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Abstract

In this research paper, we investigate the Hyers-Ulam stability of the functional equation f (2x +

y) + f (x + 2y) = 4 f (x + y) + f (x) + f (y) in 2-Banach space.
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1. Introduction

Stability of function for a function from normed space to Banach space has been studied by Hyers [9].

He has proved that for a function f : X −→ Y, a function between normed space X and Banach space

Y satisfying

∥ f (x + y)− f (x)− f (y)∥ ≤ δ

for each x, y ∈ X and δ > 0. Then there exists a unique additive function T : X −→ Y such that

∥ f (x) − T(x)∥ ≤ δ for each x ∈ X. It is a positive answer to a problem raised by Ulam [16] for a

functional equation on metric group. Stability of a functional equation for a function from a normed

space to a 2-Banach space have been studied by B.M. Patel and A.B. Patel in [3–5]. In fact several

authors have studied the problem for different types of functional equations for functions from normed

space to Banach space. (see [1,2,10–15]). Our aim is to study the stability of the functional equation

f (2x + y) + f (x + 2y) = 4 f (x + y) + f (x) + f (y) (1)

introduced by [7], for a function on 2-normed space to 2-Banach space.

Definition 1.1. Let X and Y be real vector spaces, and let f : X −→ Y be a function. Then the functional
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equation

f (x + y) + f (x − y) = f (x) + f (y) (2)

is said to be quadratic functional equation and every solution of the quadratic equation is said to be a quadratic

function.

Theorem 1.2 ([7]). Let X and Y be real vector spaces. A function f : X −→ Y satisfies the functional equation

(1) if and only if function f : X −→ Y satisfies the functional equation (2). Therefore, every solution of

functional equation (1) is also a quadratic function.

In the 1960s, S. Gähler introduced the concept of linear 2-normed spaces.

Definition 1.3. Let X be a linear space over R with dim X > 1 and let ∥·, ·∥ : X × X −→ R be a function

satisfying the following properties:

1. ∥x, y∥ = 0 if and only if x and y are linearly dependent,

2. ∥x, y∥ = ∥y, x∥,

3. ∥ax, y∥ = |a|∥x, y∥,

4. ∥x, y + z∥ ≤ ∥x, y∥+ ∥x, z∥

for each x, y, z ∈ X and a ∈ R. Then the function ∥·, ·∥ is called a 2-norm on X and (X, ∥·, ·∥) is called a

2-normed space.

We introduce a basic property of 2-normed spaces as follows. Let (X, ∥·, ·∥) be a linear 2-normed space,

x ∈ X and ∥x, y∥ = 0 for each y ∈ X. Suppose x ̸= 0, since dim X > 1, choose y ∈ X such that {x, y} is

linearly independent so we have ∥x, y∥ ̸= 0, which is a contradiction. Therefore, we have the following

lemma.

Lemma 1.4. Let (X, ∥·, ·∥) be a 2-normed space. If x ∈ X and ∥x, y∥ = 0, for each y ∈ X, then x = 0.

Remark 1.5. Let (X, ∥·, ·∥) be a 2-normed space. Note that the conditions (2) and (4) imply that ∥x + y, z∥ ≤

∥x, z∥ + ∥y, z∥ for each x, y, z ∈ X. Putting w = x + y, we get ∥w, z∥ ≤ ∥x, z∥ + ∥w − x, z∥, for each

x, y, z ∈ X. So ∥w, z∥ − ∥x, z∥ ≤ ∥w − x, z∥, for each x, z, w ∈ X. Replacing w by x and x by w in the above

inequality, we get ∥x, z∥ − ∥w, z∥ ≤ ∥x − w, z∥ for each x, z, w ∈ X. Thus, we have

|∥x, z∥ − ∥y, z∥| ≤ ∥x − y, z∥ (3)

for each x, y, z ∈ X. Hence the function x → ∥x, y∥ is continuous from X into R, for each fixed y ∈ X.

Let (X, ∥·, ·∥) be a 2-normed space. For x, z ∈ X, let pz(x) = ∥x, z∥, x ∈ X. Then for each z ∈ X,

pz is a real-valued function on X such that pz(x) = ∥x, z∥ ≥ 0, pz(αx) = |α|∥x, z∥ = |α|pz(x) and
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pz(x + y) = ∥x + y, z∥ = ∥z, x + y∥ ≤ ∥z, x∥+ ∥z, y∥ = ∥x, z∥+ ∥y, z∥ = pz(x) + pz(y), for each α ∈ R

and all x, y ∈ X. Thus pz is a a semi-norm for each z ∈ X.

