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Abstract

The structure of a chemical compound is usually modeled as a graph, which is so-called a molecular

graph. It has been found that some topological indices of a molecular graph are closely related

to many physicochemical properties of its chemical compounds. From this relation, it arises the

important inverse topological indices problem, that carry out a thorough search of the existence of

a graph having its index value equal to a given integer. In this paper, we are interested in solving

this problem for the first, second and third leap Zagreb indices of connected graphs. We are also

restricting the solutions to trees and unicyclic graphs. It is shown that for every even non-negative

integer k there exists a graph having its first leap Zagreb index value equal to k. For every non-

negative integer k, except 2, there exists a graph having its second leap Zagreb index value equal to

k and for every non-negative integer k, except 1, 3, 5, 7, 9, 11, 17, there exists a graph having its third

leap Zagreb index value equal to k. The general formulas of leap Zagreb indices values for some

certain trees and unicyclic graphs which are useful in this work are presented.
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1. Introduction

Throughout this paper, we are concerned only with finite connected simple graphs G = (V, E), such

that graph is undirected with no loops, no weighted and multiple edges and there is a path joining

any two vertices in it. As usual, V = V(G) and E = E(G) are the vertex and edge sets of G, whereas

n = |V| and m = |E|, indicate the number of vertices and edges in G, respectively. The distance d(u, v)

between two vertices u and v in G is the length (number of edges) of the shortest path connecting

them. The eccentricity of v ∈ V(G) is e(v) = max{d(v, u) : u ∈ V(G)}, the radius of G is rad(G) =

min{e(v) : v ∈ V(G)} and the diameter of G is diam(G) = max{e(v) : v ∈ V(G)}. As usual, we

denote a Kn, Pn, Cn, K1,n−1, and Sr,s by the complete, path, cycle, star and bistar of order n. A graph G

*Corresponding author (asfiyaferdose63@gmail.com)



Inverse Problem for Leap Zagreb Indices / Asfiya Ferdose, K. Shivashankara 170

is called F-free graph if no induced subgraph of G is isomorphic to F. The graph G − e is the graph

obtained from G by deleting the edge e, for e ∈ E(G). For a vertex v ∈ V(G), the open 2-distance

neighborhood of v in a graph G, denoted by N2(v/G) (or N2(v) if not misunderstood), and defined

as N2(v) = {u ∈ V(G) : d(u, v) = 2}. The second degree of v, denoted by dk(v/G) (or dk(v)), and

is d2(v) = |N2(v)|. we denote by E2(G) to the set of all unordered pairs of vertices of G which the

distance between them equal two, i.e., E2(G) =
{
{u, v} ⊂ V(G) : d(u, v) = 2

}
and let m2 = |E2(G)|.

For any terminology or notation not mentioned here, we refer the reader to books [3,7].

A topological index (structure-descriptor) of a graph is a numerical parameter mathematically derived

from the graph structure. It is a fixed invariant for any two isomorphic graphs. A graph invariant

is any function on a graph that does not depend on labeling of its vertices. The topological indices

of graphs are especially useful in establishing the mathematical basis for connections between the

structure of molecular graph and the physicochemical properties or biological activity of its chemical

compounds.

In the current mathematical and mathematico-chemical literature a large number of vertex-degree-

based graph invariant are being studied. Among them, the first M1(G) and second M2(G) Zagreb

indices are the far most extensively investigated ones. These have been introduced more than forty

years ago [5,6], and are defined as:

M1(G) = ∑
v∈V(G)

d2(v),

M2(G) = ∑
uv∈E(G)

d(u)d(v).

Naji [13], introduced three new distance-degree-based topological indices conceived depending on the

second degrees of vertices, and so-called leap Zagreb indices of a graph G are defined as:

LM1(G) = ∑
v∈V(G)

d2
2(v)

LM2(G) = ∑
uv∈E(G)

d2(u)d2(v)

LM3(G) = ∑
v∈V(G)

d(v)d2(v).

