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Abstract

This manuscript gives a method of constructing multifactor BAFDS of type III. Multi-factor BAFDS

of type III are constructed from two factor BAFDS. The method was given by [21] and it generates

a BAFD from two given BAFD’s. The method can provide efficient BAFD’s if efficient two factor

BAFD’s are used. The designs constructed are balanced with orthogonal factorial structure.
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1. Introduction

In many situations there arise scenarios when an experimenter has to use factors at different levels.

The problem of obtaining confounded plans for such cases has received a good deal of attention. To

this extent, [30], by trial and hit methods obtained confounded plans of the type 3m × 2n, where m and

n are any positive integers. Using orthogonal arrays of strength 2 [18] gave methods for constructing

Extended Group Divisible Designs {EGD} for s1 × s2 experiments in blocks of size s1 < s2. [26]

starting from a basic s1 × s2 design in blocks of size s2 (s2 < s1, s1 being a prime number or power

of prime) obtained three factor designs. [20] constructed some series of designs from orthogonal

latin squares for s1 × s2 experiments in block of size s1 and s2 − 1 replications. [25] gave a class

of balanced designs with OFS. [16] considered the use of balanced incomplete block designs for the

construction of s1 × s2 balanced factorial designs with OFS when s1 > s2. Informative accounts and

subsequent developments have been done by [10,14,24]. [22] proposed a general method of obtaining

block designs for asymmetrical confounded factorial experiments using block designs for symmetrical

factorial experiments.
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[9] describes a general method of construction of supersaturated designs for asymmetrical factorial

experiments obtained by exploiting the concept of resolvable orthogonal arrays and Hadamard

matrices. [7] considered three forms of a general null hypothesis Ho on the factorial parameters of a

general asymmetrical factorial paired comparison experiment in order to determine optimal or

efficient designs. [13] constructed designs by using confounding through equation methods.

Construction of confounded asymmetrical factorial experiments in row-column settings and efficiency

factors of confounded effects was worked out. [27] identified a Kronecker product structure for a

particular class of asymmetric factorial designs in blocks, including the classes of designs generated

by several of the generalizations of the classical methods in literature. [4] focuses on the construction

and analysis of an extra ordinary type of asymmetrical factorial experiment which corresponds to a

fraction of asymmetrical factorial experiment as indicated by [5]. [2] establishes a lower bound to

measure optimality with respect to a main effects model in a general asymmetric factorial experiment.

[1] developed a method for the construction of p × 3 × 2 asymmetrical factorial experiments with

(p − 1) replications. [23] proposed A general method of obtaining block designs for asymmetrical

confounded factorial experiments using the block designs for symmetrical factorial experiments. [31]

Constructed asymmetrical factorial designs containing clear effects. [29] explained how to choose an

optimal (s2)sn design for the practical need, where s is any prime or prime power and accordingly

considered the clear effects criterion for selecting good designs. [17] dealt with situations where there

was a need for designing an asymmetrical factorial experiment involving interactions. Failing to get

a satisfactory answer to this problem from literature, the authors developed an adhoc method of

constructing the design. It is transparent that the design provides efficient estimates for all the required

main effects and interactions. The later part of this paper deals with the issues of how this method

is extended to more general situations and how this adhoc method is translated into a systematic

approach. [19] developed The R package DoE.base which can be used for creating full factorial designs

and general factorial experiments based on orthogonal arrays. Besides design creation, some analysis

functionality is also available, particularly (augmented) half-normal effects plots.

[12] Published a monograph that is an outcome of the research works on the construction of factorial

experiments (symmetrical and asymmetrical). In this booklet, construction frameworks have been

described for factorial experiments. The construction frameworks include general construction method

of pn factorial experiments, construction methods with confounded effects and detection method of

confounded effects in a confounded plan. The concepts of combinatorial, matrix operations and linear

equation technique have been deployed to develop the methods. [4] discussed an Alternative Method

of Construction and Analysis of Asymmetrical Factorial Experiment of the type 6× 22 in Blocks of

Size 12. [4] focuses on the construction and analysis of an extra ordinary type of asymmetrical factorial

designs which corresponds to fraction of a symmetrical factorial design as indicated by [5]. To construct

this design, they used 3 choices and for each choice they used 5 different cases. Finding the block

contents for each case showed that there are mainly two different cases for each choice. In the cases of
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analysis of variance, is seen that, for the case where the highest order interaction effect is confounded

in 4 replications, the loss of information is same for all the choices.

[11] in his book chapter discusses different methods of constructing systems of confounding for

asymmetrical factorial designs, including: Combining symmetrical systems of confounding via the

Kronecker product method, use of pseudo-factors, the method of generalized cyclic designs, method

of finite rings (this method is also used to extend the Kempthorne parameterization from symmetrical

to asymmetrical factorials), and the method of balanced factorial designs. He showed the equivalence

of balanced factorial designs and extended group divisible partially balanced incomplete block designs,

establishing again a close link between incomplete block designs and confounding in factorial designs.

[6] in her book chapter discusses confounding in single replicate experiments in which at least one

factor has more than two levels. First, the case of three-levelled factors is considered and the techniques

are then adapted to handle m-levelled factors, where m is a prime number. Next, pseudofactors are

introduced to facilitate confounding for factors with non-prime numbers of levels. Asymmetrical

experiments involving factors or pseudofactors at both two and three levels are also considered,

as well as more complicated situations where the treatment factors have a mixture of 2, 3, 4, and 6

levels. Analysis of an experiment with partial confounding is illustrated using the SAS and R software

packages.

[8] shows that Asymmetrical single replicate factorial designs in blocks are constructed using the

deletion technique. Results are given that are useful in simplifying expressions for calculating loss of

information on main effects and interactions, due to confounding with blocks. Designs for estimating

main effects and low order interactions are also given.

[15] in his work presents the results of a systematic literature review (SLR) and a taxonomical

classification of studies about run orders for factorial designs published between 1952 and 2021. The

objective here is to describe the findings, main and future research directions in this field. The main

components considered in each study and the methodologies they used to obtain run sequences are

also highlighted, allowing professionals to select an appropriate ordering for their problem. This

review shows that obtaining orderings with good properties for an experimental design with any

number of factors and levels is still an unresolved issue.

[28] in his present book gives, for the first time, a comprehensive and up-to-date account of the modern

theory of factorial designs. Many major classes of designs are covered in the book. While maintaining

a high level of mathematical rigor, it also provides extensive design tables for research and practical

purposes.

[3] In his book, provides a rigorous, systematic, and up-to-date treatment of the theoretical aspects of

factorial designs. To prepare readers for a general theory, the author first presents a unified treatment

of several simple designs, including completely randomized designs, block designs, and row-column

designs. As such, the book is accessible to readers with minimal exposure to experimental designs.

In this manuscript, we are going to discuss methods of constructing multifactor BAFDS by using
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known two factor BAFDS or other multifactor BAFDS already constructed.In particular we are going

to construct multifactor balanced asymmetrical factorial designs of Type III. We are especially

interested in BAFDS of which the main effects and lower order interactions can be estimated with

high efficiencies.

The following combinatorial structures are used in the construction of multifactor BAFDS of type III.

Definition 1.1. A k× b array with entries from a set of v symbols is called an orthogonal array of strength t if

each t× b subarray of A contains all possible vt column vectors with the same frequency λ = b
vt . It is denoted

OA(b, k, v, t; λ); the number λ is called the index of the array. The numbers b and k are known as the number of

assemblies and constraints of the orthogonal array respectively.

Example 1.2.

