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Abstract

In this study, we introduce the atom bond sum connectivity downhill and multiplicative atom bond
sum connectivity downhill indices of a graph. Furthermore, we compute these newly defined atom
bond sum connectivity downbhill indices for some standard graphs, wheel graphs, gear graphs, helm

graphs and tadpole graphs.
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1. Introduction

In this paper, G denotes a finite, simple, connected graph, V(G) and E(G) denote the vertex set and
edge set of G. The degree dg(u) of a vertex u is the number of vertices adjacent to u. A topological
index is a numerical parameter mathematically derived from the graph structure. Several topological
indices were defined by using vertex degree concept [1]. Topological indices have their applications
in various disciplines in Science and Technology [2]. A u — v path P in G is a sequence of vertices in
G, starting with u and ending at v, such that consecutive vertices in P are adjacent, and no vertex is
repeated. A path m = v1,v,,...0k;1 in G is a downhill path if for every i,1 < i < k,dg (v;) > dg (vit1)-
A vertex v is downhill dominates a vertex u if there exists a downhill path originated from u to v. The
downhill neighborhood of a vertex v is denoted by N, (v) and defined as: Ny, (v) = {u : v downhill
dominates u}. The downhill degree d;,(v) of a vertex v is the number of downhill neighbors of v, see
[3]. Recently, some downhill indices were studied in [4-13]. The uphill domination is introduced by
Deering in [14].

A u — v path P in G is a sequence of vertices in G, starting with u and ending at v, such that consecutive

vertices in P are adjacent, and no vertex is repeated. A path m = v1,v;,...7x41 in G is a uphill path
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if for every i,1 < i < k,dg (v;) < dg (vit1). A vertex v is uphill dominates a vertex u if there exists
an uphill path originated from u to v. The uphill neighborhood of a vertex v is denoted by Ny, (v)
and defined as: Ny,(v) = {u : v uphill dominates u}. The uphill degree d,,(v) of a vertex v is the
number of uphill neighbors of v, see [15, 16]. The atom bond sum connectivity index [17] of a graph G

is defined as

o —{—dc(U)—Z
ABs(@) = b o

Recently, some atom bond sum connectivity indices were studied in [18-29]. We introduce the atom

bond sum connectivity downhill index of a graph and it is defined as

Z ddn +ddn( )_2

ABSDW(G) =
( ) uveE(G) ddn( )+ddn( )

Also we introduce the multiplicative atom bond sum connectivity downhill index of a graph and it is

defined as

Agn(u) + dgn(v) — 2
ABSDWII(G .
ung) ddn( ) + ddn( )

In this paper, the atom bond sum connectivity downhill index and multiplicative atom bond sum

connectivity downhill index of certain graphs are computed.

2. Results for Some Standard Graphs
Proposition 2.1. Let G be r-regular with n vertices and r > 2. Then

2
ABSDW(G) = g Z_l.

Proof. Let G be an r-regular graph with n vertices and » > 2 and 4 edges. Then d4,(v) = n —1 for

every v in G.

Aan (1) + dgn(v) — 2
e ks

_nr [(n—=1)+(n—-1)-2
2\ -1+ (m-1)

nr |n—2

2 Vn—1

ABSDW(G) =

Corollary 2.2. Let C,, be a cycle with at least 3 vertices. Then

n—2

ABSDW (Cy)) = my/ -~ —7
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Corollary 2.3. Let K;, be a complete graph with at least 3 vertices. Then

ABSDW (K,,) = —+/(n —1)(n —2)

N

Proposition 2.4. Let G be r-reqular with n vertices and r > 2. Then

nr

ABSDWII(G) = < Z:f)

Proof. Let G be an r-regular graph with n vertices and » > 2 and 7 edges. Then dg,(v) = n —1 for

every v in G.

