22 × 4 BAFD with k = 4, b = 24, r = 6, λ(1, 1) = λ(1, 0) = λ(2, 0) = 0 and λ(0, 1) =

2,λ(2, 1) = 4 and efficiencies are;

E[0, 1] = E[1, 0] = E[2, 1] = 1.0

E[1, 1] =
2
3

, E[2, 0] = 0

can be constructed by letting N be the incidence matrix of the 2× 4 BAFD that corresponds to the BA[12, 4, 2, 2]

in Example A.21.

In this case, we let N∗ be the incidence matrix of the following 22 design with block size 1

00 11 01 10

Table 5: 22 design

If we let N∗
22 to be the following 22 balanced factorial design with interaction confounded

00 01
11 10

Table 6: 22 BFD with interactions confounded

Then applying Theorem A.19 we get the following 22 × 4 BAFD.

Blocks 1 2 3 4 5 6 7 8 9 10 11 12
Levels of F3 Levels of F1 and F2

0 00 00 00 00 00 00 11 11 11 11 11 11
1 11 11 00 11 00 11 00 00 11 00 11 00
2 00 00 11 11 11 11 11 11 00 00 00 00
3 11 11 11 00 11 00 00 00 00 11 00 11

Blocks 13 14 15 16 17 18 19 20 21 22 23 24
Levels of F3 Levels of F1 and F2

0 01 01 01 01 01 01 10 10 10 10 10 10
1 10 10 01 10 01 10 01 01 10 01 10 01
2 01 01 10 10 10 10 10 10 01 01 01 01
3 10 10 10 01 10 01 01 01 01 10 01 10

Table 7: 22 × 4 BAFD

Example 2.6. A 32 × 9 BAFD with k = 9, b = 144, r = 16, λ(1, 1) = λ(1, 0) = λ(2, 0) = 0 and

λ(0, 1) = 4, λ(2, 1) = 3 and efficiencies;

E[0, 1] = E[1, 0] = 1.0

E[1, 1] =
7
8

, E[2, 0] =
1
2

E[2, 1] =
15
16
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can be constructed by letting N be the incidence matrix of the 3× 9 BAFD that corresponds to the BA(T)[3, 3, 1]

in Example A.16.

In this case, we let N∗ be the incidence matrix of the following 32 design with block size 1.

00 12 21 01 10 22 02 11 20 00 11 22 02
10 21 01 12 20

Table 8: 32 design with block size 1

if we also let N∗
22 be the incidence matrix of the following 32 balanced factorial design with interaction

confounded.

00 01 02 00 02 01
12 10 11 11 10 12
21 22 20 22 21 20

Table 9: 32 BFD with interactions confounded

Then applying Theorem A.19 we get the following 32 × 9 BAFD.

Blocks 1 2 3 4 5 6 7 8 9 10 11 12
Levels of F3 Levels of F1 and F2

0 00 00 00 00 00 00 00 00 12 12 12 12
1 12 21 00 12 21 00 12 21 21 00 12 21
2 21 12 00 21 12 00 21 12 00 21 12 00
3 00 00 12 12 12 21 21 21 12 12 21 21
4 12 21 12 21 00 21 00 12 21 00 21 00
5 21 12 12 00 21 21 12 00 00 21 21 12
6 00 00 21 21 21 12 12 12 12 12 00 00
7 12 21 21 00 12 12 21 00 21 00 00 12
8 21 12 21 12 00 12 00 21 00 21 00 21

Blocks 13 14 15 16 17 18 19 20 21 22 23 24
Levels of F3 Levels of F1 and F2

0 12 12 12 12 21 21 21 21 21 21 21 21
1 00 12 21 00 00 12 21 00 12 21 00 12
2 21 12 00 21 12 00 21 12 00 21 12 00
3 21 00 00 00 21 21 00 00 00 12 12 12
4 12 00 12 21 00 12 00 12 21 12 21 00
5 00 00 21 12 12 00 00 21 12 12 00 21
6 00 21 21 21 21 21 12 12 12 00 00 00
7 21 21 00 12 00 12 12 21 00 00 12 21
8 12 21 12 00 12 00 12 00 21 00 21 12
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Blocks 25 26 27 28 29 30 31 32 33 34 35 36
Levels of F3 Levels of F1 and F2

0 01 01 01 01 01 01 01 01 10 10 10 10
1 10 22 01 10 22 01 10 22 22 01 10 22
2 22 10 01 22 10 01 22 10 01 22 10 01
3 01 01 10 10 10 22 22 22 10 10 22 22
4 10 22 10 22 01 22 01 10 22 01 22 01
5 22 10 10 01 22 22 10 01 01 22 22 10
6 01 01 22 22 22 10 10 10 10 10 01 01
7 10 22 22 01 10 10 22 01 22 01 01 10
8 22 10 22 10 01 10 01 22 01 22 01 22

Blocks 37 38 39 40 41 42 43 44 45 46 47 48
Levels of F3 Levels of F1 and F2

0 10 10 10 10 22 22 22 22 22 22 22 22
1 01 10 22 01 01 10 22 01 10 22 01 10
2 22 10 01 22 10 01 22 10 01 22 10 01
3 22 01 01 01 22 22 01 01 01 10 10 10
4 10 01 10 22 01 10 01 10 22 10 22 01
5 01 01 22 10 10 01 01 22 10 10 01 22
6 01 22 22 22 22 22 10 10 10 01 01 01
7 22 22 01 10 01 10 10 22 01 01 10 22
8 10 22 10 01 10 01 10 01 22 01 22 10

