ISSN: 2347-1557

Available Online: http://ijmaa.in

Atom Bond Sum Connectivity Downhill and Multiplicative Atom Bond Sum Connectivity Downhill Indices of Graphs

V. R. Kulli^{1,*}

¹Department of Mathematics, Gulbarga University, Kalaburagi, Karnataka, India

Abstract

In this study, we introduce the atom bond sum connectivity downhill and multiplicative atom bond sum connectivity downhill indices of a graph. Furthermore, we compute these newly defined atom bond sum connectivity downhill indices for some standard graphs, wheel graphs, gear graphs, helm graphs and tadpole graphs.

Keywords: atom bond sum connectivity downhill index; multiplicative atom bond sum connectivity downhill index; graphs.

2020 Mathematics Subject Classification: 05C07, 05C09.

1. Introduction

In this paper, G denotes a finite, simple, connected graph, V(G) and E(G) denote the vertex set and edge set of G. The degree $d_G(u)$ of a vertex u is the number of vertices adjacent to u. A topological index is a numerical parameter mathematically derived from the graph structure. Several topological indices were defined by using vertex degree concept [1]. Topological indices have their applications in various disciplines in Science and Technology [2]. A u-v path P in G is a sequence of vertices in G, starting with u and ending at v, such that consecutive vertices in P are adjacent, and no vertex is repeated. A path $\pi = v_1, v_2, \ldots v_{k+1}$ in G is a downhill path if for every $i, 1 \le i \le k, d_G(v_i) \ge d_G(v_{i+1})$. A vertex v is downhill dominates a vertex u if there exists a downhill path originated from u to v. The downhill neighborhood of a vertex v is denoted by $N_{dn}(v)$ and defined as: $N_{dn}(v) = \{u : v \text{ downhill dominates } u\}$. The downhill degree $d_{dn}(v)$ of a vertex v is the number of downhill neighbors of v, see [3]. Recently, some downhill indices were studied in [4-13]. The uphill domination is introduced by Deering in [14].

A u-v path P in G is a sequence of vertices in G, starting with u and ending at v, such that consecutive vertices in P are adjacent, and no vertex is repeated. A path $\pi = v_1, v_2, \dots v_{k+1}$ in G is a uphill path

*Corresponding author (vrkulli@gmail.com)

if for every $i, 1 \le i \le k, d_G(v_i) \le d_G(v_{i+1})$. A vertex v is uphill dominates a vertex u if there exists an uphill path originated from u to v. The uphill neighborhood of a vertex v is denoted by $N_{up}(v)$ and defined as: $N_{up}(v) = \{u : v \text{ uphill dominates } u\}$. The uphill degree $d_{up}(v)$ of a vertex v is the number of uphill neighbors of v, see [15, 16]. The atom bond sum connectivity index [17] of a graph G is defined as

$$ABS(G) = \sum_{uv \in E(G)} \sqrt{\frac{d_G(u) + d_G(v) - 2}{d_G(u) + d_G(v)}}.$$

Recently, some atom bond sum connectivity indices were studied in [18-29]. We introduce the atom bond sum connectivity downhill index of a graph and it is defined as

ABSDW(G) =
$$\sum_{uv \in E(G)} \sqrt{\frac{d_{dn}(u) + d_{dn}(v) - 2}{d_{dn}(u) + d_{dn}(v)}}$$

Also we introduce the multiplicative atom bond sum connectivity downhill index of a graph and it is defined as

$$ABSDWII(G) = \prod_{uv \in E(G)} \sqrt{\frac{d_{dn}(u) + d_{dn}(v) - 2}{d_{dn}(u) + d_{dn}(v)}}.$$

In this paper, the atom bond sum connectivity downhill index and multiplicative atom bond sum connectivity downhill index of certain graphs are computed.