The leap Zagreb indices have several chemical applications. Surprisingly, the first leap Zagreb index

has very good correlation with physical properties of chemical compounds like boiling point, entropy,

DHVAP, HVAP and accentric factor [2], hence attract the attention of many graph theorists and also

other scientists including chemists. For properties and more details of leap Zagreb indices, we refer

the readers to [1,2,9,11–17].
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2. Preliminaries

The inverse problem for topological indices is the answer of the question “which integer number can

be an index value of a graph?", It is about the existence of a graph having its index value equal to

a given integer number. This problem was studied in due detail for the Wiener index [4,8,18–20].

Recently, Yurtas in [21], have been solved this problem for the first and second Zagreb indices, and

they presented analogous results also for the forgotten and hyper-Zagreb index. They showed that, first

Zagreb index of connected graphs can take any even positive integer value, except 4 and 8. The second

Zagreb index of connected graphs can take any positive integer value, except 2, 3, 5, 6, 7, 10, 11, 13, 15

and 17.

Motivated by these, we are interested in solving this problem for the first, second and third leap Zagreb

indices of connected graphs. We begin with some old results which required to show the main results.

Then, in sections 2.1 and 2.2, we present the general formulas of leap Zagreb indices for some certain

trees and unicyclic graphs that will be useful. So also, the general formulas of leap Zagreb indices for

some graphs are presented in section 2.3. In section 3, the possible values of the first leap Zagreb index

of graphs and also of trees and unicyclic graphs are presented. In section 4, the possible values of the

second leap Zagreb index of graphs as well as of trees and unicyclic graphs are presented. In section 5,

the possible values of the third leap Zagreb index of graphs and so also of trees and unicyclic graphs

are presented.

The following results will be useful.

Theorem 2.1 ([10]). Let G be a connected graph with n vertices and m2 second edges. Then

∑
v∈V(G)

d2(v) = 2m2. (1)

Corollary 2.2. For a graph G, the number of vertices with odd second degree in G is even.

Theorem 2.3 ([16]). For any tree with n ≥ 5 vertices and diam(T) ≥ 3, it holds

LM2(Pn) ≤ LM2(T) ≤ LM2(Sr;s),

where r; s are two positive integers such that r + s + 2 = n and |r − s| ∈ {0, 1}.

Lemma 2.4 ([14]). For the path Pn, with n vertices.

(1) LM1(Pn) =


0, if n < 3;

2, if n = 3;

4n − 12, if n > 3.
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(2) LM2(Pn) =


0, if n < 4;

3, if n = 4;

4n − 14, if n > 4.

(3) LM3(Pn) =


0, if n < 3;

2, if n = 3;

4n − 10, if n > 3.

Theorem 2.5 ([16]). For a triangular unicyclic graph Pn−3C3, with n ≥ 4 vertices.

(1) LM1(Pn−3C3) = 4n − 10

(2) LM2(Pn−3C3) =



1, if n = 4;

7, if n = 5;

10, if n = 6.

4n − 13, if n ≥ 7.

(3) LM3(Pn−3C3) =

 6, if n = 4;

4n − 8, if n ≥ 5.

2.1 The leap Zagreb indices for some trees

Recall that a vertex of a tree with one degree is called a leaf and its neighbor is called a support vertex.

A vertex v of a tree T with e(v) = rad(T) is called a central vertex, where a tree of even order have

two central vertices, whereas a tree of odd order have only one. A tree with n + 1 vertices obtained by

joining a new vertex to any central vertex of a path Pn, will be denote Tn, figure1 (b1) and (b2), shows

Tn for n = 5, 6. A tree that is obtained by joining r ≥ 2 vertices to a leaf of a path Pn, is called a broom,

as shown in figure 1.a, and denoted Pn−rKr. A tree which is constructed from the broom Pn−2K2, by

joining a new vertex to any pendent vertex of K2 in the broom will be called an F-tree and denoted

FTn, for n ≥ 5, see figure 1.c, whereas a tree which is constructed from the broom Pn−2K2, by joining a

central vertex in P3 to a pendent vertex of K2 in the broom will be called an H-tree and denoted HTn,

for n ≥ 7, see figure 1.d).

