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Abstract

The structure of a chemical compound is usually modeled as a graph, which is so-called a molecular
graph. It has been found that some topological indices of a molecular graph are closely related
to many physicochemical properties of its chemical compounds. From this relation, it arises the
important inverse topological indices problem, that carry out a thorough search of the existence of
a graph having its index value equal to a given integer. In this paper, we are interested in solving
this problem for the first, second and third leap Zagreb indices of connected graphs. We are also
restricting the solutions to trees and unicyclic graphs. It is shown that for every even non-negative
integer k there exists a graph having its first leap Zagreb index value equal to k. For every non-
negative integer k, except 2, there exists a graph having its second leap Zagreb index value equal to
k and for every non-negative integer k, except 1,3,5,7,9,11, 17, there exists a graph having its third
leap Zagreb index value equal to k. The general formulas of leap Zagreb indices values for some

certain trees and unicyclic graphs which are useful in this work are presented.
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1. Introduction

Throughout this paper, we are concerned only with finite connected simple graphs G = (V,E), such
that graph is undirected with no loops, no weighted and multiple edges and there is a path joining
any two vertices in it. As usual, V. = V(G) and E = E(G) are the vertex and edge sets of G, whereas
n = |V| and m = |E|, indicate the number of vertices and edges in G, respectively. The distance d(u, v)
between two vertices u and v in G is the length (number of edges) of the shortest path connecting
them. The eccentricity of v € V(G) is e(v) = max{d(v,u) : u € V(G)}, the radius of G is rad(G) =
min{e(v) : v € V(G)} and the diameter of G is diam(G) = max{e(v) : v € V(G)}. As usual, we
denote a K, P, Cy, Ky ,—1, and S, s by the complete, path, cycle, star and bistar of order n. A graph G
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is called F-free graph if no induced subgraph of G is isomorphic to F. The graph G — e is the graph
obtained from G by deleting the edge e, for e € E(G). For a vertex v € V(G), the open 2-distance
neighborhood of v in a graph G, denoted by N»(v/G) (or Nx(v) if not misunderstood), and defined
as No(v) = {u € V(G) : d(u,v) = 2}. The second degree of v, denoted by dy(v/G) (or di(v)), and
is da(v) = |N2(v)|. we denote by E»(G) to the set of all unordered pairs of vertices of G which the
distance between them equal two, i.e., E2(G) = {{u,v} C V(G) : d(u,v) = 2} and let mp = |Ex(G)]|.
For any terminology or notation not mentioned here, we refer the reader to books [3,7].

A topological index (structure-descriptor) of a graph is a numerical parameter mathematically derived
from the graph structure. It is a fixed invariant for any two isomorphic graphs. A graph invariant
is any function on a graph that does not depend on labeling of its vertices. The topological indices
of graphs are especially useful in establishing the mathematical basis for connections between the
structure of molecular graph and the physicochemical properties or biological activity of its chemical
compounds.

In the current mathematical and mathematico-chemical literature a large number of vertex-degree-
based graph invariant are being studied. Among them, the first M;(G) and second M,(G) Zagreb
indices are the far most extensively investigated ones. These have been introduced more than forty

years ago [5,6], and are defined as:

M(G) = ) d*ov),

veV(G)

My(G) = Y d(w)d(o).

uveE(G)

Naji [13], introduced three new distance-degree-based topological indices conceived depending on the

second degrees of vertices, and so-called leap Zagreb indices of a graph G are defined as:

LMy(G) =} d3(v)
veV(G)

LMz(G) = Z dz(u)dz(v)
uveE(G)

LM;(G) = Y d(v)da(0).
veV(G)

The leap Zagreb indices have several chemical applications. Surprisingly, the first leap Zagreb index
has very good correlation with physical properties of chemical compounds like boiling point, entropy,
DHVAP, HVAP and accentric factor [2], hence attract the attention of many graph theorists and also
other scientists including chemists. For properties and more details of leap Zagreb indices, we refer

the readers to [1,2,9,11-17].
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2. Preliminaries

The inverse problem for topological indices is the answer of the question “which integer number can
be an index value of a graph?", It is about the existence of a graph having its index value equal to
a given integer number. This problem was studied in due detail for the Wiener index [4,8,18-20].
Recently, Yurtas in [21], have been solved this problem for the first and second Zagreb indices, and
they presented analogous results also for the forgotten and hyper-Zagreb index. They showed that, first
Zagreb index of connected graphs can take any even positive integer value, except 4 and 8. The second
Zagreb index of connected graphs can take any positive integer value, except 2,3,5,6,7,10,11,13,15
and 17.