For x ∈ X, let ∥x, z∥ = 0, for each z ∈ X. By Lemma 1.4, x = 0. Thus for 0 ̸= x ∈ X, there is z ∈ X

such that pz(x) = ∥x, z∥ ̸= 0. Hence the family {pz(x) : z ∈ X} is a separating family of semi-norms.

Let x0 ∈ X, for ε > 0, z ∈ X, let Uz,ε(x0) := {x ∈ X : pz(x − x0) < ε} = {x ∈ X : ∥x − x0, z∥ < ε}.

Let S(x0) := {Uz,ε(x0) : ε > 0, z ∈ X} and β(x0) := {∩F : F is a finite subcollection of S(x0)}. Define

a topology τ on X by saying that a set U is open if for every x ∈ U, there is some N ∈ β(x) such

that N ⊂ U. That is, τ is the topology on X that has subbase {Uz,ε(x0) : ε > 0, x0 ∈ X, z ∈ X}. The

topology τ on X makes X a topological vector space. Since for x ∈ X collection β(x) is a local base

whose members are convex, X is locally convex. In the 1960s, S. Gähler and A. White introduced the

concept of 2-Banach spaces.

Definition 1.6. A sequence {xn} in a 2-normed space X is called a 2-Cauchy sequence if lim
m,n→∞

∥xn − xm, x∥ =

0 for each x ∈ X.

Definition 1.7. A sequence {xn} in a 2-normed space X is called a 2-convergent sequence if there is an x ∈ X

such that lim
n→∞

∥xn − x, y∥ = 0 for each y ∈ X. If {xn} converges to x, we write lim
n→∞

xn = x.

Definition 1.8. We say that a 2-normed space (X, ∥·, ·∥) is a 2-Banach space if every 2-Cauchy sequence in X

is 2-convergent in X.

Following shows that ∥·, ·∥ is continuous in each component.

Lemma 1.9. For a convergent sequence {xn} in a 2-normed space X, lim
n→∞

∥xn, y∥ = ∥ lim
n→∞

xn, y∥ for each

y ∈ X.

Proof. Since {xn} is a 2-convergent sequence in the 2-normed space X, there is an x ∈ X such that

limn→∞ ∥xn − x, y∥ = 0 for each y ∈ X. By (3), we have

lim
n→∞

|∥xn, y∥ − ∥x, y∥| ≤ lim
n→∞

∥xn − x, y∥ = 0

for each y ∈ X. Hence

lim
n→∞

∥xn, y∥ = ∥x, y∥ = ∥ lim
n→∞

xn, y∥

for each y ∈ X.

2. Hyers-Ulam Stability of a Functional Equation for Function f : (X, ∥·, ·∥) −→ (X, ∥·, ·∥)

Throughout this section, consider X a real normed linear space. We also consider that there is a 2-

norm on X which makes (X, ∥·, ·∥) a 2-Banach space. For a function f : (X, ∥·, ·∥) −→ (X, ∥·, ·∥),
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define D f : X × X −→ X by

D f (x, y) = f (2x + y) + f (x + 2y)− 4 f (x + y)− f (x)− f (y)

for each x, y,∈ X.

Theorem 2.1. Let ε ≥ 0, 0 < p < 2. Assume that the function f : X −→ X satisfies

∥D f (x, y), z∥ ≤ ε
[
∥x, z∥p + ∥y, z∥p] (4)

for each x, y, z ∈ X. Then there exists a unique quadratic function Q : X −→ X satisfying (1) and

∥ f (x)− Q(x), z∥ ≤ 3 ε ∥x, z∥p

9 − 3p (5)

for each x, z ∈ X.