Blocks 49 50 51 52 53 54 55 56 57 58 59 60
Levels of F3 Levels of F1 and F2

0 02 02 02 02 02 02 02 02 11 11 11 11
1 11 20 02 11 20 02 11 20 20 02 11 20
2 20 11 02 20 11 02 20 11 02 20 11 02
3 02 02 11 11 11 20 20 20 11 11 20 20
4 11 20 11 20 02 20 02 11 20 02 20 02
5 20 11 11 02 20 20 11 02 02 20 20 11
6 02 02 20 20 20 11 11 11 11 11 02 02
7 11 20 20 02 11 11 20 02 20 02 02 11
8 20 11 20 11 02 11 02 20 02 20 02 20

Blocks 61 62 63 64 65 66 67 68 69 70 71 72
Levels of F3 Levels of F1 and F2

0 11 11 11 11 20 20 20 20 20 20 20 20
1 02 11 20 02 02 11 20 02 11 20 02 11
2 20 11 02 20 11 02 20 11 02 20 11 02
3 20 02 02 02 20 20 02 02 02 11 11 11
4 11 02 11 20 02 11 02 11 20 11 20 02
5 02 02 20 11 11 02 02 20 11 11 02 20
6 02 20 20 20 20 20 11 11 11 02 02 02
7 20 20 02 11 02 11 11 20 02 02 11 20
8 11 20 11 02 11 02 11 02 20 02 20 11
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Blocks 73 74 75 76 77 78 79 80 81 82 83 84
Levels of F3 Levels of F1 and F2

0 00 00 00 00 00 00 00 00 11 11 11 11
1 11 22 00 11 22 00 11 22 22 00 11 22
2 22 11 00 22 11 00 22 11 00 22 11 00
3 00 00 11 11 11 22 22 22 11 11 11∗ 22
4 11 22 11 22 00 22 00 11 22 00 22 00
5 22 11 11 00 22 22 11 00 00 22 22 11
6 00 00 22 22 22 11 11 11 11 11 22 00
7 11 22 22 00 11 11 22 00 22 00 00 11
8 22 11 22 11 00 11 00 22 00 22 00 22

Blocks 85 86 87 88 89 90 91 92 93 94 95 96
Levels of F3 Levels of F1 and F2

0 11 11 11 11 22 22 22 22 22 22 22 22
1 00 11 22 00 00 11 22 00 11 22 00 11
2 22 11 00 22 11 00 22 11 00 22 11 00
3 22 00 00 00 22 22 00 00 00 11 11 11
4 11 00 11 22 00 11 00 11 22 11 22 00
5 00 00 22 11 11 00 00 22 11 11 00 22
6 00 22 22 22 22 22 11 11 11 00 00 00
7 22 22 00 11 00 11 11 22 00 00 11 22
8 11 22 11 00 11 00 11 00 22 00 22 11

Blocks 97 98 99 100 101 102 103 104 105 106 107 108
Levels of F3 Levels of F1 and F2

0 02 02 02 02 02 02 02 02 10 10 10 10
1 10 21 02 10 21 02 10 21 21 02 10 21
2 21 10 02 21 10 02 21 10 02 21 10 02
3 02 02 10 10 10 21 21 21 10 10 21 21
4 10 21 10 21 02 21 02 10 21 02 21 02
5 21 10 10 02 21 21 10 02 02 21 21 10
6 02 02 21 21 21 10 10 10 10 10 02 02
7 10 21 21 02 10 10 21 02 21 02 02 10
8 21 10 21 10 02 10 02 21 02 21 02 21

Blocks 109 110 111 112 113 114 115 116 117 118 119 120
Levels of F3 Levels of F1 and F2

0 10 10 10 10 21 21 21 21 21 21 21 21
1 02 10 21 02 02 10 21 02 10 21 02 10
2 21 10 02 21 10 02 21 10 02 21 10 02
3 21 02 02 02 21 21 02 02 02 10 10 10
4 10 02 10 21 02 10 02 10 21 10 21 02
5 02 02 21 10 10 02 02 21 10 10 02 21
6 02 21 21 21 21 21 10 10 10 02 02 02
7 21 21 02 10 02 10 10 21 02 02 10 21
8 10 21 10 02 10 02 10 02 21 02 21 10
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Blocks 121 122 123 124 125 126 127 128 129 130 131 132
Levels of F3 Levels of F1 and F2

0 01 01 01 01 01 01 01 01 12 12 12 12
1 12 20 01 12 20 01 12 20 20 01 12 20
2 20 12 01 20 12 01 20 12 01 20 12 01
3 01 01 12 12 12 20 20 20 12 12 20 20
4 12 20 12 20 01 20 01 12 20 01 20 01
5 20 12 12 01 20 20 12 01 01 20 20 12
6 01 01 20 20 20 12 12 12 12 12 01 01
7 12 20 20 01 12 12 20 01 20 01 01 12
8 20 12 20 12 01 12 01 20 01 20 01 20