(a) Pn−rKr (b1) T5 (b2) T6

(c) FTn (d) HTn

Figure 1: The broom, Tn-, F- and H-trees.
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Proposition 2.6. The leap Zagreb indices of a Tn tree with n ≥ 3 vertices, are given by

(1) LM1(Tn) =



12, if n = 3;

14, if n = 4;

18, if n = 5;

24, if n = 6;

4n + 2, if n ≥ 7.

(2) LM2(Tn) =



0, if n = 3;

8, if n = 4;

4(n − 1), if n = 5, 6, 7;

29, if n = 8;

4n − 2, if n ≥ 9.

(3) LM3(Tn) =


6, if n = 3;

12, if n = 4;

4n − 2, if n ≥ 5.

Proposition 2.7. For r ≥ 2, the leap Zagreb indices of a broom Pn−rKr, with n ≥ 3 vertices are given by

(1) LM1(Pn−rKr) =



r(r − 1)2, if n = r + 1;

r2(r + 1), if n = r + 2;

r2(r + 1) + 2, if n = r + 3;

4(n − r − 3) + 2r(r + 1), if n ≥ r + 4.

(2) LM2(Pn−rKr) =



0, if n = r + 1, r + 2;

r(r + 2), if n = r + 3;

r(r + 2) + 3, if n = r + 4;

4(n − r) + r2 + 3r − 14, if n ≥ r + 5.

(3) LM3(Pn−rKr) =


r(r − 1), if n = r + 1;

r(r + 1), if n = r + 2;

4(n − r) + r2 + 3r − 10, if n ≥ r + 3.

Proposition 2.8. The leap Zagreb indices of an Fn tree with n ≥ 5 vertices, are given by

(1) LM1(FTn) =


14, if n = 5;

18, if n = 6;

4(n − 1), if n ≥ 7.

(2) LM2(FTn) =


8, if n = 5;

4n − 8, if n = 6, 7;

4n − 7, if n ≥ 8.
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(3) LM3(FTn) =

 12, if n = 5;

4n − 6, if n ≥ 6.

Proposition 2.9. The leap Zagreb indices of an Hn tree with n ≥ 7 vertices, are given by

(1) LM1(HTn) =


34, if n = 7;

38, if n = 8;

4n + 8, if n ≥ 9.

(2) LM2(HTn) =


16, if n = 7;

4n − 6, if n = 8, 9;

4n − 5, if n ≥ 10.

(3) LM3(HTn) =

 22, if n = 7;

4(n − 1), if n ≥ 8.

2.2 The leap Zagreb indices for some unicyclic graph

In this section, we will present the general formulas of the leap Zagreb indices for some special

unicyclic graphs. Recall that the unicyclic graph UCp with n vertices is a graph containing a cycle

Cp with 3 ≤ p ≤ n vertices such that d(v) ≥ 2, for every v ∈ Cp. If UCp −V(Cp) = Pn−p, then UCp will

be denoted Pn−pCp. A graph obtained from the triangle unicyclic graph Pn−3C3 by joining a new vertex

to any vertex of the triangle that has degree two in Pn−3C3, is called an A-unicyclic graph and denote

AUn, see figure 2.c. While, a graph obtained from Pn−3C3 by joining a new vertex to a neighbor of the

support vertex of the pendent vertex in Pn−3C3, is will be called F-unicyclic graph and denote FUn, see

figure 2.d. A graph obtained from the triangle or quadrangle unicyclic graph Pn−iCi, for i = 3, 4, by

joining a pendent vertex in Pn−iCi to a central vertex of P3, is called a Ti-unicyclic graph and denote

Tn−iCi, see figure 2.e and 2.f.