Motivated by these, we are interested in solving this problem for the first, second and third leap Zagreb
indices of connected graphs. We begin with some old results which required to show the main results.
Then, in sections 2.1 and 2.2, we present the general formulas of leap Zagreb indices for some certain
trees and unicyclic graphs that will be useful. So also, the general formulas of leap Zagreb indices for
some graphs are presented in section 2.3. In section 3, the possible values of the first leap Zagreb index
of graphs and also of trees and unicyclic graphs are presented. In section 4, the possible values of the
second leap Zagreb index of graphs as well as of trees and unicyclic graphs are presented. In section 5,
the possible values of the third leap Zagreb index of graphs and so also of trees and unicyclic graphs
are presented.

The following results will be useful.

Theorem 2.1 ([10]). Let G be a connected graph with n vertices and my second edges. Then

Z dz(v) = 21112. (1)

veV(G)
Corollary 2.2. For a graph G, the number of vertices with odd second degree in G is even.

Theorem 2.3 ([16]). For any tree with n > 5 vertices and diam(T) > 3, it holds
LMy(P,) < LM(T) < LM3(S;5),

where r; s are two positive integers such that r +s+2 = nand |r —s| € {0,1}.

Lemma 2.4 ([14]). For the path P,, with n vertices.

0, ifn<3;
(1) LM;(P,) =4 2, ifn=3;
4n —12, ifn > 3.
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0, ifn <4
(2) LMy(P,) = ¢ 3, ifn=4
4n — 14, ifn >4

0, ifn<3;
(3) LM3(Py) = 1 2, ifn=3;
4n —10, ifn > 3.

Theorem 2.5 ([16]). For a triangular unicyclic graph P,_3Cs, with n > 4 vertices.

(1) LM](PH,3C3) =4n—10

1, ifn=4

7, ifn=>5;
(2) LM (Py—3C3) =

10, ifn==6.

4n —13, ifn>7.

6, ifn=4;
4n -8, ifn >5.

(3) LM3(P,3C3) =

21 The leap Zagreb indices for some trees

Recall that a vertex of a tree with one degree is called a leaf and its neighbor is called a support vertex.
A vertex v of a tree T with e(v) = rad(T) is called a central vertex, where a tree of even order have
two central vertices, whereas a tree of odd order have only one. A tree with n 4 1 vertices obtained by
joining a new vertex to any central vertex of a path P,, will be denote T, figurel (bl) and (b2), shows
T, for n = 5,6. A tree that is obtained by joining r > 2 vertices to a leaf of a path P, is called a broom,
as shown in figure 1.a, and denoted P,_,K,. A tree which is constructed from the broom P,_,K>, by
joining a new vertex to any pendent vertex of K, in the broom will be called an F-tree and denoted
FT,, for n > 5, see figure 1.c, whereas a tree which is constructed from the broom P, 7K, by joining a
central vertex in P; to a pendent vertex of K5 in the broom will be called an H-tree and denoted HT,,

for n > 7, see figure 1.d).

48
(a) Pnfrfr (bl) T5 (b2) Te

SUUNUUEE o SUNNES

(c) FT, (d) HT,

Figure 1: The broom, T,-, F- and H-trees.
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Proposition 2.6. The leap Zagreb indices of a T, tree with n > 3 vertices, are given by

12, ifn=23;
14, ifn =4
(1) LMi(Tu) = ¢ 18, ifn =5
24, ifn==6;
dn+2, ifn>7.

0, ifn=3;

8, ifn=4;
(2) LMa(Ty) =< 4(n—1), ifn=05,6,7;

29, ifn=2§;

4n —2, ifn>09.

6, ifn=23
(3) LM3(Ty) = { 12, ifn=4;
4n—2, ifn>5.