Blocks 133 134 135 136 137 138 139 140 141 142 143 144
Levels of F3 Levels of F1 and F2

0 12 12 12 12 20 20 20 20 20 20 20 20
1 01 12 20 01 01 12 20 01 12 20 01 12
2 20 12 01 20 12 01 20 12 01 20 12 01
3 20 01 01 01 20 20 01 01 01 12 12 12
4 12 01 12 20 01 12 01 12 20 12 20 01
5 01 01 20 12 12 01 01 20 12 12 01 20
6 01 20 20 20 20 20 12 12 12 01 01 01
7 20 20 01 12 01 12 12 20 01 01 12 20
8 12 20 12 01 12 01 12 01 20 01 20 12

Table 10: 32 × 9 BAFD

A. Appendix

Theorem A.1. For all k and s,there always exists a BA[T][k, s, λ] for some λ.

Proof. For all k and s, there exists a TA[(ks− 1)ksn, ks, ks, 2] for some n. Let the symbols of the transitive

array be denoted by [0, 1, ..., ks − 1]. If we replace each symbol in the transitive array by x(modk). Then

the transitive array becomes a BA[(ks − 1)ksn, ks, s, 2] with parameters λ(x, y) = (k − 1)kn or k2n

according as x = y or not, which is a BA[T][ks, s, kn]. The method of construction in Theorem A.1 does

not usually provide balanced arrays with a small number of assemblies as we desire.

Definition A.2. Suppose (F ,A) is a (v, k, λ)-BIBD, a parallel class in (F ,A) is a subset of disjoint blocks

from A whose union is F . A partition of A into r parallel classes is called a resolution; and (F ,A) is said to be

a resolvable BIBD if A has at least one resolution. We say that F is a finite set of points called treatments, where

F =
{

0, 1, 2, · · · , v − 1
}

An example of a BIBD [4, 6, 2] has been captured in table 16

Theorem A.3. If there exists a resolvable BIBD with qs treatments and block size q, then there exists a ps × qs

BAFD with block size pqs such that all main effects are estimated with full efficiency.
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Proof. Construct a BA(T)(p, s, n) for some integer n by Theorem A.1. In the resolvable BIBD, there

being s blocks in each replication , we can number the block in each replication by 0, 1, · · · , s − 1.

Replacing each symbol in the balanced array by a group of symbols which represents blocks in the

BIBD for each replication, we obtain a pqs × [ps − 1]snr
′

matrix, where r
′

is the number of replications

in the BIBD. Assign ith level of F1 to the rows from the (iq + 1)th to the (i + 1)th, where i = 0, 1, · · · , ps−

1.Identifying columns and symbols with blocks and the levels of F2, we get a ps × qs design with block

size pqs.

We shall show that all the main effects of the design constructed above are estimated with full efficiency.

Let λ
′

be the number of blocks in which two treatments occur together in the BIBD, then (qs − 1)λ
′
=

(q − 1)r
′
. Assume that r

′
= (qs − 1)m and λ

′
= (q − 1)m, where m need not be an integer. Let

λ01, λ10, λ11 denote the parameters and r denote the number of replications in the ps × qs design, then

through inspection we have

λ(x, y) = (ps − 1)x+1(qs − 1)y+1(p − 1)x(q − 1)ymn + (xy)(pq)(s − 1)xymn (14)

x, y = 0 or 1 (mod 2) so



λ01 = (ps − 1)(q − 1)mn

λ10 = (qs − 1)(p − 1)mn

λ11 = (p − 1)(q − 1)mn + pq(s − 1)mn

λ00 = r = (ps − 1)(qs − 1)mn


(15)

if we substitute the parameters of the equations (17), (18) and (19) in equations (15) and Corollary A.7

we get

E[0, 1] = E[1, 0] = 1 and E[1, 1] = − s − 1
(ps − 1)(qs − 1)

+ 1

Given any q and s, there always exists a resolvable BIBD with qs treatments and block size q if the

number of replications is allowed to be large.

Example A.4. The irreducible BIBD of qs treatments with block size q in which each of the

qs

q

 possible q−

element combinations form a block is resolvable with parameters

v = qs, b =

qs

q

 , r =

qs − 1

q − 1

 , k = q, λ =

qs − 2

q − 2

 (16)

The eigenvalues of NT N of a BAFD are given by

g(1, 0) = r + (s2 − 1)λ01 − λ10 − (s2 − 1)λ11 (17)

g(0, 1) = r − λ01 + (s1 − 1)λ10 − (s1 − 1)λ11 (18)
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g(1, 1) = r − λ01 − λ10 + λ11 (19)

where N is the incidence matrix of the BAFD.

Theorem A.5. If there exists a BA[Ni, sm, si, 2](i = 1, . . . , m − 1) with parameters λi(x, y) = µi
0 or µi

1

according as x = y or not then there exists an s1 × s2 × . . . × sm BAFD with k = sm,

b = N1 . . . Nm−1, λα1α2...αm−10=0,

λα1α2...αm−1 1 = µ1
α1

µ2
α2

. . . µm−1
αm−1

where αi = 0 or 1.