(a) Pn−3C3 (b) Pn−4C4

(c) AUn (d) FUn

(e) Tn−3C3 (f) Tn−4C4

Figure 2: The triangle, quadrangle, A-, F- T3- and T4-unicyclic graphs.

Proposition 2.10. For the quadrangle unicyclic Pn−4C4 with n ≥ 4 vertices, the leap Zagreb indices are given

by
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(1) LM1(Pn−4C4) =



4, if n = 4;

14, if n = 5;

18, if n = 6;

4(n − 1), if n ≥ 7.

(2) LM2(Pn−4C4) =



4, if n = 4;

10, if n = 5;

18, if n = 6;

22, if n = 7;

4n − 5, if n ≥ 8.

(3) LM3(Pn−4C4) =


8, if n = 4;

17, if n = 5;

4n − 3, if n ≥ 6.

Proposition 2.11. For the A-unicyclic graph AUn with n ≥ 5 vertices, the leap Zagreb indices are given by

(1) LM1(AUn) =


14, if n = 5;

18, if n = 6;

4(n − 1), if n ≥ 7.

(2) LM2(AUn) =



9, if n = 5;

16, if n = 6;

20, if n = 7;

4n − 7, if n ≥ 8.

(3) LM3(AUn) =


14, if n = 5;

24, if n = 6;

4n, if n ≥ 7.

Proposition 2.12. For the F-unicyclic graph FUn with n ≥ 5 vertices, the leap Zagreb indices are given by

(1) LM1(FUn) =


24, if n = 8;

32, if n = 9;

4n − 2, if n ≥ 10.

(2) LM2(FUn) =


5, if n = 8;

31, if n = 9;

4n − 6, if n ≥ 10.

(3) LM3(FUn) =

 26, if n = 8;

4(n − 1), if n ≥ 9.

Proposition 2.13. For the T3-unicyclic graph Tn−3C3 with n ≥ 6 vertices, the leap Zagreb indices are given by
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(1) LM1(Tn−3C3) =


18, if n = 6;

28, if n = 7;

4n − 2, if n ≥ 8.

(2) LM2(Tn−3C3) =



17, if n = 6;

15, if n = 7;

22, if n = 8;

4n − 11, if n ≥ 9.

(3) LM3(Tn−3C3) =

 20, if n = 6;

4n − 6, if n ≥ 7.

Proposition 2.14. For the T4-unicyclic graph Tn−4C4 with n ≥ 7 vertices, the leap Zagreb indices are given by

(1) LM1(Tn−4C4) =


30, if n = 7;

38, if n = 8;

4n + 4, if n ≥ 9.

(2) LM2(Tn−4C4) =



30, if n = 7;

28, if n = 8;

34, if n = 9;

4n − 3, if n ≥ 10.

(3) LM3(Tn−4C4) =

 29, if n = 7;

4n − 1, if n ≥ 8.

2.3 The leap Zagreb indices of some graphs

In this section, we present the general formulas of the leap Zagreb indices values for some graphs,

which required to solve the main problem. The special case of these graphs are shown in the following

figure.

Pn−4C̃4 Pn−4K4

Figure 3: The graphs Pn−4C̃4 and Pn−qKq.

Proposition 2.15. For a graph Pn−4C̃4 with n ≥ 4 vertices, the leap Zagreb indices are given by

(1) LM1(Pn−4C̃4) =



2, if n = 4;

8, if n = 5;

12, if n = 6;

4n − 10, if n ≥ 7.
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(2) LM2(Pn−4C̃4) =



0, if n = 4;

7, if n = 5;

13, if n = 6;

17, if n = 7;

4n − 10, if n ≥ 8.

(3) LM3(Pn−4C̃4) =


4, if n = 4;

13, if n = 5;

4n − 5, if n ≥ 6.

Proposition 2.16. For q ≥ 3, the leap Zagreb indices of a graph Pn−qKq with n ≥ q + 1 vertices, are given by

(1) LM1(Pn−qKq) =


q2 − q, if n = q + 1;

q2 − q + 2, if n = q + 2;

nq + 4(n − q)− 10, if n ≥ q + 3.