H ddn(u) +ddn(v) -2

ABSDWII(G) =
( ) uZJEE(G) ddn (u) + dd?l(v>

Corollary 2.5. Let C,, be a cycle with at least 3 vertices. Then

ABSDWII (C,,) = < Z:f)

Corollary 2.6. Let K;, be a complete graph with at least 3 vertices. Then

n(n—1)

2
ABSDWII (K,,) = ( Z:i)

Proposition 2.7. Let P be a path with at least 3 vertices. Then

n_?+(n—3) n-2

ABSDW (P,) =2 .
(n> n— n—1

Proof. Let P be a path with at least 3 vertices. We obtain two partitions of the edge set of P as follows:

E1 = {uv € E(P) | dgn(u) = 0,dyp(v) =n—1},|E1| = 2.
Ey = {uv € E(P) | dyp(u) =dup(v) =n—1}, |E] =n—3.
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2

ddn(”) + ddn(v) —
,we%:pn) ddn(u) + ddn(v)

0O+(n—1)-2 m—-1)+(n—-1)-2
2\/ 0+ (n—1) +(”‘3)\/ CEEICES)

ABSDW (P,) =

n—3 n—2
=2 n_1+(n—3) —
O
Proposition 2.8. Let P be a path with at least 3 vertices. Then
3 2 5 n—3
n— n—
ABSDWII (P,) = < — 1) X ( — 1)
Proof. Let P be a path with at least 3 vertices.
ABSDWII (Pn) _ H ddn + ddn( ) -2
uveE(P,) ddn( )+ ddn U)
n—3
0+ (n—1) m—1)+n-1)-2
N O+(n—1 n—l +(n—1)
B n—3 -2
N n—1 -1
Ul

3. Results for Wheel Graphs

The wheel W, is the join of C,, and K;. Clearly W, has n + 1 vertices and 2n edges. Then W, has two
types of edges based on the uphill degree of the vertices of each edge as follows:

= {uv € E(W,) | dgn(u) = n,dny(v) =n—1},|Ei| = n.
Ey ={uv € E(Wy,) | dgn(u) = dg,(v) =n—1}, |Ez| =n.

Theorem 3.1. Let W,, be a wheel graph with n + 1 vertices and 2n edges, n > 4. Then the atom bond sum

connectivity downhill index of W, is

ABSDWWn:n\/Zn_3+n\/n_2.
2n — 1 n—1
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Proof. We deduce

ABSDW (W,) = Y. dan (1) + dan(v) — 2
woeE(W,) dan (1) + dgn (v)

_n\/n+n—1—2+n\/n—1+n—1—2
- n+n-—1 n—1+n-1

2n—3 2
2n—1 1

n_
=n +n
n_

O

Theorem 3.2. Let W, be a wheel graph with n + 1 vertices and 2n edges, n > 4. Then the multiplicative atom

bond sum connectivity downhill index of W, is

n n
2 — —>
ABSDWIIWn:< 22_2) +< Z_1> .

Proof. We deduce

ddn(u) + ddn (U) —2
ABSDWIL(Wa) = 1 /=50 0
uveE(Wy) dn dn

N T AN \/n—1+n—1—2 "
- n+n—1 n—14+n-1
n n
2n —3 n—2
= X
2n —1 n—1

4. Results for Helm Graphs

The helm graph H, is a graph obtained from W, (with n + 1 vertices) by attaching an end edge to each
rim vertex of W,,. Clearly, |V (H,)| = 2n+ 1 and |E (H,)| = 3n. A graph H,, is shown in Figure 1.

Figure 1: Helm graph H,
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Let H, be a helm graph with 3n edges, n > 5. Then H, has three types of edges based on the uphill

degree of the vertices of each edge as follows:

Ei ={uv € E(Hy) | dgy(u) =2n,dg,(v) =2n—1}, |E1| =n
Ey ={uv € E(Hy) | dgy(u) = dg,(v) =2n—1}, |Ep| =n
Es = {uv € E(Hy) | dgy(u) =2n—1,dy4,(v) = 0}, |Es| =n

Theorem 4.1. Let H, be a helm graph with 2n + 1 vertices, n > 5. Then the atom bond sum connectivity

downbhill index of Hy, is
[4n —3 [2n —2 [2n —3
ABSDWH,, =n 4n_1+n 2n—1+n 1

Proof. We obtain

B dn(u)+dn(v)_2
ABSDW (Hn) - uveEZ(Hn) \/ dddn (u) ‘|‘dddn(v)