Proposition 2.7. For r > 2, the leap Zagreb indices of a broom P,_,K,, with n > 3 vertices are given by

p

r(r—1)2, ifn=r+1;
_ r2(r+1), ifn=r+2

(1) LMl(Pnerr) = ( ) f
r2(r+1)+2, ifn=r+3;

dn—r—3)+2r(r+1), ifn>r+4

0, fn=r+1,r+2
_ r(r+2), ifn=r+3;
) Li(Pa K) = U f
r(r+2)+3, ifn=r+4
4(n—r)+r>+3r—14, ifn>r+5.
( r(r—1), ifn=r+1;
(3) LMB(Pn—rE): T(V—i—l), fn=r+2;

4(n—7r)+1>+3r—10, ifn>r+3.

Proposition 2.8. The leap Zagreb indices of an F, tree with n > 5 vertices, are given by
( 14, ifn=>5;

(1) LMy (FT,) =< 18, ifn=6

4n—1), ifn>7.

8, ifn=>5;
(2) LMZ(FTﬂ) = 4” - 8/ Z_fn - 6/7/
dn—-7, ifn>8.
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12, ifn=>5;
(3) LM3(FT,) =
4n—6, ifn>6.

Proposition 2.9. The leap Zagreb indices of an H, tree with n > 7 vertices, are given by
34, ifn=7
(1) LMy(HT,) =< 38, ifn==8;
4n+38, ifn>09.

16, ifn=17
(2) LMx(HT,) = 4n—6, ifn=38,9;
4n -5, ifn > 10.

22, ifn=7;

) M) = { 4n—1), ifn>8

2.2 The leap Zagreb indices for some unicyclic graph

In this section, we will present the general formulas of the leap Zagreb indices for some special
unicyclic graphs. Recall that the unicyclic graph UC, with n vertices is a graph containing a cycle
C, with 3 < p < n vertices such that d(v) > 2, for every v € C,. If UC, — V(C;) = Py, then UC, will
be denoted P, ,C,. A graph obtained from the triangle unicyclic graph P, 3C3 by joining a new vertex
to any vertex of the triangle that has degree two in P,_3Cs3, is called an A-unicyclic graph and denote
AUy, see figure 2.c. While, a graph obtained from P,_3C3 by joining a new vertex to a neighbor of the
support vertex of the pendent vertex in P,_3C3, is will be called F-unicyclic graph and denote FU,,, see
figure 2.d. A graph obtained from the triangle or quadrangle unicyclic graph P,_;C;, for i = 3,4, by
joining a pendent vertex in P,_;C; to a central vertex of P3, is called a T;-unicyclic graph and denote

T,,—iCi, see figure 2.e and 2.f.

(a) P, —3C5 (b) P,—4Cy
(c) AU, (d) Fu,
(e) T, 3C3 () Tr—4Cy

Figure 2: The triangle, quadrangle, A-, F- T5- and Ty-unicyclic graphs.

Proposition 2.10. For the quadrangle unicyclic P,_4C4 with n > 4 vertices, the leap Zagreb indices are given

by
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4, ifn=4

14, ifn=2>5;
(1) LM (Py—4Cy) =

18, ifn==6

4n—1), ifn>7.

4, ifn=4;
10, ifn=2>5
(2) LMQ(PH_ALCA],) = 18, ifn =6,

22, ifn=7;
4n -5, ifn >8.

8, ifn=4
(3) LM3(Pi—sCs) ={ 17,  ifn=5
4n —3, ifn >6.

Proposition 2.11. For the A-unicyclic graph AU, with n > 5 vertices, the leap Zagreb indices are given by

14, ifn=>5
(1) LM1(AU,) = § 18, ifn=6;
4n—1), ifn>7

9, ifn=>5;
16, ifn==6;
20, ifn=7;
4n—7, ifn>8.

(2) LMy(AU,) =

14, ifn=25;
(3) LM3(AUy) = | 24, ifn=6;
4n, ifn>7.

\

Proposition 2.12. For the F-unicyclic graph FU, with n > 5 vertices, the leap Zagreb indices are given by
24, ifn=_§

(1) LM;(FU,) = ¢ 32, ifn=29;

4n—2, ifn > 10.