(2) LM2(Pn−qKq) =



1
2 (q − 1)(q − 2), if n = q + 1;
1
2 (q − 1)(q + 4), if n = q + 2;
1
2 q(q − 1) + 2q + 1, if n = q + 3;
1
2 q(q − 1) + 3(q + 1) + 4(n − q − 4), if n ≥ q + 4.

(3) LM3(Pn−qKq) =

 q(q − 1), if n = q + 1;

q(q + 1) + 4(n − q − 2), if n ≥ q + 2.

3. Possible Values of the First Leap Zagreb Index of Graphs

By the Corollary 2.2, any graph G have to possess an even number of vertices of odd second degree.

Since the square of an integer number is odd, if and only if the number itself is odd. Then the sum of

squares of vertex second degrees, Equation (1), there is an even number of odd terms. Therefore, the

values of the first leap Zagreb index of a graph G must be an even integer number.

Theorem 3.1. For every non-negative even integer k, there exists a graph G, with LM1(G) = k.

Proof. For a graph G, let LM1(G) = k. Since for any even non-negative integer number n, either

n ≡ 0 (mod 4) or n ≡ 2 (mod 4). Then we consider the following two cases.

Case 1: For every non-negative integer k ≡ 0 (mod 4), by Lemma 2.4, we have LM1(P2) = 0 and

LM1(Pn) = 4(n − 3), for every n ≥ 4. Thus for every integer numberk ≥ 4 and k ≡ 0 (mod 4),

the Path Pn is the desired graph, which for it LM1(Pk+12
4
) = k.

Case 2: For every non-negative integer k ≡ 2 (mod 4), we have the following subcases:

Subcase 2.1: For k = 2, by Lemma 2.4, LM1(P3) = 2.
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Subcase 2.2: For k = 6, by Theorem 2.5, if n = 4, then LM1(P1C3) = 6.

Subcase 2.3: For k = 10, it is easy to check that LM1(K1 + P4) = 10.

Subcase 2.4: For k ≥ 14, by Theorem 2.5, LM1(Pn−3C3) = 4n − 13. That is

LM1(Pk+13
4

C3) = k.

Therefore, The value of the first leap Zagreb index of graphs can be any non-negative even integer.

In the following result we investigate which integer number can be a value for the first leap Zagreb

index of a tree.

Theorem 3.2. For every non-negative even integer k, such that k /∈ {6, 10, 22, 26}, there exists a tree T, with

LM1(T) = k.

Proof. By similar arguments as in the proof of Theorem 3.1, we have the following two cases

Case 1: For every non-negative integer k ≡ 0 (mod 4). By Lemma 2.4, LM1(P2) = 0 and LM1(Pk+12
4
) =

k, for every positive integer k ≥ 4. Thus the path Pn is the required tree.

Case 2: For every non-negative integer k ≡ 2 (mod 4), we have LM1(P3) = 2 and from Proposition

2.6, LM1(T4) = 14, LM1(T5) = 18, LM1(T7) = 30 and LM1(Tk−2
4
) = k, for every k ≥ 32, and

k ≡ 2 (mod 4).

Therefore, the value of the first leap Zagreb index of a tree can be any non-negative even integer

number except 6, 10, 22, 26.

Theorem 3.3. For every non-negative even integer k, such that k /∈ {2, 8, 12, 16}, there exists a unicyclic graph

G, with LM1(G) = k.

Proof. We consider the following two cases.

Case 1: For k ≡ 0 (mod 4) and k ∈ {8, 12, 16}, we have LM(K3) = 0, LM1(C4) = 4 and since

LM1(Cn) = 4n, for every n ≥ 5. Then LM1(C k
4
) = k, for every k ≥ 20 and k ≡ 0 (mod 4).

Case 2: For k ≡ 2 (mod 4). Firstly, for k = 2 there is no unicyclic graph UCn, with LM1(UCn) = 2.