0 1 1 1 1 0 0 0

1 0 1 1 0 1 0 0

1 1 0 1 0 0 1 0

1 1 1 0 0 0 0 1
OA(8,4,2,3,1)

Definition 1.3. Let A be a k × b array with entries from a set of v symbols. Consider the vt ordered t-tuples

(x1, . . . , xt) that can be formed from a t-rowed subarray of A, and let there be associated a non-negative integer

λ(x1, . . . , xt) that is invariant under permutations of x1, . . . , xt. If for any t-rowed subarray of A the vt ordered

t-tuples (x1, . . . , xt), each occur λ(x1, . . . , xt) times as a column, then A is said to ba a balanced array of strength

t. It is denoted by BA(b, k, v, t) and the numbers λ(x1, . . . , xt) are called the index parameters of the array.

Example 1.4.

0 1 0 1 0 1 0 1 0 1

1 1 1 0 1 1 0 0 0 0

0 0 1 1 1 0 0 0 1 1

1 1 0 0 0 0 1 0 1 1

0 0 0 0 1 1 1 1 1 0
BA(10,5,2,2)

λ(0, 0) = λ(1, 1) = 2 and λ(0, 1) = λ(1, 0) = 3.

In particular we are interested in the BA[(ks− 1)sλ, ks, s, 2] with parameters λ(x, y) = (k− 1)λ or (kλ)

according as x = y or Not. For brevity we shall call it the balanced array of type T with index λ and

denote it by BA[T][k, s, λ].

Definition 1.5. A transitive array TA(b, k, v, t; λ) is a k × b array of v symbols such that for any choice of t

rows, the v!
(v−t)! ordered t-tuples of distinct symbols each occur λ times as a column.
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Example 1.6.

0 1 2 3 0 1 2 3 0 1 2 3

1 0 3 2 2 3 0 1 3 2 1 0

2 3 0 1 3 2 1 0 1 0 3 2

3 2 1 0 1 0 3 2 2 3 0 1
TA(12,4,4,2;1)

Definition 1.7. A hadamard matrix of order n is an n × n matrix Hn of +1′s and −1′s whose rows are

orthogonal, that is, which satisfies

HnHT
n = nIn (1)

For example, here are hadamard matrices of order 1, 2 and 4.

H1 = [1], H2 =

1 1

1 −1

 , H4 =


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

 (2)

These matrices are named after a French mathematician Jacques hadamard. He showed that if A = (aij) is an

n× n matrix with |aij| ≤ 1 then

|detA| ≤ n
n
2 (3)

Hadamard matrices may be regarded as the special class of difference schemes D(r, c, s) with s = 2, r = c and

index λ = c
2 .

An experiment involving 2≤m factors F1, F2, . . ., Fm that appear at s1, . . ., sm (≥ 2) levels is called an

s1×· · ·×sm factorial experiment (or an s1×· · ·×sm factorial for brevity). If s1 = · · · = sm = s, we have

sm symmetrical BFD with r = no of replications, λi =no of blocks in which any two treatments are ith

associates, k =block size, b =no of blocks.

Example 1.8. Consider a 3× 4 factorial arranged in twelve blocks as shown below

←−−− Blocks −−−→

00 00 00 01 01 01 02 02 02 03 03 03

11 12 13 10 12 13 10 11 13 10 11 12

22 23 21 23 20 22 21 23 20 22 20 21

The design is connected, proper with constant block size 3, and equireplicate with common replication number

r = 3. It may be seen, by explicit computation, that for the above design by using Lemma 2.28

NN
′
= ∑

y∈Ω∗
λy(J1 − I1)

y1 ⊗ (J2 − I2)
y2 ⊗ . . .⊗ (Jm − Im)

ym
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= λ00(J1 − I1)
0 ⊗ (J2 − I2)

0 + λ01(J1 − I1)
0 ⊗ (J2 − I2)

1

+ λ10(J1 − I1)
1 ⊗ (J2 − I2)

0 + λ11(J1 − I1)
1 ⊗ (J2 − I2)

1

= 3I1 ⊗ I2 + λ01 I1 ⊗ (J2 − I2) + λ10(J1 − I1)⊗ I2 + λ11(J1 − I1)⊗ (J2 − I2)

from the design it can be verified that λ01 = λ10 = 0 while λ11 = 1 hence

NN
′
= 3I1 ⊗ I2 + 1(J1 − I1)⊗ (J2 − I2)

= 3I1 ⊗ I2 + J1 ⊗ J2 − J1 ⊗ I2 − I1 ⊗ J2 + I1 ⊗ I2

= 4I1 ⊗ I2 − I1 ⊗ J2 − J1 ⊗ I2 + J1 ⊗ J2

where as usual I1 and I2 are 3× 3 and 4× 4 identity matrices and J1 and J2 are 3× 3 and 4× 4 matrices of all

1’s. It follows that by (29) and (30)

NN′ = 4Z11 − Z10 − Z01 + Z00

By Definition 2.29 that NN′ has property A. Hence the design is balanced and has OFS. Furthermore by

Definition 2.27 it follows that:

C = 3(I1 ⊗ I2)−
1
3

NN′

= r(⊗m
i=1 Ii)− k−1NN′

=
5
3

Z11 +
1
3

Z10 +
1
3

Z01 − 1
3

Z00

which also shows that C has the property A. Suppose

P1 =


1√
2

−1√
2 0

1√
2

1√
6

−2√
6


and P2 well chosen then

P10 =


1

2
√

2
1

2
√

2
1

2
√

2
1

2
√

2 − 1
2
√

2 − 1
2
√

2 − 1
2
√

2 − 1
2
√

2 0 0 0 0

1
2
√

6
1

2
√

6
1

2
√

6
1

2
√

6
1

2
√

6
1

2
√

6
1

2
√

6
1

2
√

6 − 1√
6 − 1√

6 − 1√
6 − 1√

6



and Z11 = Iv an identity matrix of order 12 hence P10Z11P10′ =

1 0

0 1

 = I(10) where I(y) is identity matrix
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of order

∏ (si − 1)yi = (s1 − 1)1(s2 − 1)0

= (3− 1)1(4− 1)0

= 2

Similarly P10Z10P10′ = 4I(10), P10Z01P10′ = P10Z00P10′ = 0. It also follows that

Z10 =



1 1 1 1 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1



; Z01 =



1 0 0 0 1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 1

1 0 0 0 1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 1

1 0 0 0 1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 1



and Z00 =



1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1


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hence C = 5
3 Z11 + 1

3 Z10 + 1
3 Z01 − 1

3 Z00 that is,

C =



2 0 0 0 0 − 1
3 − 1

3 − 1
3 0 − 1

3 − 1
3 − 1

3

0 2 0 0 − 1
3 0 − 1

3 − 1
3 − 1

3 0 − 1
3 − 1

3

0 0 2 0 − 1
3 − 1

3 0 − 1
3 − 1

3 − 1
3 0 − 1

3

0 0 0 2 − 1
3 − 1

3 − 1
3 0 − 1

3 − 1
3 − 1

3 0

0 − 1
3 − 1

3 − 1
3 2 0 0 0 0 − 1

3 − 1
3 − 1

3

− 1
3 0 − 1

3 − 1
3 0 2 0 0 − 1

3 0 − 1
3 − 1

3

− 1
3 − 1

3 0 − 1
3 0 0 2 0 − 1

3 − 1
3 0 − 1

3

− 1
3 − 1

3 − 1
3 0 0 0 0 2 − 1

3 − 1
3 − 1

3 0

0 − 1
3 − 1

3 − 1
3 0 − 1

3 − 1
3 − 1

3 2 0 0 0

− 1
3 0 − 1

3 − 1
3 − 1

3 0 − 1
3 − 1

3 0 2 0 0

− 1
3 − 1

3 0 − 1
3 − 1

3 − 1
3 0 − 1

3 0 0 2 0

− 1
3 − 1

3 − 1
3 0 − 1

3 − 1
3 − 1

3 0 0 0 0 2



hence P10CP10′ =

3 0

0 3

 = 3

1 0

0 1

 = 3I(10) where I(y) is the Identity matrix of order

∏ (si − 1)yi = (s1 − 1)1(s2 − 1)0

= (3− 1)1(4− 1)0

= 2.