5, ifn=_§;
(2) LM,(FU,) = ¢ 31, ifn=9;
4n—6, ifn > 10.

(3) LM3(FU,) =

26, ifn=2§
4(n—1), ifn>09.

Proposition 2.13. For the Tz-unicyclic graph T,,_3C3 with n > 6 vertices, the leap Zagreb indices are given by
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18, if n =6
(1) LMy(Ty—3C3) = { 28, ifn=7,
4n—2, ifn > 8.

17, ifn==6;

15, ifn=17;
(2) LMy (Ty—3C3) = J

22, ifn=2§;

4n —11, ifn >09.

20, ifn==6;

(3) LM3(T,—3C3) = {
dn—6, ifn>7.

Proposition 2.14. For the Ty-unicyclic graph T, _4Cs with n > 7 vertices, the leap Zagreb indices are given by

,

30, ifn=7
(1) LM;(T,,—4C4) = § 38, ifn=S§;
4n+4, ifn>09.

30, ifn=7
28, ifn=_§;
34, ifn=29;
4n —3, ifn > 10.

(2) LMy(T,—4C4) =

29, ifn=7;

(3) LM3(T,_4Cy) = {
4n—1, ifn>8.

2.3 The leap Zagreb indices of some graphs

In this section, we present the general formulas of the leap Zagreb indices values for some graphs,
which required to solve the main problem. The special case of these graphs are shown in the following

tigure.

P, 4Cy P,_4K4

Figure 3: The graphs P, 4C4 and Py gKy.

Proposition 2.15. For a graph P,_4Cy with n > 4 vertices, the leap Zagreb indices are given by

2, ifn=4;
- 8, ifn=2>5;
(1) LM;(P,_4Cy) =
12, ifn==6;
4n—10, ifn>7.
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(2) LMy(P,—4Cy) =

(3) LM3(Py4Cy) =

0, ifn=4;
7, ifn=>5;
13, ifn=6;
17, ifn=7;

4n —10, ifn > 8.

4, ifn=4;
13, ifn=2>5;
4n—5, ifn >6.

Proposition 2.16. For g > 3, the leap Zagreb indices of a graph P, 4K, with n > q + 1 vertices, are given by

(1) LMy (Py_gKy) =

(2) LMy(Py_gK,) =

(3) LM3(P,y_gK,) = {

7 -9, ifn=q+1;
7 —q+2 ifn=q+2;
ng+4mn—q)—10, ifn>qg+3.

q(g—1), ifn=q+1;
q(g+1)+4(n—qg—2), ifn>qg+2.

3. Possible Values of the First Leap Zagreb Index of Graphs

3(0-1)(q-2), ifn=q+1,
3a—1)(q+4), ifn=q+2;
lg(g—1)+29+1, ifn=gq+3;
391 +3(q+1)+4(n—q—4), ifn>q+4

By the Corollary 2.2, any graph G have to possess an even number of vertices of odd second degree.

Since the square of an integer number is odd, if and only if the number itself is odd. Then the sum of

squares of vertex second degrees, Equation (1), there is an even number of odd terms. Therefore, the

values of the first leap Zagreb index of a graph G must be an even integer number.

Theorem 3.1. For every non-negative even integer k, there exists a graph G, with LM;(G) = k.

Proof. For a graph G, let LM;(G) = k. Since for any even non-negative integer number 7, either

n =0 (mod 4) or n =2 (mod 4). Then we consider the following two cases.

Case 1: For every non-negative integer k = 0 (mod 4), by Lemma 2.4, we have LM;(P,) = 0 and

LM;(P,) = 4(n —3), for every n > 4. Thus for every integer numberk > 4 and k = 0 (mod 4),
the Path P, is the desired graph, which for it LM; (Pkf¥ ) = k.

Case 2: For every non-negative integer k = 2 (mod 4), we have the following subcases:

Subcase 2.1: For k = 2, by Lemma 2.4, LM;(P;) = 2.
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Subcase 2.2: For k = 6, by Theorem 2.5, if n = 4, then LM;(P,C3) = 6.
Subcase 2.3: For k = 10, it is easy to check that LM, (K;j + P4) = 10.