Then for k ≥ 6 and k ≡ 2 (mod 4), the triangle unicyclic Pn−3C3 is the desired graph. That is,

by Theorem 2.5, LM1(Pn−3C3) = 4n − 10, for n ≥ 4. Thus for every even integer k ≥ 6 and

k ≡ 2 (mod 4), LM1(Pk−2
4

C3) = k.

Therefore, for every non-negative integer k except 2, 8, 12, 16, there are a unicyclic graph G with

LM1(G) = k.
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4. Possible values of the second leap Zagreb index of graphs

In this section, we solve the inverse problem for the second leap Zagreb index for graphs, where the

second leap index value can be any non-negative integer except 2. Analogously, the solution of this

problem for trees and unicyclic graphs are being presented.

Theorem 4.1. For every non-negative integer k, such that k ̸= 2, there exists a graph G, with LM2(G) = k.

Proof. Let k be a non-negative integer, such that k ̸= 2. Then we consider the following cases.

Case 1: For k ≡ 0 (mod 4), we have LM2(Kn) = 0, for every n ≥ 0, LM2(C4) = 4, by Proposition

2.16, LM2(P2K4) = 12, and from Propositions 2.7, LM2(P3K2) = 8 and for every k ≥ 16,

LM2(Pk+4
4

K2) = k.

Case 2: For k ≡ 1 (mod 4), by Proposition 2.5, LM2(P1C3) = 1, so one can easy check that LM2(P4 +

K1) = 5, by Proposition 2.11, LM2(AU5) = 9, by Proposition 2.15, LM2(P2C̃4) = 13, LM2(P3C̃4) =

17, and by Propositions 2.16, LM2(Pk−5
4

K4) = k, for every k ≥ 21.

Case 3: For k ≡ 2 (mod 4) and k ≥ 6, by Lemma 2.4, LM2(Pk+14
4
) = k.

Case 4: For k ≡ 3 (mod 4), we have LM2(P4) = 3, by Proposition 2.5, LM2(P2C3) = 7, by Proposition

2.7, LM2(P4K2) = 11, and from Proposition 2.5, LM2(Pk+4
4

C3) = k, for k ≥ 19.

Therefore, For every integer 0 ≤ k ̸= 2, there exists a graph G, with LM2(G) = k.

Theorem 4.2. For every non-negative integer k, such that k /∈ {1, 2, 4, 5, 7, 9, 13, 17, 19, 21, 31}, there exists a

tree T, with LM2(T) = k.

Proof. For every non-negative integer k, we consider the following cases.

Case 1: For k ≡ 0 (mod 4). Firstly, for k = 0, we have LM2(T) = 0, for every tree T with diameter at

most two. For k = 4, 12, by Theorem 2.3, and check all tree with n ≤ 6, there is no any tree T,

with LM2(T) = k. For k = 8, by Proposition 2.7, with set r = 2, we obtained LM2(P3K2) = 8.

Finlay, For every k ≥ 16, the broom Pn−2K2, for n ≥ 7 is the desired tree. That is by proposition

2.7, LM2(Pk+12
4

K2) = k.

Case 2: For k ≡ 1 (mod 4), we consider the following: For k ≤ 21, by Theorem 2.3, for every tree T,

LM2(T) ≥ LM2(Pn), and by Lemma 2.4, LM(P9) = 22. Thus one can easily compute the second

leap index for all tree with n ≤ 8 vertices and check that there is no any tree T with L2(T) = k.

For k ≥ 25, by Proposition 2.8, LM2(FTn = 4n − 7) for n ≥ 8. That is LM2(FTk+7
4

= k).

Case 3: For k ≡ 2 (mod 4). By Theorem 4.1, there is no any graph and so, any tree T with LM2(T) = 2.