Similarly it may be seen that P01CP01′ = 8
3 I(01), P11CP11′ = 5

3 I(11). By equations (25) and (26) shows that

ρ(1, 0) = 3, ρ(0, 1) = 8
3 and ρ(1, 1) = 5

3 . Hence by Corollary 2.26 the interaction efficiencies in the design

under consideration are given by

E [1, 0] =
ρ(1, 0)

r
=

3
3
= 1.0

E [0, 1] =
ρ(0, 1)

r
=

8
3(3)

=
8
9

E [1, 1] =
ρ(1, 1)

r
=

5
3(3)

=
5
9

2. Type III Designs

Let there exist a BA(T)(n1, s, 1), by Corollary 2.5. This corresponds to n1s × s BAFD with k = n1s,

b = (n1s− 1)s, and

λ(0, 0) = n1s− 1; λ(0, 1) = 0; λ(1, 0) = n1 − 1; λ(1, 1) = n1 (4)
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by equations (15), (16) and (17), the eigenvalues of NNT are

g(1, 0) = 0; g(0, 1) = 0; g(1, 1) = n1s (5)

If there exists a resolvable BA(T)(n2, s, 1),then this corresponds to a resolvable n2s × s BAFD. By

Theorem 2.8, if we replace the levels of the second factor of the n1s × s BAFD by the blocks of

the n2s × s BAFD, we get an n1s × n2s × s BAFD with k = n1n2s2, b = (n1s − 1)(n2s − 1)s, and

λ(0, 0, 0) = λ(0, 0)(n2s− 1) = (n1s− 1)(n2s− 1)

λ(0, 0, 1) = λ(0, 1)(n2s− 1) = 0

λ(0, 1, 0) = λ(0, 0)(n2 − 1) + λ(0, 1)(n2s− n2) = (n1s− 1)(n2 − 1)

λ(0, 1, 1) = λ(0, 0)n2 + λ(0, 1)(n2s− n2 − 1) = (n1s− 1)n2

λ(1, 0, 0) = λ(1, 0)(n2s− 1) = (n1 − 1)(n2s− 1)

λ(1, 0, 1) = λ(1, 1)(n2s− 1) = n1(n2s− 1)

λ(1, 1, 0) = λ(1, 0)(n2 − 1) + λ(1, 1)(n2s− 1)

= (n1 − 1)(n2 − 1) + n1(n2s− n2)

λ(1, 1, 1) = λ(1, 0)n2 + λ(1, 1)(n2s− n2 − 1)

= (n1 − 1)n2 + n1(n2s− n2 − 1)

(6)

where λ(0, 0), λ(0, 1), λ(1, 0), λ(1, 1) are given by equation (4). The eigenvalues of NNT are

g[y1, y2, y3] =


n1n2s2, if y1 = y2 = y3 = 1;

n1n2s2(n1s− 1)(n2s− 1), if y1 = y2 = y3 = 0;

0, Otherwise.

(7)

hence E[1, 1, 1] = 1− 1
(n1s−1)(n2s−1) , and all the main effects and first order interactions are estimated

with full efficiency. If further there exists a resolvable BA(T)(n3, s, 1), we can replace the levels of the

third factor of the n1s× n2s× s BAFD by the blocks of the n3s× s BAFD to obtain n1s× n2s× n3s× s

BAFD with k = n1n2n3s3 such that all the main effects and interactions are estimated with full

efficiency except the third order interactions, which are estimated with efficiency,

1− 1
(n1s−1)(n2s−1)(n3s−1) . Continuing this procedure, we can get an n1s× n2s× . . .× nLs× s BAFD with

k = sLn1n2 . . . nL, b = s(n1s − 1)(n2s − 1) . . . (nLs − 1). The λ’s can be calculated recursively by the

following formulae:
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Note: Replace yi with xi.

λ(y1, y2, . . . , yL−2, 0, 0) = λ(y1, y2, . . . , yL−2, 0)(nLs− 1)

λ(y1, y2, . . . , yL−2, 0, 1) = λ(y1, y2, . . . , yL−2, 1)(nLs− 1)

λ(y1, y2, . . . , yL−2, 1, 0) = λ(y1, y2, . . . , yL−2, 0)(nL − 1) + λ(y1, y2, . . . , yL−2, 1)(nLs− nL)

λ(y1, y2, . . . , yL−2, 1, 1) = λ(y1, y2, . . . , yL−2, 0)(nL) + λ(y1, y2, . . . , yL−2, 1)(nLs− nL − 1)

(8)

we now prove that

E[1, 1, . . . , 1] = 1− 1
(n1s− 1)(n2s− 1) . . . (nLs− 1)

and all other efficiencies are 1. The proof is given by induction. Equation (19) can be written as

g[y1, y2, . . . , yL+1] = ∑
x1,x2,...,xL−1

{
∏L−1

i=1

{
(1− yi)nis− 1

}xi
}
×[

λ(x1, x2, . . . , xL−1, 0, 0)×
{
(1− yL)nLs− 1

}xL {
(1− yL+1)s− 1

}xL+1

+ λ(x1, x2, . . . , xL−1, 0, 1)
{
(1− yL)nLs− 1

}xL {
(1− yL+1)s− 1

}xL+1

+ λ(x1, x2, . . . , xL−1, 1, 0)
{
(1− yL)nLs− 1

}xL {
(1− yL+1)s− 1

}xL+1

+ λ(x1, x2, . . . , xL−1, 1, 1)
{
(1− yL)nLs− 1

}xL {
(1− yL+1)s− 1

}xL+1
]

using equation (7) we have

g[y1, y2, . . . , yL−1, 0, 0] = ∑
x1,x2,...,xL−1

{
∏L−1

i=1

{
(1− yi)nis− 1

}xi
} [

λ(x1, x2, . . . , xL−1, 0)(nLs− 1)

+ λ(x1, x2, . . . , xL−1, 1)(nLs− 1)
{
(1− 0)s− 1

}1

+

λ(x1, x2, . . . , xL−1, 0)(nL − 1) + λ(x1, x2, . . . , xL−1, 1)

(nLs− nL)

{
nLs− 1

}

+

λ(x1, x2, . . . , xL−1, 0)(nL) + λ(x1, x2, . . . , xL−1, 1)

(nLs− nL − 1)

 (nLs− 1)(s− 1)

]

= nLs(nLs− 1) ∑
x1,x2,...,xL−1

{
∏L−1

i=1

{
(1− yi)nis− 1

}xi
} [

λ(x1, x2, . . . , xL−1, 0)

+ λ(x1, x2, . . . , xL−1, 1)(s− 1)

]

= nLs(nLs− 1)g[y1, y2, . . . , yL−1, 0] (9)

g[y1, y2, . . . , yL−1, 0, 1] = ∑
x1,x2,...,xL−1

{
∏L−1

i=1

{
(1− yi)nis− 1

}xi
} [

λ(x1, x2, . . . , xL−1, 0)(nLs− 1)