2. Results for Some Standard Graphs

Proposition 2.1. Let G be r-regular with n vertices and $r \geq 2$. Then

$$ABSDW(G) = \frac{nr}{2} \sqrt{\frac{n-2}{n-1}}.$$

Proof. Let *G* be an *r*-regular graph with *n* vertices and $r \ge 2$ and $\frac{nr}{2}$ edges. Then $d_{dn}(v) = n - 1$ for every v in *G*.

$$ABSDW(G) = \sum_{uv \in E(G)} \sqrt{\frac{d_{dn}(u) + d_{dn}(v) - 2}{d_{dn}(u) + d_{dn}(v)}}$$
$$= \frac{nr}{2} \sqrt{\frac{(n-1) + (n-1) - 2}{(n-1) + (n-1)}}$$
$$= \frac{nr}{2} \sqrt{\frac{n-2}{n-1}}$$

Corollary 2.2. Let C_n be a cycle with at least 3 vertices. Then

ABSDW
$$(C_n) = n\sqrt{\frac{n-2}{n-1}}$$

Corollary 2.3. Let K_n be a complete graph with at least 3 vertices. Then

ABSDW
$$(K_n) = \frac{n}{2} \sqrt{(n-1)(n-2)}$$

Proposition 2.4. *Let* G *be* r-regular with n vertices and $r \ge 2$. Then

ABSDWII(G) =
$$\left(\sqrt{\frac{n-2}{n-1}}\right)^{\frac{nr}{2}}$$

Proof. Let *G* be an *r*-regular graph with *n* vertices and $r \ge 2$ and $\frac{nr}{2}$ edges. Then $d_{dn}(v) = n - 1$ for every v in *G*.

ABSDWII(G) =
$$\prod_{uv \in E(G)} \sqrt{\frac{d_{dn}(u) + d_{dn}(v) - 2}{d_{dn}(u) + d_{dn}(v)}}$$
$$= \left(\sqrt{\frac{(n-1) + (n-1) - 2}{(n-1) + (n-1)}}\right)^{\frac{nr}{2}}$$
$$= \left(\sqrt{\frac{n-2}{n-1}}\right)^{\frac{nr}{2}}$$

Corollary 2.5. Let C_n be a cycle with at least 3 vertices. Then

ABSDWII
$$(C_n) = \left(\sqrt{\frac{n-2}{n-1}}\right)^n$$

Corollary 2.6. Let K_n be a complete graph with at least 3 vertices. Then

ABSDWII
$$(K_n) = \left(\sqrt{\frac{n-2}{n-1}}\right)^{\frac{n(n-1)}{2}}$$

Proposition 2.7. Let P be a path with at least 3 vertices. Then

ABSDW
$$(P_n) = 2\sqrt{\frac{n-3}{n-1}} + (n-3)\sqrt{\frac{n-2}{n-1}}.$$

Proof. Let *P* be a path with at least 3 vertices. We obtain two partitions of the edge set of *P* as follows:

$$E_1 = \{uv \in E(P) \mid d_{dn}(u) = 0, d_{up}(v) = n - 1\}, |E_1| = 2.$$

 $E_2 = \{uv \in E(P) \mid d_{up}(u) = d_{up}(v) = n - 1\}, |E_2| = n - 3.$

ABSDW
$$(P_n) = \sum_{uv \in E(P_n)} \sqrt{\frac{d_{dn}(u) + d_{dn}(v) - 2}{d_{dn}(u) + d_{dn}(v)}}$$

$$= 2\sqrt{\frac{0 + (n-1) - 2}{0 + (n-1)}} + (n-3)\sqrt{\frac{(n-1) + (n-1) - 2}{(n-1) + (n-1)}}$$

$$= 2\sqrt{\frac{n-3}{n-1}} + (n-3)\sqrt{\frac{n-2}{n-1}}$$

Proposition 2.8. Let P be a path with at least 3 vertices. Then

ABSDWII
$$(P_n) = \left(\sqrt{\frac{n-3}{n-1}}\right)^2 \times \left(\sqrt{\frac{n-2}{n-1}}\right)^{n-3}$$

Proof. Let *P* be a path with at least 3 vertices.