For k ≥ 6, the path Pn, for n ≥ 4 is the desired tree. That is by Lemma 2.4, LM2(Pk+14
4
) = k.
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Case 4: For k ≡ 3 (mod 4). Firstly, for k = 3, LM2(P4) = 3. For k = 7, 19, 31, there is no any tree

T, with LM2(T) = k. For k = 11, 15, 27, by Proposition 2.7, with set r = 2, 3, 4, we obtained,

LM2(P4K2) = 11, LM2(P3K3) = 15 and LM2(P4K4) = 27. For k = 23, the tree shown in figure 4,

is the desired tree.

Figure 4: A tree T with LM2(T) = 23.

Finally, For every k ≥ 35, the Hn-tree with n ≥ 10 vertices, is the desired tree, where from

Proposition 2.9, for n ≥ 10, LM2(HTn) = 4n − 5. That is LM2(HTk+5
4
) = k, for every k ≥ 35 and

k ≡ 3 (mod4).

Theorem 4.3. For every non-negative integer k, such that k /∈ {2, 3, 5, 6, 8, 11, 12, 13, 14}, there exists a

unicyclic graph UCp, with LM2(UCp) = k.

Proof. For every non-negative integer k, we consider the following cases.

Case 1: For k ≡ 0 (mod 4), we obtained the following: for k = 0, the triangle is the desired graph.

i.e., LM2(C3) = 0. For k = 4, LM2(C4) = 4. For k = 8, 12, there is no unicyclic graph G with

LM2(G) = k. For k = 16, by Proposition 2.11, LM2(AU6) = 16. Finally, for every K ≥ 20, the

cycles Cn, for n ≥ 5 are the desired graphs. That is LM2(C k
4
) = k.

Case 2: For k ≡ 1 (mod 4), we obtained the following: for k = 5, 13, there is no unicyclic graph. For

k = 9, by Proposition 2.11, LM2(AU5) = 9. For k = 17, by Proposition 2.13, LM2(T3C3) = 17. For

k = 21, the desired graph shown in figure 5,

Figure 5: A unicyclic UC3 with LM2(UC3) = 21.

For k ≥ 25, the AUn, for n ≥ 8, is the desired unicyclic graph. That is by Proposition 2.11,

LM2(AU k+7
4
) = k.

Case 3: For k ≡ 2 (mod 4), we obtained the following: when k = 2, 6, 14, there is no unicyclic graph

UCn with LM2(UCn) = k. For k = 10, 18, 22, by Proposition 2.10, LM2(P1C4) = 10, LM2(P2C4) =

18, LM2(P3C4) = 22. For k = 26, 30, the desired graphs shown in the following figure.

G1 : G2 :

Figure 6: The unicyclic graphs with LM2(G1) = 26, LM2(G2) = 30
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For k ≥ 34, by Proposition 2.12, FUn, for n ≥ 10, is the desired graph. That is LM2(FU k+6
4
) = k.

Case 4: For k ≡ 3 (mod 4), we obtained the following: when k = 3, 11, there is no unicyclic graph

UCn with LM2(UCn) = k. By proposition 2.5, for k = 7, LM2(P2C3) = 7 whereas for k ≥ 15,

LM2(Pk+13
4

C3) = k.

5. Possible Values of the Third Leap Zagreb Index of Graphs

In this section, we solve the inverse problem for the third leap Zagreb index for graphs. Analogously,

the solution of this problem for trees and unicyclic graphs are being presented.

Theorem 5.1. For every non-negative integer k, such that k /∈ {1, 3, 5, 7, 9, 11, 17}, there exists a graph G, such

that LM3(G) = k.

Proof. Let k be a non-negative integer number. Then we have the following cases:

Case 1: For every even non-negative integer number k, since LM3(Kn − e) = 2(n− 2), for n ≥ 2, where

Kn − e is graph obtained from the complete graph Kn, by deleting an edge e from it. Then the

graph Kn − e, for n ≥ 2 is the desired graph. That is LM3(K k+4
2
) = k, for every even non-negative

integer k.