Proof. Multiply the m − 1 balanced arrays to obtain a BA[N1N2 . . . Nm−1, sm, s1s2 . . . sm−1, 2] with

parameters λ[(x1, x2,. . . , xm−1), (y1, y2,. . ., ym−1)] = µ1
α1

µ2α2 . . . µm−1
αm−1

where αi = 0 or 1 according as

x = y or not. Identifying the symbols with the levels of F1, F2,. . .,Fm−1, rows with the levels of Fm and

columns with blocks, we obtain an s1 × s2 × . . . × sm BAFD with the specified parameters. The method

used in Theorem A.5 can usually produce efficient BAFDS if we use balanced arrays corresponding

to efficient two factor BAFDS. While applying this method, the block size remains the same but the

number of blocks increases very rapidly. Hence this method is used when the number of assemblies

in the balanced arrays are not too large.

Theorem A.6. The eigenvalues of NN′ of a BAFD are g(y1, y2, . . . , ym)’s with corresponding eigenvectors

given by the columns of py′ , where y = (y1, y2, . . . , ym) ∈ Ω and N is the incidence matrix of a BAFD. y is an

interaction effect and C is the design matrix.

It should be noted that the multiplicity of g(y1, y2, . . . , ym) is ∏m
i=1 (si − 1)yi . Since C = r(⊗m

i=1 Ii) −

k−1NN′. The columns of Py′ y ∈ Ω are also the eigenvectors of C with corresponding eigenvalues

ρ(y) = r − 1
k

g(y1, y2, . . . , ym) (20)

= r − 1
k

g(y), y ∈ Ω (21)

Let E(y) denote the interaction efficiencies, then

Corollary A.7. E(y) = 1 − 1
rk g(y) and E(y) = 1 if and only if g(y) = 0.

Lemma A.8. If s is a prime power, then given j (1 ≤ j ≤ m) there exists an sm symmetrical balanced factorial

design with block size s and parameters λj = 1, λi = 0 for all i ̸= j.

The efficiencies of the symmetrical balanced factorial design constructed in Lemma A.8 can be

calculated by equation (22)

Ei = 1 − 1
s
−

Pj(i; m, s)
(m

j )(s − 1)j−1s
; i = 1, 2, . . . , m (22)
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In particular when j = m,

Pm(i; m, s) = (−1)i(s − 1)m−i

and equation (22) becomes (23)

Ei = 1 − 1
s
− (−1)i

(s − 1)i−1s
i = 1, 2, . . . , m. (23)

The main effects of this balanced design are estimated with full efficiency since E1 = 1 in equation (23)

Theorem A.9. In an s1 × s2 BAFD with block size s1(s1 ≤ s2), if the main effects of F1 are estimated with full

efficiency and the main effects F2 are estimated with maximum efficiency (s1−1)s2
s1(s2−1) then the BAFD has parameters

λ10 = λ01 = 0 and λ11 ̸= 0. This design is equivalent to a TA[λ11s2(s2 − 1), s1, s2, 2]. Since λ10 = 0 means

that two treatments at the same level of F2 do not occur together in the same block, which implies s2 ≥ k = s1

we do not need s1 ≤ s2 in the construction of the designs in Theorem A.9.

The construction of TA[s2(s2 − 1)λ11, s1, s2, 2] has been discussed in [31]. Deleting any (s2 − s1)

constraints from a TA[s2(s2 − 1)λ11, s2, s2, 2] we obtain a TA[s2(s2 − 1)λ11, s1, s2, 2]. If we restrict

λ11 = 1 then the existence of a TA[s2(s2 − 1), s1, s2, 2] is equivalent to the existence of s1 − 1 mutually

orthogonal latin squares of order s2 or s1 − 2 mutually orthogonal latin squares of order s2 with

different elements in the diagonal.

Example A.10. A 3 × 6 BAFD with b = 30, k = 3, r = 5 λ01 = λ10 = 0 and λ11 = 1 can be constructed from

a TA[30, 3, 6, 2]. The efficiencies are E[1, 0] = 1.0,E[0, 1] = 4
5 and E[1, 1] = 3

5 .

Theorem A.11. If s is a power of an odd prime then there exists a difference scheme D(2s, 2s, s) and an

orthogonal array OA(2s2, 2s + 1, s, 2).

Proof. We construct four s × s matrices A = (aij), B = (bij), C = (cij), F = ( fij), 0 ≤ i, j ≤ s − 1 whose

entries are given by 

aij = kik j

bij = kik j + hk2
j

cij = kik j + mk2
i

fij = nkik j + gk2
j + ek2

i


(24)

Where h, m, n, g, e are elements of GF(s) that satisfy the conditions

n = 1 + 4he = e/m = n2 − 4ge, (25)

In particular we may take

n = k, h =
1
2

, m =
k − 1

2k
, g =

k
2

and e =
k − 1

2
, (26)
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Then

D =

A C

B F

 (27)

is a difference scheme D(2s, 2s, s) based on the additive group GF(s)

Example A.12. Table 11 shows a difference scheme D(6, 6, 3) constructed in a similar way from GF(3)

0 0 0 0 0 0
0 1 2 1 2 0
0 2 1 1 0 2
0 2 2 0 1 1
0 0 1 2 2 1
0 1 0 2 1 2

Table 11: A difference Scheme D(6, 6, 3)

Corollary A.13. If s = pn, k = 2sl where p is an odd prime, n ≥ 1 and l ≥ 0, then a BA(T)[k, s, 1] can always

be constructed.