+ λ(x1, x2, . . . , xL−1, 1)(nLs− 1)
{
(1− 1)s− 1

}1

+
[
λ(x1, x2, . . . , xL−1, 0)(nL − 1) + λ(x1, x2, . . . , xL−1, 1)(nLs− nL)

]
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×
{
(1− 0)nLs− 1

}1

+
[
λ(x1, x2, . . . , xL−1, 0)(nL) + λ(x1, x2, . . . , xL−1, 1)(nLs− nL − 1)

]
×

{
(1− 0)nLs− 1

}1 {
(1− 1)s− 1

} ]

= (nLs− 1) ∑
x1,x2,...,xL−1

{
∏L−1

i=1

{
(1− yi)nis− 1

}xi
} [

λ(x1, x2, . . . , xL−1, 0)

− λ(x1, x2, . . . , xL−1, 1) + λ(x1, x2, . . . , xL−1, 0)(nL − 1)

+ λ(x1, x2, . . . , xL−1, 1)(nLs− nL)

− λ(x1, x2, . . . , xL−1, 0)(nL)− λ(x1, x2, . . . , xL−1, 1)(nLs− nL − 1)

]

= (nLs− 1)(0) = 0 (10)

g[y1, y2, . . . , yL−1, 1, 0] = ∑
x1,x2,...,xL−1

{
∏L−1

i=1

{
(1− yi)nis− 1

}xi
} [

λ(x1, x2, . . . , xL−1, 0)(nLs− 1)

+ λ(x1, x2, . . . , xL−1, 1)(nLs− 1)
{
(1− 0)s− 1

}1

+
[
λ(x1, x2, . . . , xL−1, 0)(nL − 1) + λ(x1, x2, . . . , xL−1, 1)(nLs− nL)

]
×

{
(1− 1)s− 1

}1

+
[
λ(x1, x2, . . . , xL−1, 0)(nL) + λ(x1, x2, . . . , xL−1, 1)(nLs− nL − 1)

]
×

{
(1− 1)nLs− 1

}1 {
(1− 0)s− 1

}1
]

= ∑
x1,x2,...,xL−1

{
∏L−1

i=1

{
(1− yi)nis− 1

}xi
} [

λ(x1, x2, . . . , xL−1, 0)(nLs− 1)

+ λ(x1, x2, . . . , xL−1, 1)(nLs− 1)(s− 1)

− λ(x1, x2, . . . , xL−1, 0)(nL − 1)− λ(x1, x2, . . . , xL−1, 1)(nLs− nL)

− λ(x1, x2, . . . , xL−1, 0)(nL)(s− 1)− λ(x1, x2, . . . , xL−1, 1)(nLs− nL − 1)(s− 1)

]

= ∑
x1,x2,...,xL−1

{
∏L−1

i=1

{
(1− yi)nis− 1

}xi
}

×
[
k0nLs− k0 + k1nLs2 − k1nLs− k1s + k1 − k0nL + k0 − k1nLs + k1nL

]
+

[
−k0nLs + k0nL − k1nLs2 + k1nLs + k1nLs− k1nL + K1s− k1

]
= 0 (11)

where k0 = λ(x1, x2, . . . , xL−1, 0) and k1 = λ(x1, x2, . . . , xL−1, 1)

g[y1, y2, . . . , yL−1, 1, 1] = ∑
x1,x2,...,xL−1

{
∏L−1

i=1

{
(1− yi)nis− 1

}xi
} [

λ(x1, x2, . . . , xL−1, 0, 0)
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+ λ(x1, x2, . . . , xL−1, 0, 1)
{
(1− yL+1)s− 1

}xL+1

+ λ(x1, x2, . . . , xL−1, 1, 0)
{
(1− yL)nLs− 1

}xL

+ λ(x1, x2, . . . , xL−1, 1, 1)
{
(1− yL)nLs− 1

}xL {
(1− yL+1)s− 1

}xL+1

]

= ∑
x1,x2,...,xL−1

{
∏L−1

i=1

{
(1− yi)nis− 1

}xi
} [

λ(x1, x2, . . . , xL−1, 0)(nLs− 1)

+ λ(x1, x2, . . . , xL−1, 1)(nLs− 1)
{
(1− 1)s− 1

}1

+
[
λ(x1, x2, . . . , xL−1, 0)(nL − 1) + λ(x1, x2, . . . , xL−1, 1)(nLs− nL)

]
×{

(1− 1)nLs− 1
}1

+
[
λ(x1, x2, . . . , xL−1, 0)(nL) + λ(x1, x2, . . . , xL−1, 1)(nLs− nL − 1)

]
×

{
(1− 1)nLs− 1

}1 {
(1− 1)s− 1

}1
]

= ∑
x1,x2,...,xL−1

{
∏L−1

i=1

{
(1− yi)nis− 1

}xi
} [

λ(x1, x2, . . . , xL−1, 0)(nLs− 1)

− λ(x1, x2, . . . , xL−1, 1)(nLs− 1)

− λ(x1, x2, . . . , xL−1, 0)(nL − 1)− λ(x1, x2, . . . , xL−1, 1)(nLs− nL)

+
[
λ(x1, x2, . . . , xL−1, 0)(nL) + λ(x1, x2, . . . , xL−1, 1)(nLs− nL − 1)

] ]

= ∑
x1,x2,...,xL−1

{
∏L−1

i=1

{
(1− yi)nis− 1

}xi
}

×

k0nLs− k0 − k1nLs + k1 − k0nL + k0 − k1nLs

+k1nL + k0nL + k1nLs− k1nL − k1


= ∑

x1,x2,...,xL−1

{
∏L−1

i=1

{
(1− yi)nis− 1

}xi
} [

k0nLs− k1nLs
]

= nLs ∑
x1,x2,...,xL−1

{
∏L−1

i=1

{
(1− yi)nis− 1

}xi
} [

k0 − k1

]

= nLs ∑
x1,x2,...,xL−1

{
∏L−1

i=1

{
(1− yi)nis− 1

}xi
} λ(x1, x2, . . . , xL−1, 0)

−λ(x1, x2, . . . , xL−1, 1)


= nLsg[y1, y2, . . . , yL−1, 1] (12)

where k0 = λ(x1, x2, . . . , xL−1, 0) and k1 = λ(x1, x2, . . . , xL−1, 1). By the recursive formulae (9), (10),
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(11), (12) and the initial values (7) we have

g(y1, y2, . . . , yL+1) = sL
L

∏
i=1

ni i f y1 = y2 = . . . = yL+1 = 1

= sL
L

∏
i=1

ni(nis− 1) i f y1 = y2 = . . . = yL+1 = 0

= 0 otherwise

(13)

hence the efficiencies are

E[y1, y2, . . . , yL+1] = 1− 1

∏L
i=1(nis− 1)

(14)

If y1 = y2 = . . . = yL+1 = 1 and 0 otherwise. From the discussion of the type III designs, we state the

following theorem;

Theorem 2.1. If there exists a BA(T)(n1, s, 1), and a resolvable BA(T)(ni, s, 1) for i = 2, 3, . . ., l then we can

always construct an n1s× n2s× . . . nLs BAFD with

k = sL
L

∏
i=1

ni, b = s
L

∏
i=1

(nis− 1)

and

r =
L

∏
i=1

(nis− 1)

such that E[1, 1, . . . , 1] = −1
r + 1 and all other efficiencies are 1.0.