Subcase 2.4: For k > 14, by Theorem 2.5, LM;(P,_3C3) = 4n — 13. That is

LM (PesnnCs) = k.

Therefore, The value of the first leap Zagreb index of graphs can be any non-negative even integer. [J

In the following result we investigate which integer number can be a value for the first leap Zagreb

index of a tree.

Theorem 3.2. For every non-negative even integer k, such that k ¢ {6,10,22,26}, there exists a tree T, with
LM;(T) = k.

Proof. By similar arguments as in the proof of Theorem 3.1, we have the following two cases

Case 1: For every non-negative integer k = 0 (mod 4). By Lemma 2.4, LM;(P,) = 0 and LM](PI{JT% ) =
k, for every positive integer k > 4. Thus the path P, is the required tree.

Case 2: For every non-negative integer k = 2 (mod 4), we have LM;(P;) = 2 and from Proposition
2.6, LMy(Ty) = 14,LM;(Ts) = 18,LM;(T7) = 30 and LM1(T1%2) = k, for every k > 32, and
k=2 (mod 4).

Therefore, the value of the first leap Zagreb index of a tree can be any non-negative even integer

number except 6, 10,22, 26. O

Theorem 3.3. For every non-negative even integer k, such that k ¢ {2,8,12,16}, there exists a unicyclic graph

G, with LM (G) = k.
Proof. We consider the following two cases.

Case 1: For k = 0 (mod 4) and k € {8,12,16}, we have LMK3) = 0,LM;(Cy) = 4 and since
LM;(C,) = 4n, for every n > 5. Then LMl(Cg) =k, for every k > 20 and k = 0 (mod 4).

Case 2: For k = 2 (mod 4). Firstly, for k = 2 there is no unicyclic graph UC,, with LM;(UC,) = 2.
Then for k > 6 and k = 2 (mod 4), the triangle unicyclic P,_3C3 is the desired graph. That is,
by Theorem 2.5, LM;(P,_3C3) = 4n — 10, for n > 4. Thus for every even integer k > 6 and
k=2 (mod 4), LMl(P;%ng) =k

Therefore, for every non-negative integer k except 2,8,12,16, there are a unicyclic graph G with

LM;(G) = k. 0
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4. Possible values of the second leap Zagreb index of graphs

In this section, we solve the inverse problem for the second leap Zagreb index for graphs, where the
second leap index value can be any non-negative integer except 2. Analogously, the solution of this

problem for trees and unicyclic graphs are being presented.
Theorem 4.1. For every non-negative integer k, such that k # 2, there exists a graph G, with LM,(G) = k.
Proof. Let k be a non-negative integer, such that k # 2. Then we consider the following cases.

Case 1: For k = 0(mod4), we have LMy(K,) = 0, for every n > 0, LM»(C4) = 4, by Proposition
216, LMy(PK4) = 12, and from Propositions 2.7, LM»(PsK;) = 8 and for every k > 16,
LM, (PuiKa) = k.

Case 2: For k = 1(mod4), by Proposition 2.5, LM,(P;C3) = 1, so one can easy check that LM, (Ps +
Ky) =5, by Proposition 2.11, LM (AUs) = 9, by Proposition 2.15, LMy (PyCy) = 13, LM, (P5Cy) =
17, and by Propositions 2.16, LMz(P% Ky) =k, for every k > 21.

Case 3: For k = 2 (mod4) and k > 6, by Lemma 2.4, LMZ(P;(#) =k

Case 4: For k = 3 (mod4), we have LM (Ps) = 3, by Proposition 2.5, LM,(P>C3) = 7, by Proposition
2.7, LMy(P4K;) = 11, and from Proposition 2.5, LMZ(P;%A; Cs) =k, for k > 19.

Therefore, For every integer 0 < k # 2, there exists a graph G, with LM,(G) = k. O

Theorem 4.2. For every non-negative integer k, such that k ¢ {1,2,4,5,7,9,13,17,19,21,31}, there exists a
tree T, with LMy(T) = k.

Proof. For every non-negative integer k, we consider the following cases.