Proof. Letting x = y = 0 in (4), we have ∥4 f (0), z∥ = 0 for each z ∈ X, so we have f (0) = 0. Putting

x = y in (4), we get

∥2 f (3x)− 4 f (2x)− 2 f (x), z∥ ≤ 2ε∥x, z∥p

for each x, z ∈ X. Therefore

∥ f (3x)− 2 f (2x)− f (x), z∥ ≤ ε∥x, z∥p (6)

for each x, z ∈ X. Putting y = 0 in (4), we get

∥ f (2x)− 4 f (x), z∥ ≤ ε∥x, z∥p (7)

for each x, z ∈ X. Multiplying (7) by 2, we get

∥2 f (2x)− 8 f (x), z∥ ≤ 2ε∥x, z∥p (8)

for each x, z ∈ X. By adding (6) and (8), we get

∥ f (3x)− 9 f (x), z∥ ≤ 3ε∥x, z∥p (9)

for each x, z ∈ X. Therefore

∥∥∥ f (3x)
9

− f (x), z
∥∥∥ ≤ ε∥x, z∥p

3
(10)
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for each x, z ∈ X. Replacing x by 3x in (10), we get

∥∥∥ f (9x)
9

− f (3x), z
∥∥∥ ≤ ε 3p∥x∥p

3
(11)

for each x, z ∈ X. By (10) and (11), we get

∥∥∥ f (9x)
92 − f (x), z

∥∥∥ ≤
∥∥∥ f (9x)

92 − f (3x)
9

, z
∥∥∥+ ∥∥∥ f (3x)

9
− f (x), z

∥∥∥
≤ 1

9
ε 3p∥x, z∥p

3
+

ε∥x, z∥p

3

=
ε

3

[
1 +

3p

9

]
∥x, z∥p

for each x, z ∈ X. By using induction on n, we have

∥∥∥ f (x)− 1
9n f (3nx), z

∥∥∥ ≤ ε∥x, z∥p

3

n−1

∑
j=0

3pj

9j

=
ε∥x, z∥p

3

n−1

∑
j=0

3(p−2)j

=
ε∥x, z∥p

3

[
1 − 3(p−2)n

1 − 3p−2

]
(12)

for each x, z ∈ X. For m, n ∈ N, we get

∥∥∥ 1
9m f (3mx)− 1

9n f (3nx), z
∥∥∥ =

∥∥∥ 1
9m+n−n f (3m+n−nx)− 1

9n f (3nx), z
∥∥∥

=
1
9n

∥∥∥ 1
9m−n f (3m−n · 3nx)− f (3nx), z

∥∥∥
≤ ε ∥3nx, z∥p

3 · 9n

m−n−1

∑
j=0

3(p−2)j

=
ε∥x, z∥p

3
3(p−2)n

m−n−1

∑
j=0

3(p−2)j

=
ε∥x, z∥p

3

m−n−1

∑
j=0

3(p−2)(n+j)

=
ε∥x, z∥p

3
3(p−2)n(1 − 3(p−2)(m−n))

1 − 3p−2

−→ 0 as m, n → ∞

for each x, z ∈ X. Therefore, { 1
9n f (3nx)} is a 2-Cauchy sequence in X, for each x ∈ X. Since X is a

2-Banach space, { 1
9n f (3nx)} 2-converges, for each x ∈ X. Define the function Q : X −→ X as

Q(x) := lim
n→∞

1
9n f (3nx)
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for each x ∈ X. Now, from (12), we have

lim
n→∞

∥∥∥ f (x)− 1
9n f (3nx), z

∥∥∥ ≤ ε∥x, z∥p

3

[
1

1 − 3p−2

]

for each x, z ∈ X. Therefore

∥ f (x)− Q(x), z∥ ≤ 3ε∥x, z∥p

9 − 3p

for each x, z ∈ X. Next we show that Q satisfies (1).

∥DQ(x, y), z∥ = lim
n→∞

1
9n ∥D f (3nx, 3ny), z∥

≤ lim
n→∞

ε

9n (∥3nx, z∥p + ∥3ny, z∥p)

= lim
n→∞

ε
[
3(p−2)n∥x, z∥p + 3(p−2)n∥y, z∥p]

= 0

for each x, z ∈ X. Therefore ∥DQ(x, y), z∥ = 0, for each z ∈ X. So we get DQ(x, y) = 0. Next we prove

the uniqueness of Q. Let Q′ be another quadratic function satisfying (1) and (5). Since Q and Q′ are

quadratic, Q(3nx) = 9nQ(x), Q′(3nx) = 9nQ′(x), for each x ∈ X.

∥Q(x)− Q′(x), z∥ =
1
9n ∥Q(3nx)− Q′(3nx), z∥

≤ 1
9n [∥Q(3nx)− f (3nx), z∥+ ∥ f (3nx)− Q′(3nx), z∥]

≤ 1
9n

6ε∥3nx, z∥p

9 − 3p

= 3(p−2)n 3ε ∥x, z∥p

9 − 3p

−→ 0 as n → ∞

for each x, z ∈ X. Therefore ∥Q(x)− Q′(x), z∥ = 0, for each z ∈ X. Therefore Q(x) = Q′(x), for each

x ∈ X. This proves the uniqueness of Q.