Case 2: For k ≡ 1 (mod4), there is no graph G, with LM3(G) = k, for k = 1, 5, 9, 17. For k = 13, by

Proposition 2.15, LM3(P1C̃4) = 13. For k ≥ 21, by Proposition 2.10, LM3(Pn−4C4) = 4n − 3, for

every n ≥ 6. That is LM3(Pk+3
4

C4) = k.

Case3: For k ≡ 3 (mod4), there is no graph G, with LM3(G) = k, for k = 3, 7, 11. For k = 15, by

Proposition 2.10, LM3(P1C4) = 15. For k ≥ 19 by Proposition 2.15, LM3(Pn−4C̃4) = 4n − 5, for

every n ≥ 6. That is LM3(Pk+5
4

C̃4) = k, for every k ≥ 19.

From Theorem 10 in [14], if G is a C3, C4-free graph, then LM3(G) = 2M2(G)− M1(G), and since the

value of M1(G) is even. Then the third leap Zagreb index of any triangle- and quadrangle-free graph

is always even. Hence the following result follows.

Theorem 5.2. For every even non-negative integer k, such that k /∈ {4, 8}, there exists a tree T, with LM3(T) =

k.

Proof. For every even non-negative integer k, we have the following two cases.

Case 1: For k ≡ 0 (mod 4), we have LM3(P2) = 0. For k = 4, 8, there is no tree with LM3(T) = k. For

k ≥ 12, the broom Pn−2K2, for n ≥ 5 and r = 2, is the desired tree, where from Proposition 2.7,

by setting r = 2, we have LM3(Pn−2K2) = 4n − 8. That is LM3(Pk
4
K2) = k, for every k ≥ 12.

Case 2: For k ≡ 2 (mod 4), the path Pn, for n ≥ 3, is the desired tree, where from Lemma 2.4, LM3(P3) =

2 and LM3(
k+10

4 ) = k.
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Theorem 5.3. For every non-negative integer k, such that k /∈ {1, 2, 3, 4, 5, 7, 9, 10, 11, 13, 17, 18, 19, 23, 27},

there exists a unicyclic graph UCn, with LM3(UCn) = k.

Proof. For every non-negative integer k, we consider the following cases.

Case 1: For k ≡ 0 (mod 4), we have LM3(C3) = 0. For k = 4, there is no unicyclic graph UCn with

LM3(UCn) = 4. For k = 8, LM3(C4) = 8. For k ≥ 12, the triangle unicyclic Pn−2C3, for

n ≥ 5, is the desired tree, where from Theorem 2.5, we have LM3(Pn−3C3) = 4n − 8. That is

LM3(Pk
4
C3) = k, for every k ≥ 12.

Case 2: For k ≡ 1 (mod 4), there is no a unicyclic graph with LM3(UCn) = k for every

k ∈ {1, 5, 9, 13, 17}, whereas for k ≥ 21, the quadrangle unicyclic Pn−4C4, for n ≥ 6, is the desired

unicyclic, where from Proposition 2.10, LM3(Pn−4C4) = 4n − 3. That is LM3(Pk+3
4

C4) = k, for

every k ≥ 21.

Case 3: For k ≡ 2 (mod 4), there is no unicyclic graph with LM3(UCn) = k, for k ∈ {2, 10, 18}. For k =

6, by Theorem 2.5, LM3(P1C3) = 6. For k = 14, by Proposition 2.11, LM3(AU5) = 14. For k ≥ 22,

the T3-unicyclic is the desired graphs, where from proposition 2.13, LM3(Tn−3C3) = 4n − 6, for

n ≥ 7. That is LM3(Tk−6
4

C3) = k, for every k ≥ 22.

Case 4: For k ≡ 3 (mod 4), there is no unicyclic graph with LM3(UCn) = k, for every

k ∈ {3, 7, 11, 19, 23, 27}. For k ≥ 31, the T4-unicyclic graph with n ≥ 8 vertices is the desired

graph,where from Proposition 2.14, we have LM3(Tn−4C4) = 4n − 1, for n ≥ 8. That is

LM3(Tk−15
4

C4) = k, for every k ≥ 31.
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