Proof. By using Theorem A.11, we can construct OA[ks2, ks, s, 2] by developing a difference scheme

D(2s, 2s, s). We then apply Theorem A.23 to construct a BA(T)(k, s, λ)

Example A.14. For s = 3 and k = 2 implies 3 = 31, k = 2.30 7→ n = 1 and l = 0 We can therefore construct

OA[2.32, 2.3, 3, 2] = OA[18, 6, 3, 2]

by developing a difference scheme D(2s, 2s, s) = D(6, 6, 3) which is exhibited in table 11

0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2
0 1 2 1 2 0 1 2 0 2 0 1 2 0 1 0 1 2
0 2 1 1 0 2 1 0 2 2 1 0 2 1 0 0 2 1
0 2 2 0 1 1 1 0 0 1 2 2 2 1 1 2 0 0
0 0 1 2 2 1 1 1 2 0 0 2 2 2 0 1 1 0
0 1 0 2 1 2 1 2 1 0 2 0 2 0 2 1 0 1

Table 12: Table OA[18, 6, 3, 2]

Applying Theorem A.23 to this orthogonal array we obtain BA(T)[2, 3, 1]

0 0 0 0 0 1 1 1 1 1 2 2 2 2 2
1 2 1 2 0 2 0 2 0 1 0 1 0 1 2
2 1 1 0 2 0 2 2 1 0 1 0 0 2 1
2 2 0 1 1 0 0 1 2 2 1 1 2 0 0
0 1 2 2 1 1 2 0 0 2 2 0 1 1 0
1 0 2 1 2 2 1 0 2 0 0 2 1 0 1

Table 13: Table BA(T)[2, 3, 1] = BA[15, 6, 3, 2]

Parameters of BA(T)[2, 3, 1]
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• λ(0, 0) = λ(1, 1) = λ(2, 2) = 1

• λ(0, 1) = λ(1, 0) = λ(0, 2) = λ(2, 0) = λ(1, 2) = λ(2, 1) = 2

Corollary A.15. If k and s are both powers of the same prime p a BA(T)[k, s, 1] can always be constructed.

Proof. We can always construct a completely resolvable orthogonal array OA[λs2, λ(s + 1) + 1, s, 2] by

deleting any λ + 1 constraints(factors) we obtain OA[λs2, λs, s, 2]. Then Theorem A.23 is applied.

Example A.16. For k = 3 and s = 3 we can construct a BA(T)[3, 3, 1] by first constructing a completely

resolvable OA[27, 9, 3, 2] which is exhibited in table 14. Applying Theorem A.23, we obtain BA(T)[3, 3, 1]

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
0 1 2 0 1 2 0 1 2 1 2 0 1 2 0 1 2 0 2 0 1 2 0 1 2 0 1
0 2 1 0 2 1 0 2 1 1 0 2 1 0 2 1 0 2 2 1 0 2 1 0 2 1 0
0 0 0 1 1 1 2 2 2 1 1 1 2 2 2 0 0 0 2 2 2 0 0 0 1 1 1
0 1 2 1 2 0 2 0 1 1 2 0 2 0 1 0 1 2 2 0 1 0 1 2 1 2 0
0 2 1 1 0 2 2 1 0 1 0 2 2 1 0 0 2 1 2 1 0 0 2 1 1 0 2
0 0 0 2 2 2 1 1 1 1 1 1 0 0 0 2 2 2 2 2 2 1 1 1 0 0 0
0 1 2 2 0 1 1 2 0 1 2 0 0 1 2 2 0 1 2 0 1 1 2 0 0 1 2
0 2 1 2 1 0 1 0 2 1 0 2 0 2 1 2 1 0 2 1 0 1 0 2 0 2 1

Table 14: An OA(27, 9, 3, 2)λ = 3

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2
1 2 0 1 2 0 1 2 2 0 1 2 0 1 2 0 0 1 2 0 1 2 0 1
2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0
0 0 1 1 1 2 2 2 1 1 2 2 2 0 0 0 2 2 0 0 0 1 1 1
1 2 1 2 0 2 0 1 2 0 2 0 1 0 1 2 0 1 0 1 2 1 2 0
2 1 1 0 2 2 1 0 0 2 2 1 0 0 2 1 1 0 0 2 1 1 0 2
0 0 2 2 2 1 1 1 1 1 0 0 0 2 2 2 2 2 1 1 1 0 0 0
1 2 2 0 1 1 2 0 2 0 0 1 2 2 0 1 0 1 1 2 0 0 1 2
2 1 2 1 0 1 0 2 0 2 0 2 1 2 1 0 1 0 1 0 2 0 2 1

Table 15: Table BA(T)[3, 3, 1] = BA[24, 9, 3, 2]

Parameters are

• λ(0, 0) = λ(1, 1) = λ(2, 2) = 2

• λ(0, 1) = λ(1, 0) = λ(0, 2) = λ(2, 0) = λ(1, 2) = λ(2, 1) = 3

Example A.17. Using Example A.4 a 4 × 6 BAFD with block size 12 can be constructed using BA[10, 6, 2, 2]

and a resolvable BIBD with 4 treatments and block size 2 as shown below.