Theorem 2.2. Let ε ≥ 0, p > 2. Assume that the function f : X −→ X satisfies

∥D f (x, y), z∥ ≤ ε
[
∥x, z∥p + ∥y, z∥p] (13)

for each x, y, z ∈ X. Then there exists a unique quadratic function Q : X −→ X satisfying (1) and

∥ f (x)− Q(x), z∥ ≤ 3ε∥x, z∥p

3p − 9
(14)

for each x, z ∈ X.
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Proof. By (9) of Theorem 2.1, we get

∥ f (3x)− 9 f (x), z∥ ≤ 3ε∥x, z∥p (15)

for each x, z ∈ X. Replacing x by x
3 in (15), we get

∥∥∥ f (x)− 9 f
( x

3

)
, z
∥∥∥ ≤ 3ε3−p∥x, z∥p (16)

for each x, z ∈ X. Replacing x by x
3 in (16), we get

∥∥∥ f
( x

3

)
− 9 f

( x
9

)
, z
∥∥∥ ≤ 3ε3−2p∥x, z∥p (17)

for each x, z ∈ X. Now, by (16) and (17)

∥∥∥ f (x)− 92 f
( x

9

)
, z
∥∥∥ ≤

∥∥∥ f (x)− 9 f
( x

3

)
, z
∥∥∥+ ∥∥∥9 f

( x
3

)
− 92 f

( x
9

)
, z
∥∥∥

≤ 3ε3−p∥x, z∥p + 9 · 3ε3−p∥x, z∥p

= 3ε∥x, z∥p[3−p + 9 · 3−2p]
for each x, z ∈ X. By using induction on n ∈ N, we get

∥∥∥ f (x)− 9n f
( x

3n

)
, z
∥∥∥ ≤ 3ε∥x, z∥p

n−1

∑
j=0

3−p(j+1) · 9j

= 3ε∥x, z∥p
n−1

∑
j=0

3(−p+2)j−p

= 3ε∥x, z∥p 3−p(1 − 3(−p+2)n)

1 − 3−p+2 (18)

for each x, z ∈ X. Now, for m, n ∈ N, we get

∥∥∥9m f
( x

3m

)
− 9n f

( x
3n

)
, z
∥∥∥ =

∥∥∥9m+n−n f
( x

3m+n−n

)
− 9n f

( x
3n

)
, z
∥∥∥

= 9n
∥∥∥9m−n f

( x
3m−n · 3n

)
− f

( x
3n

)
, z
∥∥∥

≤ 3ε9n
∥∥∥ x

3n , z
∥∥∥p m−n−1

∑
j=0

3(−p+2)j−p

= 3ε3(−p+2)n∥x, z∥p
m−n−1

∑
j=0

3(−p+2)j−p

= 3ε∥x, z∥p
m−n−1

∑
j=0

3(−p+2)(n+j)−p

= 3ε∥x, z∥p 3(−p+2)n(1 − 3(−p+2)(m−n))
1 − 3−p+2

−→ 0 as n → ∞
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for each x, z ∈ X. Therefore {9n f ( x
3n )} is a 2-Cauchy sequence in X, for each x ∈ X. Since X is a

2-Banach space,{9n f ( x
3n )} 2-converges in X, for each x ∈ X. Define Q : X −→ X as

Q(x) := lim
n→∞

9n f
( x

3n

)
for each x ∈ X. Now, by (18), we get

lim
n→∞

∥∥∥ f (x)− 9n f
( x

3n

)
, z
∥∥∥ ≤ 3ε∥x, z∥p 3−p

1 − 3−p+2

= 3ε∥x, z∥p 1
3p − 9

for each x, z ∈ X. Therefore

∥ f (x)− Q(x), z∥ ≤ 3ε∥x, z∥p 1
3p − 9

for each x, z ∈ X. The rest of the proof is similar to the proof of Theorem 2.1.