Proof. If there exist a BA(T)(n1, s, 1) by Corollary 2.5 this corresponds to n1s × s BAFD with k =

n1s, b = (n1s− 1)s If there exist a BA(T)(n2, s, 1) by Theorem 2.8 we can replace levels of the second

factor in n1s × s by blocks of n2s × s to obtain k = (n1s)(n2s) = s2n1n2, b = (n1s − 1)(n2s − 1)s.

Continuing with this procedure if there exist a BA(T)(nL, s, 1) this corresponds to nLs× s BAFD. If we

replace the levels of Lth factor in n1s × n2s × · · · × nL−1s × s by using blocks of nLs we obtain n1s ×

n2s× · · · nL−1s× nLs BAFD with k = sL ∏L
i=1 ni, b = (n1 − 1)(n2 − 1) · · · (nLs− 1)s = s ∏L

i=1(nis− 1)

and by using equations (13) and (14) it follows that E[1, 1, · · · , 1] = − 1
r + 1 and all other efficiencies

are 1.00.

Example 2.2. A BA(T)(3, 2, 1) is given in example 2.10 and a resolvable BA(T)(2, 2, 1) given in example 2.6

which is equivalent to the following 4× 2 resolvable BAFD.

x0 x1 y0 y1 z0 z1
00 01 00 01 00 01
10 11 11 10 11 10
21 20 20 21 21 20
31 30 31 30 30 31

Table 1: 4× 2 Resolvable BAFD
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where x0, x1, y0, y1, z0, z1 represent the blocks can be used to construct a 6× 4× 2 BAFD with k = 24,

b = 30, r = 15, λ(0, 0, 1) = 0, λ(0, 1, 0) = 5, λ(0, 1, 1) = 10, λ(1, 0, 0) = 6, λ(1, 0, 1) = 9, λ(1, 1, 0) = 8,

λ(1, 1, 1) = 7. The efficiencies are E(1, 1, 1) = 14
15 , and all other efficiencies are 1.0. The design can be

expressed as the same table in example 2.10 the differences are the rows representing the levels of the

first factor and the x0, x1, y0, y1, z0, z1 representing the blocks as shown above.

Example 2.3. A BA(T)(2, 2, 2) given in example 2.11 and a resolvable BA(T)(2, 2, 1) given in Example 2.6

which is equivalent to the following 4× 2 resolvable BAFD.

x0 x1 y0 y1 z0 z1
00 01 00 01 00 01
10 11 11 10 11 10
21 20 20 21 21 20
31 30 31 30 30 31

Table 2: 4× 2 Resolvable BAFD

where x0, x1, y0, y1, z0, z1 represent the blocks can be used to construct a 4× 4× 2 BAFD with different

parameters as the ones given in Theorem 2.1 and hence with different values of λ as the ones given in

equation (6). For this design k = 16, b = 36, r = 18, λ(1, 0) = 6, λ(1, 1) = 12, λ(2, 0) = 10, λ(2, 1) = 8

and the efficiencies are E[1, 0] = E[1, 1] = E[2, 0] = E[0, 1] = 1.00 and E[2, 1] = 8
9 ≈ 1− 1

r . The 4× 4× 2

BAFD is given below

Blocks 1 2 3 4 5 6 7 8 9 10 11 12
Levels of F1 Levels of F2 and F3

0 x0 x0 x0 x0 x0 x0 x1 x1 x1 x1 x1 x1
1 x1 x1 x0 x1 x0 x1 x0 x0 x1 x0 x1 x0
2 x0 x0 x1 x1 x1 x1 x1 x1 x0 x0 x0 x0
3 x1 x1 x1 x0 x1 x0 x0 x0 x0 x1 x0 x1

Block 13 14 15 16 17 18 19 20 21 22 23 24
Levels of F1 Levels of F2 and F3

0 y0 y0 y0 y0 y0 y0 y1 y1 y1 y1 y1 y1
1 y1 y1 y0 y1 y0 y1 y0 y0 y1 y0 y1 y0
2 y0 y0 y1 y1 y1 y1 y1 y1 y0 y0 y0 y0
3 y1 y1 y1 y0 y1 y0 y0 y0 y0 y1 y0 y1

Block 25 26 27 28 29 30 31 32 33 34 35 36
Levels of F1 Levels of F2 and F3

0 z0 z0 z0 z0 z0 z0 z1 z1 z1 z1 z1 z1
1 z1 z1 z0 z1 z0 z1 z0 z0 z1 z0 z1 z0
2 z0 z0 z1 z1 z1 z1 z1 z1 z0 z0 z0 z0
3 z1 z1 z1 z0 z1 z0 z0 z0 z0 z1 z0 z1

Table 3: 4× 4× 2 BAFD

Other BAFDs that can be constructed by using Theorem 2.1 include 4× 4× 2, 6× 6× 3, 6× 3× 3, 6×

9× 3, 8× 4× 4 . . . etc.
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Corollary 2.4. If s is a prime power,then there exists a (2s)L × sm(m ≥ 1) BAFD with k = 2LsL+m−1,

r = (2s− 1)L(s− 1)m−1, b = (2s− 1)L(s− 1)m−1, E(L, m) = 1− 1
r , and all other efficiencies are 1.

Proof. This is a consequence of Theorem 2.1 since a resolvable BA(T)(2, s, 1) and a BA(T)(1, s, 1)i.e

a TA[s(s− 1), s, s, 2] exists for s a prime power. If in addition to the conditions in Theorem 2.1, there

exists a resolvable BIBD with nL+1s treatments and block size nL+1, then we can replace the levels of the

last factor of the n1s× n2s× . . .× nLs× s BAFD by the blocks of the BIBD to get an n1s× n2s× . . . nLs×

nL+1s BAFD with block size n1 . . . nLnL+1sL. All the main effects and interactions are estimated with

full efficiency except the Lth order interactions.

Corollary 2.5. In an s1 × s2 BAFD with block size s2(> s1) the main effects of F1 and F2 are estimated with

full efficiency if and only if s2 = ms1, λ10 = 0 and λ01
λ11

= m−1
m for some m. The design is equivalent to a

BA[(ms1 − 1)s1λ, ms1, s1, 2] with parameters λ(x, y) = (m − 1)λ or mλ according as x = y or not, i.e. a

BA(T)(m, s1, λ). By Theorem 2.12 for any given m and s1 we can always construct a BA(T)(m, s1, λ) for some

λ. Thus we can always construct an ms1 × s1 BAFD such that all main effects are estimated with full efficiency,

but a large replication may be needed. The construction of a BA(T)(m, s1, 1) for some m and s1 are discussed in

Corollary 2.14, 2.16, and 2.18. In Example 2.21 and 2.22 we also gave a BA(T)[4, 3, 2] and a BA(T)(3, 4, 2).

The following examples use Corollary 2.5

Example 2.6. A 2× 4 BAFD with b = 6, k = 4, r = 3, λ10 = 0, can be constructed from a BA(T)(2, 2, 1) =

BA[6, 4, 2, 2] with λ(x, y) = 1 or 2 according as x = y or not

Blocks 1 2 3 4 5 6
Levels of F2 Levels of F1
0 1 0 1 0 1 0
1 0 1 1 0 0 1
2 1 0 0 1 0 1
3 0 1 0 1 1 0

Table 4: Table of a 2× 4 BAFD

In this design, the efficiencies are: E[0, 1] = 1, E[1, 0] = 1 and E[1, 1] = 2
3 .