ABSDWII
$$(P_n) = \prod_{uv \in E(P_n)} \sqrt{\frac{d_{dn}(u) + d_{dn}(v) - 2}{d_{dn}(u) + d_{dn}(v)}}$$

$$= \left(\sqrt{\frac{0 + (n-1) - 2}{0 + (n-1)}}\right)^2 \times \left(\sqrt{\frac{(n-1) + (n-1) - 2}{(n-1) + (n-1)}}\right)^{n-3}$$

$$= \left(\sqrt{\frac{n-3}{n-1}}\right)^2 \times \left(\sqrt{\frac{n-2}{n-1}}\right)^{n-3}$$

3. Results for Wheel Graphs

The wheel W_n is the join of C_n and K_1 . Clearly W_n has n + 1 vertices and 2n edges. Then W_n has two types of edges based on the uphill degree of the vertices of each edge as follows:

$$E_1 = \{uv \in E(W_n) \mid d_{dn}(u) = n, dn_p(v) = n - 1\}, |E_1| = n.$$

$$E_2 = \{uv \in E(W_n) \mid d_{dn}(u) = d_{dn}(v) = n - 1\}, |E_2| = n.$$

Theorem 3.1. Let W_n be a wheel graph with n + 1 vertices and 2n edges, $n \ge 4$. Then the atom bond sum connectivity downhill index of W_n is

$$ABSDWW_n = n\sqrt{\frac{2n-3}{2n-1}} + n\sqrt{\frac{n-2}{n-1}}.$$

Proof. We deduce

$$ABSDW(W_n) = \sum_{uv \in E(W_n)} \sqrt{\frac{d_{dn}(u) + d_{dn}(v) - 2}{d_{dn}(u) + d_{dn}(v)}}$$

$$= n\sqrt{\frac{n + n - 1 - 2}{n + n - 1}} + n\sqrt{\frac{n - 1 + n - 1 - 2}{n - 1 + n - 1}}$$

$$= n\sqrt{\frac{2n - 3}{2n - 1}} + n\sqrt{\frac{n - 2}{n - 1}}$$

Theorem 3.2. Let W_n be a wheel graph with n + 1 vertices and 2n edges, $n \ge 4$. Then the multiplicative atom bond sum connectivity downhill index of W_n is

ABSDWII
$$W_n = \left(\sqrt{\frac{2n-3}{2n-1}}\right)^n + \left(\sqrt{\frac{n-2}{n-1}}\right)^n.$$

Proof. We deduce

$$\begin{split} \text{ABSDWII}\left(W_n\right) &= \prod_{uv \in E(W_n)} \sqrt{\frac{d_{dn}(u) + d_{dn}(v) - 2}{d_{dn}(u) + d_{dn}(v)}} \\ &= \left(\sqrt{\frac{n + n - 1 - 2}{n + n - 1}}\right)^n \times \left(\sqrt{\frac{n - 1 + n - 1 - 2}{n - 1 + n - 1}}\right)^n \\ &= \left(\sqrt{\frac{2n - 3}{2n - 1}}\right)^n \times \left(\sqrt{\frac{n - 2}{n - 1}}\right)^n \end{split}$$

4. Results for Helm Graphs

The helm graph H_n is a graph obtained from W_n (with n + 1 vertices) by attaching an end edge to each rim vertex of W_n . Clearly, $|V(H_n)| = 2n + 1$ and $|E(H_n)| = 3n$. A graph H_n is shown in Figure 1.

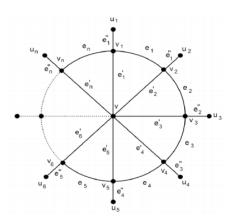


Figure 1: Helm graph H_n

Let H_n be a helm graph with 3n edges, $n \ge 5$. Then H_n has three types of edges based on the uphill degree of the vertices of each edge as follows:

$$E_{1} = \{uv \in E(H_{n}) \mid d_{dn}(u) = 2n, d_{dn}(v) = 2n - 1\}, \qquad |E_{1}| = n$$

$$E_{2} = \{uv \in E(H_{n}) \mid d_{dn}(u) = d_{dn}(v) = 2n - 1\}, \qquad |E_{2}| = n$$

$$E_{3} = \{uv \in E(H_{n}) \mid d_{dn}(u) = 2n - 1, d_{dn}(v) = 0\}, \qquad |E_{3}| = n$$

Theorem 4.1. Let H_n be a helm graph with 2n + 1 vertices, $n \ge 5$. Then the atom bond sum connectivity downhill index of H_n is

ABSDW
$$H_n = n\sqrt{\frac{4n-3}{4n-1}} + n\sqrt{\frac{2n-2}{2n-1}} + n\sqrt{\frac{2n-3}{2n-1}}.$$