Theorem 2.3. Let ε ≥ 0, 0 < p < 2. Assume that the function f : X −→ X satisfies

∥D f (x, y), z∥ ≤ ε
[
∥x, z∥p + ∥y, z∥p] (19)

for each x, y, z ∈ X. Then there exists a unique quadratic function Q : X −→ X satisfying (1) and

∥ f (x)− Q(x), z∥ ≤ ε∥x, z∥p

4 − 2p (20)

for each x, z ∈ X.

Proof. By (7) of Theorem 2.1, we get

∥ f (2x)− 4 f (x), z∥ ≤ ε∥x, z∥p

for each x, z ∈ X. Therefore

∥∥∥ f (2x)
4

− f (x), z
∥∥∥ ≤ ε

4
∥x, z∥p (21)

for each x, z ∈ X. Replacing x by 2x in (21), we get

∥∥∥ f (4x)
4

− f (2x), z
∥∥∥ ≤ ε

4
2p∥x, z∥p (22)

for each x, z ∈ X. By (21) and (22), we get

∥∥∥ f (4x)
42 − f (x), z

∥∥∥ ≤
∥∥∥ f (4x)

42 − f (2x)
4

, z
∥∥∥+ ∥∥∥ f (2x)

4
− f (x), z

∥∥∥
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≤ 1
4
· ε

4
2p∥x, z∥p +

ε

4
∥x, z∥p

=
ε

4
∥x, z∥p

[
1 +

2p

4

]
for each x, z ∈ X. Now, by using induction on n ∈ N, we get

∥∥∥ f (2nx)
4n − f (x), z

∥∥∥ ≤ ε

4
∥x∥p∥z∥r

n−1

∑
j=0

2pj

4j

=
ε

4
∥x, z∥p

n−1

∑
j=0

2(p−2)j

=
ε

4
∥x, z∥p

[1 − 2(p−2)n

1 − 2p−2

]
(23)

for each x, z ∈ X. For m, n ∈ N, we get

∥∥∥ f (2mx)
4m − f (2nx)

4n , z
∥∥∥ =

∥∥∥ f (2m+n−nx)
4m+n−n − f (2nx)

4n , z
∥∥∥

=
1
4n

∥∥∥ f (2m−n · 2nx)
4m−n − f (2nx), z

∥∥∥
≤ 1

4n
ε

4
∥2nx, z∥p

m−n−1

∑
j=0

2(p−2)j

=
ε

4
2(p−2)n∥x, z∥p

m−n−1

∑
j=0

2(p−2)j

=
ε

4
∥x, z∥p

m−n−1

∑
j=0

2(p−2)(n+j)

=
ε

4
∥x, z∥p 2(p−2)n(1 − 2(p−2)(m−n))

1 − 2p−2

−→ 0 as n → ∞

for each x, z ∈ X. Therefore { f (2nx)
4n } is a 2-Cauchy sequence in X, for each x ∈ X. Since X is a 2-Banach

space, { f (2nx)
4n } 2-converges in X, for each x ∈ X. Define Q : X −→ X as

Q(x) := lim
n→∞

1
4n f (2nx)

for each x ∈ X. Now, by (23), we get

lim
n→∞

∥∥∥ f (2nx)
4n − f (x), z

∥∥∥ ≤ ε∥x, z∥p

4
(
1 − 2p−2)

for each x, z ∈ X. Therefore

∥Q(x)− f (x), z∥ ≤ ε∥x, z∥p

4 − 2p
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for each x, z ∈ X. Next we show that Q satisfies (1).

∥DQ(x, y), z∥ = lim
n→∞

1
4n ∥D f (2nx, 2ny), z∥

≤ lim
n→∞

ε

4n (∥2nx, z∥p + ∥2ny, z∥p)

= lim
n→∞

ε
[
2(p−2)n∥x, z∥p + 2(p−2)n∥y, z∥p]

= 0

for each x, z ∈ X. Therefore ∥DQ(x, y), z∥ = 0, for each z ∈ X. So we get DQ(x, y) = 0. Next we prove

the uniqueness of Q. Let Q′ be another quadratic function satisfying (1) and (20). Since Q and Q′ are

quadratic, Q(2nx) = 4nQ(x), Q′(2nx) = 4nQ′(x), for each x ∈ X.

∥Q(x)− Q′(x), z∥ =
1
4n ∥Q(2nx)− Q′(2nx), z∥

≤ 1
4n [∥Q(2nx)− f (2nx), z∥+ ∥ f (2nx)− Q′(2nx), z∥]

≤ 1
4n

2ε∥2nx, z∥p

4 − 2p

= 2(p−2)n 2ε ∥x, z∥p

4 − 2p

−→ 0 as n → ∞

for each x, z ∈ X. Therefore ∥Q(x)− Q′(x), z∥ = 0, for each z ∈ X. Therefore Q(x) = Q′(x), for each

x ∈ X.