Consider the following BIBD with 4 treatments and block size 2 where X0, X1, Y0, Y1, Z0, Z1 represents

the blocks.

Also consider the BA(T)(3, 2, 1) given below
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X0 X1 Y0 Y1 Z0 Z1
0 2 0 1 0 1
1 3 2 3 3 2

Table 16: Table of BIBD[4,6,2]

0 0 0 0 0 1 1 1 1 1
0 0 1 1 1 0 0 0 1 1
1 0 0 1 1 1 1 0 0 0
0 1 1 0 1 0 1 1 0 0
1 1 1 0 0 1 0 0 0 1
1 1 0 1 0 0 0 1 1 0

Table 17: Table of BA(T)[3,2,1]

By Theorem A.3 we can construct a 4 × 6 BAFD with k = 12, r = λ00 = 15, b = 30, λ10 = 5, λ01 =

6, λ11 = 8 with E[1, 0] = 1, E[0, 1] = 1, E[1, 1] = 14
15

Blocks 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
levels of F2 Levels of F1

0 X0 X0 X0 X0 X0 X1 X1 X1 X1 X1 Y0 Y0 Y0 Y0 Y0 Y1 Y1 Y1 Y1 Y1 Z0 Z0 Z0 Z0 Z0 Z1 Z1 Z1 Z1 Z1
1 X0 X0 X1 X1 X1 X0 X0 X0 X1 X1 Y0 Y0 Y1 Y1 Y1 Y0 Y0 Y0 Y1 Y1 Z0 Z0 Z1 Z1 Z1 Z0 Z0 Z0 Z1 Z1
2 X1 X0 X0 X1 X1 X1 X1 X0 X0 X0 Y1 Y0 Y0 Y1 Y1 Y1 Y1 Y0 Y0 Y0 Z1 Z0 Z0 Z1 Z1 Z1 Z1 Z0 Z0 Z0
3 X0 X1 X1 X0 X1 X0 X1 X1 X0 X0 Y0 Y1 Y1 Y0 Y1 Y0 Y1 Y1 Y0 Y0 Z0 Z1 Z1 Z0 Z1 Z0 Z1 Z1 Z0 Z0
4 X1 X1 X1 X0 X0 X1 X0 X0 X0 X1 Y1 Y1 Y1 Y0 Y0 Y1 Y0 Y0 Y0 Y1 Z1 Z1 Z1 Z0 Z0 Z1 Z0 Z0 Z0 Z1
5 X1 X1 X0 X1 X0 X0 X0 X1 X1 X0 Y1 Y1 Y0 Y1 Y0 Y0 Y0 Y1 Y1 Y0 Z1 Z1 Z0 Z1 Z0 Z0 Z0 Z1 Z1 Z0

Table 18: Table of a 4 × 6 BAFD

Example A.18. The product of BA(T)(3, 2, 1) in Example A.17 and a BAT(2, 3, 1) in Example A.14 generates

a 2 × 3 × 6 BAFD with r = 25, b = 150, k = 6, λ(0, 1, 0) = λ(1, 0, 0) = λ(1, 1, 0) = 0, λ(0, 0, 1) =

2, λ(0, 1, 1) = 4, λ(1, 0, 1) = 3 and λ(1, 1, 1) = 6. The efficiencies are

E(0, 0, 1) = E(0, 1, 0) = E(1, 0, 0) = 1.0

E(0, 1, 1) = E(1, 0, 1) = E(1, 1, 0) =
4
5

E(1, 1, 1) =
21
25

.

We can also obtain an efficient 2 × 3 × 6 BAFD by collapsing the first factor of the 62 symmetrical balanced

factorial design in Example A.10 into two factors one at 2 levels and the other at 3 levels. The BAFD has

parameters r = 10, b = 60, k = 6, λ(0, 0, 1) = λ(0, 1, 0) = λ(1, 0, 0) = λ(0, 1, 0) = 0 and λ(0, 1, 1) =

λ(1, 0, 1) = λ(1, 1, 1) = 2. The efficiencies are E(0, 0, 1) = E(0, 1, 0) = E(1, 0, 0) = E(1, 1, 0) = 1.0 and

E(0, 1, 1) = E(1, 0, 1) = E(1, 1, 1) = 4
5 all the main effects are also estimated with full efficiency like in Example

A.18 but we only need 10 replications in this design.

Assume that there exists a BAFD with m factors F1, F2, . . . , Fm at s1, s2, . . . , sm levels respectively,each

of the v ∗ (= s1s2 . . . sm) treatments replicated r∗ times in b∗ blocks of k∗ plots each,with the incidence

matrix.

N∗ = [A∗
1 |A∗

2 | . . . |A∗
b∗] (28)
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Further assume that b∗ = pq, and the pq blocks can be divided into p groups of q blocks each, such that

the design consisting of p blocks formed by adding together all the blocks of a group is a BAFD.The

incidence matrix is :

N∗
pq =

[
∑

q
j=1 A∗

j|∑
q
j=1 A∗

j+q| . . . |∑
q
j=1 A∗

pq−q+j

]
(29)

for a resolvable design N∗, the corresponding N∗
pq exists with p = r∗. The following theorem was

proven by [28].