Example 2.7. A 7× 42 BAFD with b = 287, k = 42, r = 41, λ10 = 0, λ01 = 5, λ11 = 6 can be constructed

from a BA(T)[6, 7, 1] = BA[287, 42, 7, 2] with λ(x, y) = 5 or 6 according as x = y or Not. The efficiencies of

this designs are: E[0, 1] = 1.0, E[1, 0] = 1.0 and E[1, 1] = 40
41

Let N be the incidence matrix of a BAFD the eigenvalues of NNT are given by

g(1, 0) = r + (s2 − 1)λ01 − λ10 − (s2 − 1)λ11 (15)

g(0, 1) = r− λ01 + (s1 − 1)λ10 − (s1 − 1)λ11 (16)

g(1, 1) = r− λ01 − λ10 + λ11 (17)
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Theorem 2.8. Let there be a BAFD with the incidence matrix N in n + 1 factors F0, Fm+1, . . . , Fm+n at

q, sm+1, . . . , sm+n levels respectively in b blocks of k plots each.Also let there be two BAFDs with incidence

matrices N∗ and N∗pq as given by equations (20) and (21) respectively.If the level j − 1 of the factor F0 is

replaced by the block Aiq+j(j = 1, 2, . . . , q) in each of the treatments of N ,then the design obtained by adjoining

the p designs so formed (for i = 0, 1, 2, . . . , p− 1) is a BAFD in m + n factors in bp blocks of kk∗ plots each.

This method generates an m + n factor BAFD from an n + 1 factor BAFD and an m factor BAFD.

Thus from the two-factor BAFD’s we can generate a three-factor BAFD. If the two-factor BAFDs

are efficient, then three-factor BAFD is also efficient. We can therefore construct efficient multi-factor

BAFD’s step by step from efficient two-factor BAFD’s. While applying this method, the number of

blocks does not increase so quickly as in the first method, but the block size does increase.

Example 2.9. Let N be the incidence matrix of the 3× 6 BAFD constructed by identifying rows,columns and

symbols, with the levels of the second factor, the blocks ,and the levels of the first factors respectively in the

BA(T)(2, 3, 1) given in Example 2.19. Let N∗ be the incidence matrix of the resolvable 32 symmetrical balanced

factorial design given below

x0 x1 x2 y0 y1 y2
00 01 02 00 01 02
11 12 10 12 10 11
22 20 21 21 22 20

Table 5: 32 Symmetrical BFD

where x0, x1, x2, y0, y1, y2 represents blocks.Then by Theorem 2.8 we can construct a 32 × 6 BAFD with

r = 10, b = 30, λ(2, 0) = 5, λ(0, 1) = 2,λ(2, 1) = 3, λ(1, 1) = 4, λ(1, 0) = 0, E[2, 1] = 9
10 and all main

effects and first order interactions are estimated with full efficiency.The BAFD is given below.

Blocks 1 2 3 4 5 6 7 8 9 10
Levels of F3 Levels of F1 and F2

0 x0 x0 x0 x0 x0 x1 x1 x1 x1 x1
1 x1 x2 x1 x2 x0 x2 x0 x2 x0 x1
2 x2 x1 x1 x0 x2 x0 x2 x2 x1 x0
3 x2 x2 x0 x1 x1 x0 x0 x1 x2 x2
4 x0 x1 x2 x2 x1 x1 x2 x0 x0 x2
5 x1 x0 x2 x1 x2 x2 x1 x0 x2 x0

Blocks 11 12 13 14 15 16 17 18 19 20
Levels of F3 Levels of F1 and F2

0 x2 x2 x2 x2 x2 y0 y0 y0 y0 y0
1 x0 x1 x0 x1 x2 y1 y2 y1 y2 y0
2 x1 x0 x0 x2 x1 y2 y1 y1 y0 y2
3 x1 x1 x2 x0 x0 y2 y2 y0 y1 y1
4 x2 x0 x1 x1 x0 y0 y1 y2 y2 y1
5 x0 x2 x1 x0 x1 y1 y0 y2 y1 y2
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Blocks 21 22 23 24 25 26 27 28 29 30
Levels of F3 Levels of F1 and F2

0 y1 y1 y1 y1 y1 y2 y2 y2 y2 y2
1 y2 y0 y2 y0 y1 y0 y1 y0 y1 y2
2 y0 y2 y2 y1 y0 y1 y0 y0 y2 y1
3 y0 y0 y1 y2 y2 y1 y1 y2 y0 y0
4 y1 y2 y0 y0 y2 y2 y0 y1 y1 y0
5 y2 y1 y0 y2 y0 y0 y2 y1 y0 y1

Table 6: 32 × 6 BAFD

If there exists TA[si(si − 1), sm, si, 2] for i = 1, 2, . . . , m − 1 then we can construct an s1 × s2 × . . . sm

BAFD with k = sm, b = ∏m−1
i=1 si(si − 1), r = ∏m−1

i=1 (si − 1), λ(1, 1, . . . , 1) = 1 and other λ’s being 0. By

Theorem 2.25 the eigenvalues of NNT of a BAFD are given by

g(y1, y2, . . . , ym) = rk− kρ(y1, y2, . . . , ym)

= rk−
{

r(k− 1)−∑x∈Ω λ(x)
{

∏m
i=1

[
(1− yi)si − 1

]xi
}}

(18)

= r + ∑
x∈Ω

λ(x)
{

∏m
i=1

[
(1− yi)si − 1

]xi
}

(19)

By Theorem 2.23 we can construct a 4× 6 BAFD with k = 12, r = λ00 = 15, b = 30, λ10 = 5, λ01 =

6, λ11 = 8 with E[1, 0] = 1, E[0, 1] = 1, E[1, 1] = 14
15 .

Example 2.10. A 4× 6 BAFD with block size 12 can be constructed using BA[10, 6, 2, 2] and a resolvable BIBD

with 4 treatments and block size 2 as shown below. Consider the following BIBD with 4 treatments and block

size 2 where X0, X1, Y0, Y1, Z0, Z1 represents the blocks.

X0 X1 Y0 Y1 Z0 Z1
0 2 0 1 0 1
1 3 2 3 3 2

Table 7: Table of BIBD[4,6,2]

Also consider the BA(T)(3, 2, 1) given below

0 0 0 0 0 1 1 1 1 1
0 0 1 1 1 0 0 0 1 1
1 0 0 1 1 1 1 0 0 0
0 1 1 0 1 0 1 1 0 0
1 1 1 0 0 1 0 0 0 1
1 1 0 1 0 0 0 1 1 0

Table 8: Table of BA(T)[3,2,1]
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The example below uses Theorem 2.20.

Example 2.11. Let M = [0, 1]. Among the differences of the corresponding elements of any two rows of the

following array 0 occurs twice wheres 1 occurs four times

0 0 0 0 0 0

1 1 0 1 0 1

0 0 1 1 1 1

1 1 1 0 1 0

hence we can construct a BA[12, 4, 2, 2] shown in table 9 below

0 0 0 0 0 0 1 1 1 1 1 1
1 1 0 1 0 1 0 0 1 0 1 0
0 0 1 1 1 1 1 1 0 0 0 0
1 1 1 0 1 0 0 0 0 1 0 1

Table 9: Table BA[12, 4, 2, 2] = BA(T)[2,2,2]

Parameters of this Balanced array:

λ(0, 0) = λ(1, 1) = 2; λ(0, 1) = λ(1, 0) = 4

Theorem 2.12. For all k and s,there always exists a BA[T][k, s, λ] for some λ.

Proof. For all k and s, there exists a TA[(ks− 1)ksn, ks, ks, 2] for some n. Let the symbols of the transitive

array be denoted by [0, 1, ..., ks− 1]. If we replace each symbol in the transitive array by x(modk). Then

the transitive array becomes a BA[(ks − 1)ksn, ks, s, 2] with parameters λ(x, y) = (k − 1)kn or k2n

according as x = y or not, which is a BA[T][ks, s, kn]. The method of construction in Theorem 2.12

does not usually provide balanced arrays with a small number of assemblies as we desire.