_n\/2n+2n—1—2+n\/2n—1+2n—1—2+n\/2n—1+0—2
B 2n+2n—1 2n—1+2n—1 2n—140

n\/4n_3+n\/2n_2+n 2n—3
dn —1 2n—1 2n —1

O

Theorem 4.2. Let H, be a helm graph with 2n + 1 vertices, n > 5. Then the multiplicative atom bond sum

connectivity downhill index of Hy, is
-3\ m—2\" 2m—3\"
n— n— n—
ABSDWII H, = ( 4n—1> X < 2n—1> X ( 2n—1>

Ag, () +dg,(v) —2
uveE(Hy) dn dn

_ (\/2n+2n—1—2>nx (\/2n—1+2n—1—2)nx< /2n—1+0—2>”
2n+2n—1 2n—1+2n—-1 2n—1+0

| [an=3\" m—2\ m—3\"

“\Wam=1) “Wam=1) “\Van=1

Proof. We obtain
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5. Results for Tadpole Graphs

Let T, be a tadpole graph with n + m vertices, n,m > 3. Then T, ,, has five types of edges based on

the downhill degree of the vertices of each edge as follows:

Ei ={uv € E(Tym) | dgn(u) =n+m—1,d4,(v) =m—1}, |E1| =1

E; ={uv € E(Tym) | dagn(u) =n+m—1,d4,(v) =n—2}, |Ea] =2

(Tum) | dan(ut)
(Tum) | dan(ut)
Es = {uv € E(Tum) | dan(ut)
(Tom) | dan(u)
(Tam) | dan(ut)

=n—2,d4,(v) =n—2}, |Es| =n—2
E4:{uv€E Toum ’ddn u :m—l,ddn(v):m—l}, |E4\:m—2
Es ={uv € E(Tym) | dgn(u) =m —1,dg,(v) =0}, |Es| =1

Theorem 5.1. Let Ty, be a tadpole graph with n + m vertices, n,m > 3. Then the atom bond sum connectivity

downbhill index of Ty, is

n—+2m-—4 2n+m—>5 n—23 m—2 m—23
ABSDWT"””\/W“\/W,“”‘Z) n+(m—2>\/m +1\/ -

Proof. We obtain

dgn (1) + dgn(v) — 2
ABSDW (T, ) =
( ) uve}%"n,m) ddﬂ(u) + ddn (U)

n+m—-1+m—-1-2 n+m—-14+n—-2-2 n—-24n—2-2
=1 2 -2
\/ n+m—1+m-—1 + \/ n+m—-—1+n-2 +(n )\/ n—24n-—2

m—-—14+m—1-2 m—1+0-2
—2 1
+ (m )\/ m—1tm—1 \/ m—1+0

n+2m-—4 2n+m—>5 n—3 m—2 m-—3
=1y — 24— — 20— -2 1
\/n+2m—2+ \/2n+m—3+(n ) n—2+(m )\/m—1+ \/m—l

Theorem 5.2. Let Ty, ,,H, be a helm graph with 2n + 1 vertices, n > 5. Then the multiplicative atom bond sum

connectivity downbhill index of Ty, Hy is
Tom—4\ ntm—5\ 3\
n m— n+m-— n—
ABSDWII Ty, ., = —_— —_—
SDWIIL T <\/rz—|—27) X( 2n+m—3> X( n—2>
m—2 1

y fm—2 y m—23

m—1 m—1
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Proof. We obtain

ABSDWIL(T,,) = ] 4 St dan(®) =2
, uo€E(Tym) ddﬂ(“) + dan (U)

1 2
B \/n+m—1+m—1—2 y \/n+m—1+n—2—2
- n+m—1+m—1 n+m—1+n-2
n—2 m—2 1
Vn—2+n—2 2 y ¢m—1+m—1—2 y fm—1+0-2
n—2+n-2 m—14+m-—1 m—14+0
2 n—2
- n+2m 4 « 2n+m —>5 o n—3
a n—|—2m 2 Vo2n+m—3 n—2
1
m—2 « m—23
m—1 m—1]

6. Conclusion

In this research work, the atom bond sum connectivity downhill and multiplicative atom bond sum
connectivity downhill indices of a graph are defined. Also these newly defined atom bond sum
connectivity downhill and multiplicative atom bond sum connectivity downhill indices of certain

graphs are computed.
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