Proof. We obtain

ABSDW
$$(H_n) = \sum_{uv \in E(H_n)} \sqrt{\frac{d_{dn}(u) + d_{dn}(v) - 2}{d_{dn}(u) + d_{dn}(v)}}$$

$$= n\sqrt{\frac{2n + 2n - 1 - 2}{2n + 2n - 1}} + n\sqrt{\frac{2n - 1 + 2n - 1 - 2}{2n - 1 + 2n - 1}} + n\sqrt{\frac{2n - 1 + 0 - 2}{2n - 1 + 0}}$$

$$= n\sqrt{\frac{4n - 3}{4n - 1}} + n\sqrt{\frac{2n - 2}{2n - 1}} + n\sqrt{\frac{2n - 3}{2n - 1}}$$

Theorem 4.2. Let H_n be a helm graph with 2n + 1 vertices, $n \ge 5$. Then the multiplicative atom bond sum connectivity downhill index of H_n is

$$ABSDWII\ H_n = \left(\sqrt{\frac{4n-3}{4n-1}}\right)^n \times \left(\sqrt{\frac{2n-2}{2n-1}}\right)^n \times \left(\sqrt{\frac{2n-3}{2n-1}}\right)^n.$$

Proof. We obtain

ABSDWII
$$(H_n) = \prod_{uv \in E(H_n)} \sqrt{\frac{d_{dn}(u) + d_{dn}(v) - 2}{d_{dn}(u) + d_{dn}(v)}}$$

$$= \left(\sqrt{\frac{2n + 2n - 1 - 2}{2n + 2n - 1}}\right)^n \times \left(\sqrt{\frac{2n - 1 + 2n - 1 - 2}{2n - 1 + 2n - 1}}\right)^n \times \left(\sqrt{\frac{2n - 1 + 0 - 2}{2n - 1 + 0}}\right)^n$$

$$= \left(\sqrt{\frac{4n - 3}{4n - 1}}\right)^n \times \left(\sqrt{\frac{2n - 2}{2n - 1}}\right)^n \times \left(\sqrt{\frac{2n - 3}{2n - 1}}\right)^n$$

5. Results for Tadpole Graphs

Let $T_{n,m}$ be a tadpole graph with n + m vertices, $n, m \ge 3$. Then $T_{n,m}$ has five types of edges based on the downhill degree of the vertices of each edge as follows:

$$E_{1} = \{uv \in E(T_{n,m}) \mid d_{dn}(u) = n + m - 1, d_{dn}(v) = m - 1\}, \qquad |E_{1}| = 1$$

$$E_{2} = \{uv \in E(T_{n,m}) \mid d_{dn}(u) = n + m - 1, d_{dn}(v) = n - 2\}, \qquad |E_{2}| = 2$$

$$E_{3} = \{uv \in E(T_{n,m}) \mid d_{dn}(u) = n - 2, d_{dn}(v) = n - 2\}, \qquad |E_{3}| = n - 2$$

$$E_{4} = \{uv \in E(T_{n,m}) \mid d_{dn}(u) = m - 1, d_{dn}(v) = m - 1\}, \qquad |E_{4}| = m - 2$$

$$E_{5} = \{uv \in E(T_{n,m}) \mid d_{dn}(u) = m - 1, d_{dn}(v) = 0\}, \qquad |E_{5}| = 1$$

Theorem 5.1. Let $T_{n,m}$ be a tadpole graph with n + m vertices, $n, m \ge 3$. Then the atom bond sum connectivity downhill index of $T_{n,m}$ is

$$ABSDWT_{n,m} = 1\sqrt{\frac{n+2m-4}{n+2m-2}} + 2\sqrt{\frac{2n+m-5}{2n+m-3}} + (n-2)\sqrt{\frac{n-3}{n-2}} + (m-2)\sqrt{\frac{m-2}{m-1}} + 1\sqrt{\frac{m-3}{m-1}}.$$