Theorem A.19. Let there be a BAFD with the incidence matrix N in

n + 1 factors F0, Fm+1, . . . , Fm+n at q, sm+1, . . . , sm+n levels respectively in b blocks of k plots each.Also let there

be two BAFDs with incidence matrices N∗ and N∗
pq as given by equations (28) and (29) respectively.If the level

j − 1 of the factor F0 is replaced by the block Aiq+j(j = 1, 2, . . . , q) in each of the treatments of N ,then the design

obtained by adjoining the p designs so formed (for i = 0, 1, 2, . . . , p − 1) is a BAFD in m + n factors in bp

blocks of kk∗ plots each.

This method generates an m + n factor BAFD from an n + 1 factor BAFD and an m factor BAFD.Thus

from the two-factor BAFD’s we can generate a three-factor BAFD. If the two-factor BAFD’s are efficient,

then three-factor BAFD is also efficient. We can therefore construct efficient multi-factor BAFD’s step

by step from efficient two-factor BAFD’s. While applying this method, the number of blocks does not

increase so quickly as in the first method, but the block size does increase. The method of Difference

Schemes used in the construction of orthogonal arrays can also be used to construct some type of

balanced arrays discussed in this manuscript.

Theorem A.20. Let M be a module of s elements. It is possible to choose k rows and N columns (N =

λ1 + λ2(s − 1), λ1 and λ2 integers)

a11 a12 . . . a1N

a21 a22 . . . a2N

. . . . . .

ak1 ak2 . . . akN

with elements belonging to M such that among the differences of the corresponding elements of any two rows,

the element 0 occurs λ1 times and the other non zero elements occur λ2 times, then by adding the elements of the

module to the elements in the above array and reducing mod s, we can generate Ns columns: this constitutes a

BA[N, k, s, 2] with parameters λ(x, y) = λ1 or λ2 according as x = y or x ̸= y.

The balanced arrays that can be constructed by Theorem A.20 are completely resolvable. We give the

following example to illustrate the application of Theorem A.20.

Example A.21. Let M = [0, 1]. Among the differences of the corresponding elements of any two rows of the
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following array 0 occurs twice whereas 1 occurs four times

0 0 0 0 0 0

1 1 0 1 0 1

0 0 1 1 1 1

1 1 1 0 1 0

hence we can construct a BA[12, 4, 2, 2] shown in table 19 below

0 0 0 0 0 0 1 1 1 1 1 1
1 1 0 1 0 1 0 0 1 0 1 0
0 0 1 1 1 1 1 1 0 0 0 0
1 1 1 0 1 0 0 0 0 1 0 1

Table 19: Table BA[12, 4, 2, 2]

Parameters of BA[12,4,2,2]

• λ(0, 0) = λ(1, 1) = 2

• λ(0, 1) = λ(1, 0) = 4

Definition A.22. An orthogonal array OA[N, k, s, 2] is said to be a-resolvable if it is statistically equivalent

to the juxtaposition of N
as arrays such that each factor occurs in each of these arrays a times at each level. A

1-resolvable orthogonal array is also called completely resolvable, otherwise it is called Partly resolvable.

Theorem A.23. The existence of a partly resolvable OA[ks2, ks, s, 2]is equivalent to the existence of a

BA[T][k, s, 1].

Proof. If a partly resolvable OA[ks2, ks, s, 2] exists then there exists s assemblies which form

OA[s, ks, s, 1]. We can permute the symbols of the orthogonal array in each row such that these s,

assemblies are of the form (i, i, ..., i)′ for i = 0, 1, ..., s − 1. Deleting these assemblies we obtain a

BA[T][k, s, 1].

References

[1] S. B. Agarwal and M. N. Das, Asymmetrical factorial type switch over designs, Calcutta Statistical

Association Bulletin, A035(3-4)(1986), 149-156.

[2] Sunanda Bagchi, Inter-class orthogonal main effect plans for asymmetrical experiments, Sankhya B,

81(2019), 93-122.

[3] S. Bahl and A. Dalal, A method for the construction of asymmetrical factorial experiments with (p − 1)

replications, Bulletin of Pure and Applied Sciences E. Mathematics and Statistics, (2008).

[4] K. A. Bush, Orthogonal arrays of index unity, Mathematical Statistics, (1952).



Multifactor Balanced Asymmetrical Factorial Designs of Type II / N. J. Wanyoike, Guangzhou Chen 160

[5] Liuping Hu, Kashinath Chatterjee and Jiaqi Liu and Zujun Ou, New lower bound for lee discrepancy

of asymmetrical factorials, Statistical Papers, 61(2020), 1763-1772.

[6] P. A. Chatterjee, K. Angelopoulos and C. Koukouvinos, A lower bound to the measure of optimality for

main effect plans in the general asymmetric factorial experiments, Statistics, 47(2)(2013), 1-6.

[7] Ching-Shui Cheng, Theory of factorial design single-and multi-stratum experiments, CRC Press, (2013).

[8] Dipa Rani Das and Sanjib Ghosh, An alternative method of construction and analysis of asymmetrical

factorial experiment of the type 6 × 22 in blocks of size 12, Chittagong University Journal of Science,

40(01)(2018), 137-150.