Case 1: For k = 0 (mod4). Firstly, for k = 0, we have LM(T) = 0, for every tree T with diameter at
most two. For k = 4,12, by Theorem 2.3, and check all tree with n < 6, there is no any tree T,
with LM,(T) = k. For k = 8, by Proposition 2.7, with set r = 2, we obtained LM, (P;K;) = 8.
Finlay, For every k > 16, the broom P,_;Kj, for n > 7 is the desired tree. That is by proposition
2.7, LMQ(P&TuKiz) =k.

Case 2: For k = 1 (mod4), we consider the following: For k < 21, by Theorem 2.3, for every tree T,
LM;(T) > LM3(Py,), and by Lemma 2.4, LM(Py) = 22. Thus one can easily compute the second
leap index for all tree with n < 8 vertices and check that there is no any tree T with L,(T) = k.
For k > 25, by Proposition 2.8, LMy (FT, = 4n —7) for n > 8. That is LMZ(FT% =k).

Case 3: For k = 2 (mod4). By Theorem 4.1, there is no any graph and so, any tree T with LM (T) = 2.
For k > 6, the path P, for n > 4 is the desired tree. That is by Lemma 2.4, LMZ(PH% ) = k.
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Case 4: For k = 3 (mod4). Firstly, for k = 3, LMx(Ps) = 3. For k = 7,19,31, there is no any tree
T, with LM,(T) = k. For k = 11,15,27, by Proposition 2.7, with set r = 2,3,4, we obtained,
LM(P4Ky) = 11, LM(P3K3) = 15 and LMy (PyKy) = 27. For k = 23, the tree shown in figure 4,

<

Figure 4: A tree T with LM,(T) = 23.

is the desired tree.

Finally, For every k > 35, the H,-tree with n > 10 vertices, is the desired tree, where from
Proposition 2.9, for n > 10, LM(HT,) = 4n — 5. That is LMZ(HT%) = k, for every k > 35 and
k =3 (mod4). O

Theorem 4.3. For every non-negative integer k, such that k ¢ {2,3,5,6,8,11,12,13,14}, there exists a
unicyclic graph UC,, with LM>(UC,) = k.

Proof. For every non-negative integer k, we consider the following cases.

Case 1: For k = 0(mod4), we obtained the following: for k = 0, the triangle is the desired graph.
i.e.,, LMy(C3) = 0. For k = 4, LM(C4) = 4. For k = 8,12, there is no unicyclic graph G with
LM;(G) = k. For k = 16, by Proposition 2.11, LM,(AUs) = 16. Finally, for every K > 20, the
cycles Cy, for n > 5 are the desired graphs. That is LM (C k ) = k.

Case 2: For k = 1 (mod4), we obtained the following: for k = 5,13, there is no unicyclic graph. For
k =9, by Proposition 2.11, LM (AUs) = 9. For k = 17, by Proposition 2.13, LM, (T3C3) = 17. For
k = 21, the desired graph shown in figure 5,

o
Figure 5: A unicyclic UC; with LM,(UC3) = 21.

For k > 25, the AU, for n > 8, is the desired unicyclic graph. That is by Proposition 2.11,

LMZ(ALI¥) =k.

Case 3: For k = 2 (mod4), we obtained the following: when k = 2,6,14, there is no unicyclic graph
UC, with LM,(UC,) = k. For k = 10, 18,22, by Proposition 2.10, LM,(P1Cs) = 10, LM(P,Cy) =
18, LM (P;Cy4) = 22. For k = 26,30, the desired graphs shown in the following figure.

S R ©

Figure 6: The unicyclic graphs with LM,(G1) = 26, LM,(G) = 30
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For k > 34, by Proposition 2.12, FU,, for n > 10, is the desired graph. That is LMy (FUxe) = k.

KN
Case 4: For k = 3 (mod4), we obtained the following: when k = 3,11, there is no unicyclic graph
UC, with LM,(UC,) = k. By proposition 2.5, for k = 7, LM(P,C3) = 7 whereas for k > 15,
LMz(P¥C3) = k. O

5. Possible Values of the Third Leap Zagreb Index of Graphs

In this section, we solve the inverse problem for the third leap Zagreb index for graphs. Analogously,

the solution of this problem for trees and unicyclic graphs are being presented.