Example 2.13. Suppose k = 2,s = 2, and n = 1 then we can construct a TA[(ks − 1)ksn, ks, ks, 2] =

TA[12, 4, 4, 2]

3 1 0 2 1 3 2 0 2 0 1 3
1 3 2 0 2 0 1 3 3 1 0 2
2 0 1 3 3 1 0 2 1 3 2 0
0 2 3 1 0 2 3 1 0 2 3 1

Table 10: TA[12, 4, 4, 2]

replacing every symbol in TA[12, 4, 4, 2] by x(mod2), we have a BA[12, 4, 2, 2] = BA(T)[2, 2, 2]
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1 1 0 0 1 1 0 0 0 0 1 1
1 1 0 0 0 0 1 1 1 1 0 0
0 0 1 1 1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1 0 0 1 1

Table 11: BA[12,4,2,2]

parameters of BA[12, 4, 4, 2] are λ(0, 0) = λ(1, 1) = 2 = (k− 1)kn and λ(1, 0) = λ(0, 1) = 4 = k2n.

Corollary 2.14. If a hadamard matrix of order 4k exists, then a BA(T)[k, 2, 1] exists, and can always be

constructed.

Proof. If a hadamard matrix of order 4k exists, we can arrange its elements such that all the elements in

the first column and the first row are +1. All other columns must then contain 2k(+1′s) and 2k(−1′s).

Deleting 2k rows whose second column is 1. We obtain OA[4k, 2k, 2, 2] with all the elements equal to

+1 in the first column and equal to −1 in the second column. We then construct a BA(T)[k, 2, 1] since

the OA[4k, 2k, 2, 2] is partly resolvable.

Example 2.15. Using the Sylvester type hadamard matrix of order 8, k = 4, that leads to an OA[16, 8, 2, 2] We

then obtain BA[T][4, 2, 1].

0 0 0 0 0 0 0 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 1 0 0 1 1 1 0 0 1 1 0 0
1 1 0 0 1 1 0 0 0 1 1 0 0 1
0 0 0 1 1 1 1 1 1 1 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 1 0 1
0 1 1 1 1 0 0 1 0 0 0 0 1 1
1 1 0 1 0 0 1 0 0 1 0 1 1 0

Table 12: Table BA[14, 8, 2, 2] = BA[(T)[4, 2, 1]]

Parameters of BA(T)[4, 2, 1]

• λ(0, 0) = λ(1, 1) = 3

• λ(0, 1) = λ(1, 0) = 4

Corollary 2.16. If k and s are both powers of the same prime p a BA(T)[k, s, 1] can always be constructed.

Proof. We can always construct a completely resolvable orthogonal array OA[λs2, λ(s + 1) + 1, s, 2] by

deleting any λ + 1 constraints(factors) we obtain OA[λs2, λs, s, 2].

Example 2.17. For k = 3 and s = 3 we can construct a BA(T)[3, 3, 1] by first constructing a completely

resolvable OA[27, 9, 3, 2] We eventually obtain BA(T)[3, 3, 1]
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0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
0 1 2 0 1 2 0 1 2 1 2 0 1 2 0 1 2 0 2 0 1 2 0 1 2 0 1
0 2 1 0 2 1 0 2 1 1 0 2 1 0 2 1 0 2 2 1 0 2 1 0 2 1 0
0 0 0 1 1 1 2 2 2 1 1 1 2 2 2 0 0 0 2 2 2 0 0 0 1 1 1
0 1 2 1 2 0 2 0 1 1 2 0 2 0 1 0 1 2 2 0 1 0 1 2 1 2 0
0 2 1 1 0 2 2 1 0 1 0 2 2 1 0 0 2 1 2 1 0 0 2 1 1 0 2
0 0 0 2 2 2 1 1 1 1 1 1 0 0 0 2 2 2 2 2 2 1 1 1 0 0 0
0 1 2 2 0 1 1 2 0 1 2 0 0 1 2 2 0 1 2 0 1 1 2 0 0 1 2
0 2 1 2 1 0 1 0 2 1 0 2 0 2 1 2 1 0 2 1 0 1 0 2 0 2 1

Table 13: An OA(27, 9, 3, 2)λ = 3

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2
1 2 0 1 2 0 1 2 2 0 1 2 0 1 2 0 0 1 2 0 1 2 0 1
2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0
0 0 1 1 1 2 2 2 1 1 2 2 2 0 0 0 2 2 0 0 0 1 1 1
1 2 1 2 0 2 0 1 2 0 2 0 1 0 1 2 0 1 0 1 2 1 2 0
2 1 1 0 2 2 1 0 0 2 2 1 0 0 2 1 1 0 0 2 1 1 0 2
0 0 2 2 2 1 1 1 1 1 0 0 0 2 2 2 2 2 1 1 1 0 0 0
1 2 2 0 1 1 2 0 2 0 0 1 2 2 0 1 0 1 1 2 0 0 1 2
2 1 2 1 0 1 0 2 0 2 0 2 1 2 1 0 1 0 1 0 2 0 2 1

Table 14: Table BA(T)[3, 3, 1] = BA[24, 9, 3, 2]

Parameters are; λ(0, 0) = λ(1, 1) = λ(2, 2) = 2; λ(0, 1) = λ(1, 0) = λ(0, 2) = λ(2, 0) = λ(1, 2) =

λ(2, 1) = 3.

Corollary 2.18. If s = pn, k = 2sl where p is an odd prime, n ≥ 1 and l ≥ 0, then a BA(T)[k, s, 1] can always

be constructed.

Proof. We can always construct OA[ks2, ks, s, 2] by developing a difference scheme D(2s, 2s, s). We then

construct a BA(T)(k, s, λ)

Example 2.19. For s = 3 and k = 2 implies 3 = 31, k = 2.30 7→ n = 1 and l = 0 We can therefore construct

OA[2.32, 2.3, 3, 2] = OA[18, 6, 3, 2]

by developing a difference scheme D(2s, 2s, s) = D(6, 6, 3)

Table 15 shows a difference scheme D(6, 6, 3) constructed in a similar way from GF(3)

0 0 0 0 0 0
0 1 2 1 2 0
0 2 1 1 0 2
0 2 2 0 1 1
0 0 1 2 2 1
0 1 0 2 1 2

Table 15: A difference Scheme D(6, 6, 3)
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0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2
0 1 2 1 2 0 1 2 0 2 0 1 2 0 1 0 1 2
0 2 1 1 0 2 1 0 2 2 1 0 2 1 0 0 2 1
0 2 2 0 1 1 1 0 0 1 2 2 2 1 1 2 0 0
0 0 1 2 2 1 1 1 2 0 0 2 2 2 0 1 1 0
0 1 0 2 1 2 1 2 1 0 2 0 2 0 2 1 0 1

Table 16: Table OA[18, 6, 3, 2]

From this orthogonal array we obtain BA(T)[2, 3, 1]

0 0 0 0 0 1 1 1 1 1 2 2 2 2 2
1 2 1 2 0 2 0 2 0 1 0 1 0 1 2
2 1 1 0 2 0 2 2 1 0 1 0 0 2 1
2 2 0 1 1 0 0 1 2 2 1 1 2 0 0
0 1 2 2 1 1 2 0 0 2 2 0 1 1 0
1 0 2 1 2 2 1 0 2 0 0 2 1 0 1

Table 17: Table BA(T)[2, 3, 1] = BA[15, 6, 3, 2]

Parameters of BA(T)[2, 3, 1]

• λ(0, 0) = λ(1, 1) = λ(2, 2) = 1

• λ(0, 1) = λ(1, 0) = λ(0, 2) = λ(2, 0) = λ(1, 2) = λ(2, 1) = 2

Theorem 2.20. Let M be a module of s elements. It is possible to choose k rows and N columns (N =

λ1 + λ2(s− 1), λ1 and λ2 integers)

a11 a12 . . . a1N

a21 a22 . . . a2N

. . . . . .

ak1 ak2 . . . akN

with elements belonging to M such that among the differences of the corresponding elements of any two rows,

the element 0 occurs λ1 times and the other non zero elements occur λ2 times, then by adding the elements of the

module to the elements in the above array and reducing mod s, we can generate Ns columns: this constitutes a

BA[N, k, s, 2] with parameters λ(x, y) = λ1 or λ2 according as x = y or x ̸= y.