[9] M. N. Das and N. C. Giri, Design and analysis of experimets, Second Edtion, Wiley Eastern: New

Delhi, (1960).

[10] Angela Dean, Daniel Voss and Danel Draguljik, Confounding in general factorial experiments first

online, Springer Texts in Statistics, (2017), 473-493.

[11] Jyoti Divecha and Bharat Tarapara, Small, balanced, efficient, optimal, and near rotatable response

surface designs for factorial experiments asymmetrical in some quantitative, qualitative factors, Quality

Engineering, 29(2)(2016), 196-210.

[12] El-Helbawy, T. Abdalla, Essam Ahmed and Abdullah H. Alharbey, Optimal designs for asymmetrical

factorial paired comparison experiments, Communications in Statistics-Simulation and Computation,

23(3)(1994).

[13] K. N. Gachii and J. W. Odhiambo, Theory and methods asymmetrical single replicate design, South

African Statist. J., 32(1998), 1-18.

[14] S. C. Gupta, Generating generalized cyclic designs with factorial balance, Commun. Statist. Theor.

Math., 16(1987), 1885-1900.

[15] V. K. Gupta, On orthogonal arrays and their applications, Journal of the Indian Society of Agricultural

Statistics, 62(1)(2008), 1-18.

[16] Klaus Hinkelmann and Oscar Kempthorne, Design and Analysis of Experiments, Volume 2,

Advanced Experimental Design, (2005), 466-506.

[17] M. A. Jalil, A monograph on construction method of factorial experiments, LAP LAMBERT Academic

Publishing, (2013).

[18] Prakash Kumar, Krishan Lal, Anirban Mukherjee, Upendra Kumar Pradhan, Mrinmoy Ray and

Om Prakash, Advanced row-column designs for animal feed experiments, Indian Journal of Animal

Sciences, 88(2023).



Multifactor Balanced Asymmetrical Factorial Designs of Type II / N. J. Wanyoike, Guangzhou Chen 161

[19] S. M. Lewis and M. G. Tuck, Paired comparision designs for factorial experiments, Journal of the Royal

Statistical Society Series C, Royal Statistical Society, 34(3)(1985), 227-234.

[20] Romario A. Conto Lopez, Alexander A. Correa Espinal and Olga C. Usuga Manco, Run orders

in factorial designs: A literature review, Communications in Statistics - Theory and Methods,

53(13)(2024), 4557-4575.

[21] Mainardi, Pedro Henrique and Ederio Dino Bidoia, Fundamental concepts and recent applications of

factorial statistical designs, Brazilian Journal of Biometrics, 40(1)(2022).

[22] Metrika, Choosing an optimal
(
s2) sn design for the practical need, where s is any prime or prime power,

NoP, (2002).

[23] E. R. Muller, Balanced confounding of factorial experiments, Biometrics, (1966).

[24] G. S. R. Murthy, Optimization in 2m3n factorial experiments algorithmic, Operations Research, 7(2013).

[25] K. R. Nair and C. R. Rao, Confounding in asymmetrical factorial experiments, Journal of the Royal

Statistical Society, 10(1)(1948), 109-131.

[26] Ulrike Grömping, R package doe.base for factorial experiments, Journal of Statistical Software,

85(5)(2018), 1-41.

[27] C. R. Rao, A general class of quasi factorial and related design, Sankhya, (1956).

[28] B. V. Shah, Balanced factorial experiments, Annals of Mathematical Statistics, 31(7)(1960), 502-514.

[29] P. R. Sreenath, On designs for asymmetrical factorial experiments through confounded symmetricals,

Statistics and Applications, 9(7)(2011), 71-81.

[30] P. R. Sreenath, Designs for assymetrical factorial experiment through confounded symmetrical, Journal of

The Indian Society of Agricuture Statistics, 9(1 and 2)(2011).

[31] C. Y. Suen and I. M Chakravati, Efficient two factor balanced designs, J. R. Statist. Soc., (1986).

[32] S. K. Tharthare, Generalized right angular designs, Ann. Math. Statist, (1965).

[33] H. R. Thomson and I. D. Dick, Facorial designs in small bblock derivable from orthogonal latin squares,

J. R. Statist. Soc., (1951).

[34] D. T. Voss, On generalizations of the classical method of confounding to asy mmetric factorial experiments,

Communications in Statistics-Theory and Methods, 15(4)(1986), 1299-1314.

[35] J. N. Wanyoike, F. Njui and M. M. Manene, Efficiency factors for linear contrasts in confounded

asymmetrical factorial designs, Far East Journal of Theoretical Statistics, 55(1)(2019), 23-52.



Multifactor Balanced Asymmetrical Factorial Designs of Type II / N. J. Wanyoike, Guangzhou Chen 162

[36] Rahul Mukerjee and C. F. Jeff Wu, A modern theory of factorial design, Springer Series in Statistics,

(2006).

[37] F. Yates, The design and analysis of factorial assignment, Imp. Bur, of Social Sci., Tech.,

Communication, (1937).

[38] Xue Min Zi, Min Qian Liu and Runchu Zhang, Asymmetrical factorial designs containing clear effects,

New Delhi Statistics and Applications, 9(1 and 2)(2007), 71-81.