Proof. We obtain

ABSDW
$$(T_{n,m}) = \sum_{uv \in E(T_{n,m})} \sqrt{\frac{d_{dn}(u) + d_{dn}(v) - 2}{d_{dn}(u) + d_{dn}(v)}}$$

$$= 1\sqrt{\frac{n + m - 1 + m - 1 - 2}{n + m - 1 + m - 1}} + 2\sqrt{\frac{n + m - 1 + n - 2 - 2}{n + m - 1 + n - 2}} + (n - 2)\sqrt{\frac{n - 2 + n - 2 - 2}{n - 2 + n - 2}}$$

$$+ (m - 2)\sqrt{\frac{m - 1 + m - 1 - 2}{m - 1 + m - 1}} + 1\sqrt{\frac{m - 1 + 0 - 2}{m - 1 + 0}}$$

$$= 1\sqrt{\frac{n + 2m - 4}{n + 2m - 2}} + 2\sqrt{\frac{2n + m - 5}{2n + m - 3}} + (n - 2)\sqrt{\frac{n - 3}{n - 2}} + (m - 2)\sqrt{\frac{m - 2}{m - 1}} + 1\sqrt{\frac{m - 3}{m - 1}}$$

Theorem 5.2. Let $T_{n,m}H_n$ be a helm graph with 2n + 1 vertices, $n \ge 5$. Then the multiplicative atom bond sum connectivity downhill index of $T_{n,m}H_n$ is

ABSDWII
$$T_{n,m} = \left(\sqrt{\frac{n+2m-4}{n+2m-2}}\right)^1 \times \left(\sqrt{\frac{2n+m-5}{2n+m-3}}\right)^2 \times \left(\sqrt{\frac{n-3}{n-2}}\right)^{n-2} \times \left(\sqrt{\frac{m-2}{m-1}}\right)^{m-2} \times \left(\sqrt{\frac{m-3}{m-1}}\right)^1$$

Proof. We obtain

ABSDWII
$$(T_{n,m}) = \prod_{uv \in E(T_{n,m})} \sqrt{\frac{d_{dn}(u) + d_{dn}(v) - 2}{d_{dn}(u) + d_{dn}(v)}}$$

$$= \left(\sqrt{\frac{n + m - 1 + m - 1 - 2}{n + m - 1 + m - 1}}\right)^{1} \times \left(\sqrt{\frac{n + m - 1 + n - 2 - 2}{n + m - 1 + n - 2}}\right)^{2}$$

$$\times \left(\sqrt{\frac{n - 2 + n - 2 - 2}{n - 2 + n - 2}}\right)^{n - 2} \times \left(\sqrt{\frac{m - 1 + m - 1 - 2}{m - 1 + m - 1}}\right)^{m - 2} \times \left(\sqrt{\frac{m - 1 + 0 - 2}{m - 1 + 0}}\right)^{1}$$

$$= \left(\sqrt{\frac{n + 2m - 4}{n + 2m - 2}}\right)^{1} \times \left(\sqrt{\frac{2n + m - 5}{2n + m - 3}}\right)^{2} \times \left(\sqrt{\frac{n - 3}{n - 2}}\right)^{n - 2}$$

$$\times \left(\sqrt{\frac{m - 2}{m - 1}}\right)^{m - 2} \times \left(\sqrt{\frac{m - 3}{m - 1}}\right)^{1}.$$

6. Conclusion

In this research work, the atom bond sum connectivity downhill and multiplicative atom bond sum connectivity downhill indices of a graph are defined. Also these newly defined atom bond sum connectivity downhill and multiplicative atom bond sum connectivity downhill indices of certain graphs are computed.

References

- [1] V. R. Kulli, *Graph indices*, in Hand Book of Research on Advanced Applications of Application Graph Theory in Modern Society, M. Pal. S. Samanta and A. Pal, (eds.) IGI Global, USA, (2019), 66-91.
- [2] I. Gutman and O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin, (1986).
- [3] S. Wagner and H. Wang, B. Al-Ahmadi, A. Saleh and W. Al-Shammakh, *Downhill Zagreb topological indices of graphs*, International Journal of Analysis and Applications, 19(2)(2021), 205-227.
- [4] B. Al-Ahmadi, A. Saleh and W. Al-Shammakh, *Downhill Zagreb polynomials of graphs*, Research & Reviews: Discrete Mathematical Structures, 7(2020), 15-26.
- [5] V. R. Kulli, *Hyper downhill indices and their polynomials of certain chemical drugs*, International Journal of Engineering Sciences & Research Technology, 14(4)(2025), 23-30.
- [6] V. R. Kulli, Downhill Nirmala indices of graphs, International Journal of Mathematics and Computer Research, 13(4)(2025), 5126-5131.