Theorem 2.4. Let ε ≥ 0, p > 2. Assume that a function f : X −→ X satisfies

∥D f (x, y), z∥ ≤ ε
[
∥x, z∥p + ∥y, z∥p] (24)

for each x, y, z ∈ X. Then there exists a unique quadratic function Q : X −→ X satisfying (1) and

∥ f (x)− Q(x), z∥ ≤ ε∥x, z∥p

2p − 4
(25)

for each x, z ∈ X.

Proof. By (7) of Theorem 2.1, we get

∥ f (2x)− 4 f (x), z∥ ≤ ε∥x, z∥p

for each x, z ∈ X. Therefore

∥ f (2x)− 4 f (x), z∥ ≤ ε∥x, z∥p (26)
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for each x, z ∈ X. Replacing x by x
2 in (26), we get

∥∥∥ f (x)− 4 f
( x

2

)
, z
∥∥∥ ≤ ε2−p∥x, z∥p (27)

for each x, z ∈ X. Replacing x by x
2 in (27), we get

∥∥∥ f
( x

2

)
− 4 f

( x
4

)
, z
∥∥∥ ≤ ε2−2p∥x, z∥p (28)

for each x, z ∈ X. By (27) and (28), we get

∥∥∥ f (x)− 16 f
( x

4

)
, z
∥∥∥ ≤

∥∥∥ f (x)− 4 f
( x

2

)
, z
∥∥∥+ ∥∥∥4 f

( x
2

)
− 16 f

( x
4

)
, z
∥∥∥

≤ ε2−p∥x, z∥p + 4ε2−2p∥x∥p

= ε∥x, z∥p[2−p + 4 · 2−2p]
for each x, z ∈ X. By using induction on n ∈ N, we get

∥∥∥ f (x)− 4n f
( x

2n

)
, z
∥∥∥ ≤ ε∥x, z∥p

n−1

∑
j=0

2−p(j+1) · 4j

= ε∥x, z∥p
n−1

∑
j=0

2(−p+2)j−p

= ε∥x, z∥p 2−p(1 − 2(−p+2)n)
1 − 2−p+2 (29)

for each x, z ∈ X. For m, n ∈ N, we get

∥∥∥4m f
( x

2m

)
− 4n f

( x
2n

)
, z
∥∥∥ =

∥∥∥4m+n−n f
( x

2m+n−n

)
− 4n f

( x
2n

)
, z
∥∥∥

= 4n
∥∥∥4m−n f

( x
2m−n · 2n

)
− f

( x
2n

)
, z
∥∥∥

≤ 4nε
∥∥∥ x

2n , z
∥∥∥p m−n−1

∑
j=0

2(−p+2)j−p

= ε2(−p+2)n∥x, z∥p
m−n−1

∑
j=0

2(−p+2)j−p

= ε∥x, z∥p
m−n−1

∑
j=0

2(−p+2)(n+j)−p

= ε∥x, z∥p 2(−p+2)n−p(1 − 2(−p+2)(m−n))
1 − 2(−p+2)

−→ 0 as n → ∞

for each x, z ∈ X. Therefore
{

4n f
(

x
2n

)}
is a Cauchy sequence in X. Since X is a 2-Banach space,
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{
4n f

(
x

2n

)}
converges in X. So, define Q : X −→ X as

Q(x) := lim
n→∞

4n f
( x

2n

)
for each x ∈ X. Now, by (29), we have

∥∥∥ f (x)− 4n f
( x

2n

)
, z
∥∥∥ ≤ ε∥x, z∥p 2−p(1 − 2(−p+2)n)

1 − 2−p+2

for each x, z ∈ X. Therefore

lim
n→∞

∥∥∥ f (x)− 4n f
( x

2n

)
, z
∥∥∥ ≤ ε∥x, z∥p 2−p

1 − 2−p+2

= ε∥x, z∥p 1
2p − 4

for each x, z ∈ X. Therefore

∥ f (x)− Q(x), z∥ ≤ ε∥x, z∥p

2p − 4

for each x, z ∈ X. The rest of the proof is similar to the proof of Theorem 2.3.
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