Theorem 5.1. For every non-negative integer k, such that k ¢ {1,3,5,7,9,11,17}, there exists a graph G, such
that LM3(G) =k

Proof. Let k be a non-negative integer number. Then we have the following cases:

Case 1: For every even non-negative integer number k, since LM3(K,, —e) = 2(n —2), for n > 2, where
K, — e is graph obtained from the complete graph K;;,, by deleting an edge e from it. Then the
graph K, —e, for n > 2 is the desired graph. That is LM3(K ;%4) = k, for every even non-negative

integer k.

Case 2: For k = 1(mod4), there is no graph G, with LM3(G) = k, for k = 1,5,9,17. For k = 13, by
Proposition 2.15, LM3(P;Cy) = 13. For k > 21, by Proposition 2.10, LM3(P,_4C4) = 4n — 3, for
every n > 6. That is LMg(P% Cy) =k

Case3: For k = 3 (mod4), there is no graph G, with LM3(G) = k, for k = 3,7,11. For k = 15, by
Proposition 2.10, LM3(P;Cy) = 15. For k > 19 by Proposition 2.15, LM3(P,_4C4) = 4n — 5, for
every n > 6. That is LM;,(P% Cy) = k, for every k > 19. O

From Theorem 10 in [14], if G is a C3, C4-free graph, then LM3(G) = 2M>(G) — M;(G), and since the
value of M;(G) is even. Then the third leap Zagreb index of any triangle- and quadrangle-free graph

is always even. Hence the following result follows.

Theorem 5.2. For every even non-negative integer k, such that k ¢ {4,8}, there exists a tree T, with LM3(T) =
k.

Proof. For every even non-negative integer k, we have the following two cases.

Case 1: For k = 0 (mod4), we have LM3(P,) = 0. For k = 4,8, there is no tree with LM3(T) = k. For
k > 12, the broom P,_»K>, for n > 5 and r = 2, is the desired tree, where from Proposition 2.7,

by setting r = 2, we have LM3(P,_,K;) = 4n — 8. That is LM3(P§K72) = k, for every k > 12.

Case 2: For k =2 (mod4), the path P,, for n > 3, is the desired tree, where from Lemma 2.4, LM3(P3) =
2 and LM;(*410) = . O
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Theorem 5.3. For every non-negative integer k, such that k ¢ {1,2,3,4,5,7,9,10,11,13,17,18,19, 23,27},
there exists a unicyclic graph UC,, with LM3(UC,,) = k.

Proof. For every non-negative integer k, we consider the following cases.

Case 1: For k = 0(mod4), we have LM3(C3) = 0. For k = 4, there is no unicyclic graph UC, with
LM3(UC,) = 4. For k = 8, LM3(Cs) = 8. For k > 12, the triangle unicyclic P,_»Cs, for
n > 5, is the desired tree, where from Theorem 2.5, we have LM3(P,_3C3) = 4n — 8. That is
LM3(P§ C3) = k, for every k > 12.

Case 2: For k = 1(mod4), there is no a unicyclic graph with LM3(UC,) = k for every
k € {1,5,9,13,17}, whereas for k > 21, the quadrangle unicyclic P,_4C4, for n > 6, is the desired
unicyclic, where from Proposition 2.10, LM3(P,_4Cs4) = 4n — 3. That is LM3(P% C4) = k, for
every k > 21.

Case 3: For k = 2 (mod 4), there is no unicyclic graph with LM3(UC,) =k, for k € {2,10,18}. For k =
6, by Theorem 2.5, LM3(P;C3) = 6. For k = 14, by Proposition 2.11, LM3(AUs) = 14. For k > 22,
the Ts-unicyclic is the desired graphs, where from proposition 2.13, LM3(T,—3C3) = 4n — 6, for
n > 7. That is LM3(T% C3) =k, for every k > 22.

Case 4: For k = 3(mod4), there is no unicyclic graph with LM3(UC,) = k, for every
k € {3,7,11,19,23,27}. For k > 31, the Ty-unicyclic graph with n > 8 vertices is the desired
graph,where from Proposition 2.14, we have LMj3(T,_4C4) = 4n —1, for n > 8. That is
LM?,(TkT% C4) = k, for every k > 31. O
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