- [7] V. R. Kulli, *Downhill product connectivity indices of graphs*, International Journal of Mathematics and Computer Research, 13(5)(2025), 5223-5226.
- [8] V. R. Kulli, *Downhill Sombor modified downhill Sombor indices of graphs*, Annals of Pure and Applied Mathematics, 31(2)(2025), 107-112.
- [9] V. R. Kulli, *Downhill Nirmala alpha Gourava indices of chloroquine, hydroxychloroquine and remdesivir*, International Journal of Mathematics and Computer Research, 13(6)(2025), 5276-5284.
- [10] V. R. Kulli, *Harmonic downhill indices of graphs*, Journal of Mathematics and Informatics, 28(2025), 33-37.
- [11] V. R. Kulli, *Inverse sum indeg downhill index of graphs*, International Journal of Science and Research, 14(6)(2025), 1159-1162.
- [12] V. R. Kulli, *Gourava downhill indices*, International Journal of Engineering Sciences & Research Technology, 14(6)(2025), 19-29.
- [13] V. R. Kulli, Geometric-arithmetic downhill and modified first downhill indices of graphs, International Journal of Science and Research, 14(7)(2025).
- [14] J. Deering, *Uphill and downhill domination in graphs and related graph parameters*, Thesis, East Tennessee State University, (2013).
- [15] A. Saleh, S. Bazhear and N. Muthana, *On the uphill Zagreb indices of graphs*, International Journal of Analysis and Applications, 20(6)(2022).
- [16] V. R. Kulli, *Harmonic uphill indices of graphs*, International Journal of Mathematical Archive, 16(6)(2025), 1-7.
- [17] A. Ali, B. Furtula, I. Redzepovic and I. Gutman, *Atom bond sum connectivity index*, J. Math. Chem., 60(2022), 2081-2093.
- [18] A. R. Bindsree, V. Lokesha and P. S. Ranjini, *ABC index on subdivision graphs and line graphs*, IOSR Journal of Mathematics, 1-6.
- [19] K. C. Das, Atom bond connectivity index of graphs, Discrete Applied Mathematics, 158(2010), 1181-1188.
- [20] E. Estrada, Atom bond connectivity and the energetic of branched alkanes, Chem. Phys. Lett., 463(2008), 422-425.
- [21] E. Estrada, L. Torres, L. Rodriguez and I. Gutman, An atom bond connectivity index: modeling the enthalpy of formation of alkanes, Indian J. Chem., 37(1998), 849-855.

- [22] B. Furtula, A. Graovac and D. Vukicevic, *Atom bond connectivity index of trees*, Discrete Applied Mathematics, 157(2009), 2828-2835.
- [23] W. Gao, M. K. Jamil, W. Nazeer and M. Amin, *Degree based Multiplicative atom bond connectivity index of nanostructures*, IAENG International Journal of Applied Mathematics, 47(4)(2017).
- [24] V. R. Kulli, *Atom bond connectivity E-Banhatti indices*, International Journal of Mathematics and Computer Research, 11(1)(2023), 3201-3208.
- [25] V. R. Kulli, *Neighborhood sum atom bond connectivity indices of some nanostar dendrimers*, International Journal of Mathematics and Computer Research, 11(1)(2023), 3230-3235.
- [26] V. R. Kulli, *Multiplicative atom bond sum connectivity index of certain nanotubes*, Annals of Pure and Applied Mathematics, 27(1)(2023) 31-35.
- [27] V. R. Kulli, *Domination atom bond sum connectivity indices of certain nanostructures*, International Journal of Engineering Sciences & Research Technology, 12(11)(2023), 10-17.
- [28] N. M. Husin, R. Hasni and N. E. Arif, *Atom bond connectivity and geometric-arithmetic indices of dendrimer nanostars*, Australian Journal of Basic and Applied Sciences, 7(9)(2013), 10-14.
- [29] V. R. Kulli, *ABC*, *GA*, *AG HDR indices of certain chemical drugs*, International Journal of Mathematics Trends and Technology, 68(2)(2022), 80-88.