Example 2.21. Let M = [0, 1, 2]. Among the Differences of corresponding elements of any two rows of the

following array,0 occurs 6 times wheres 1 and 2 each occur 8 times.
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 2 0 1 0 0 2 1 2 1 2 1 1 0 2 0 0 1 2 1 2
1 1 2 2 0 1 0 0 2 1 2 2 2 1 1 0 2 0 0 1 2 1
2 1 1 2 2 0 1 0 0 2 1 1 2 2 1 1 0 2 0 0 1 2
1 2 1 1 2 2 0 1 0 0 2 2 1 2 2 1 1 0 2 0 0 1
2 1 2 1 1 2 2 0 1 0 0 1 2 1 2 2 1 1 0 2 0 0
0 2 1 2 1 1 2 2 0 1 0 0 1 2 1 2 2 1 1 0 2 0
0 0 2 1 2 1 1 2 2 0 1 0 0 1 2 1 2 2 1 1 0 2
1 0 0 2 1 2 1 1 2 2 0 2 0 0 1 2 1 2 2 1 1 0
0 1 0 0 2 1 2 1 1 2 2 0 2 0 0 1 2 1 2 2 1 1
2 0 1 0 0 2 1 2 1 1 2 1 0 2 0 0 1 2 1 2 2 1
2 2 0 1 0 0 2 1 2 1 1 1 1 0 2 0 0 1 2 1 2 2

hence we can construct a BA[66, 12, 3, 2] with parameters λ(x, y) = 6 or 8 according as x = y or not. i.e

BA(T)[4, 3, 2].

Example 2.22. Let M = [0, 1, 2, 3]. Among the differences of the corresponding elements of any two rows of the

following array,0 occurs 4 times, wheres 1, 2 and 3 occur 6 times each.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 1 2 0 2 1 1 3 2 3 1 0 3 2 0 2 3 3 1 2 1
3 3 0 1 2 0 2 1 1 3 2 1 1 0 3 2 0 2 3 3 1 2
2 3 3 0 1 2 0 2 1 1 3 2 1 1 0 3 2 0 2 3 3 1
3 2 3 3 0 1 2 0 2 1 1 1 2 1 1 0 3 2 0 2 3 3
1 3 2 3 3 0 1 2 0 2 1 3 1 2 1 1 0 3 2 0 2 3
1 1 3 2 3 3 0 1 2 0 2 3 3 1 2 1 1 0 3 2 0 2
2 1 1 3 2 3 3 0 1 2 0 2 3 3 1 2 1 1 0 3 2 0
0 2 1 1 3 2 3 3 0 1 2 0 2 3 3 1 2 1 1 0 3 2
2 0 2 1 1 3 2 3 3 0 1 2 0 2 3 3 1 2 1 1 0 3
1 2 0 2 1 1 3 2 3 3 0 3 2 0 2 3 3 1 2 1 1 0
0 1 2 0 2 1 1 3 2 3 3 0 3 2 0 2 3 3 1 2 1 1

hence we can construct a BA[88, 12, 4, 2] with parameters λ(x, y) = 4 or 6 according as x = y or not,i.e

BA(T)[3, 4, 2].

Assume that there exists a BAFD with m factors F1, F2, . . . Fm at s1, s2, . . . , sm levels respectively, each of

the v∗ treatments replicated r∗ times in b∗ blocks of k∗ plots each, with the incidence matrix:

N∗ = [A∗1 |A∗2 | . . . |A∗b∗] (20)

Further assume that b∗ = pq, and the pq bloacks can be divided into p groups of q blocks each, such

that the design consisting of p blocks formed by adding together all the blocks of a group is a BAFD.

The incidence matrix is

N∗pq =
[
∑

q
j=1 A∗ j|∑

q
j=1 A∗ j+q| . . . |∑q

j=1 A∗pq−q+j

]
(21)

for a resolvable design N∗, the corresponding N∗pq exists with p = r∗.
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Theorem 2.23. If there exists a resolvable BIBD with qs treatments and block size q, then there exists a ps× qs

BAFD with block size pqs such that all main effects are estimated with full efficiency.

Proof. Construct a BA(T)(p, s, n) for some integer n by Theorem 2.12. In the resolvable BIBD, there

being s blocks in each replication , we can number the block in each replication by 0, 1, · · · , s − 1.

Replacing each symbol in the balanced array by a group of symbols which represents blocks in the

BIBD for each replication, we obtain a pqs× [ps− 1]snr
′

matrix, where r
′

is the number of replications

in the BIBD. Assign ith level of F1 to the rows from the (iq + 1)th to the (i + 1)th, where i = 0, 1, · · · , ps−

1.Identifying columns and symbols with blocks and the levels of F2, we get a ps× qs design with block

size pqs.

We shall show that all the main effects of the design constructed above are estimated with full

efficiency.Let λ
′

be the number of blocks in which two treatments occur together in the BIBD, then

(qs− 1)λ
′
= (q− 1)r

′
. Assume that r

′
= (qs− 1)m and λ

′
= (q− 1)m, where m need not be an integer.

Let λ01, λ10, λ11 denote the parameters and r denote the number of replications in the ps× qs design,

then through inspection we have

λ(x, y) = (ps− 1)x+1(qs− 1)y+1(p− 1)x(q− 1)ymn + (xy)(pq)(s− 1)xymn (22)

x, y = 0 or 1 in mod 2

so 

λ01 = (ps− 1)(q− 1)mn

λ10 = (qs− 1)(p− 1)mn

λ11 = (p− 1)(q− 1)mn + pq(s− 1)mn

λ00 = r = (ps− 1)(qs− 1)mn


(23)

if we substitute the parameters of the equations (15), (16) and (17) in equations (23) and Corollary 2.26

we get

E[0, 1] = E[1, 0] = 1 and E[1, 1] = − s− 1
(ps− 1)(qs− 1)

+ 1

Given any q and s, there always exists a resolvable BIBD with qs treatments and block size q if the

number of replications is allowed to be large.

Example 2.24. The irreducible BIBD of qs treatments with block size q in which each of the

qs

q

 possible q−

element combinations form a block is resolvable with parameters

v = qs, b =

qs

q

 , r =

qs− 1

q− 1

 , k = q, λ =

qs− 2

q− 2

 (24)

Let F1, F2, . . . , Fm be m factors at s1, s2, . . . , sm levels respectively and N be the incidence matrix of a

BAFD
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Theorem 2.25. The eigenvalues of NN′ of a BAFD are g(y1, y2, . . . , ym)’s with corresponding eigenvectors

given by the columns of py′ where y = (y1, y2, . . . , ym) ∈ Ω.

It should be noted that the multiplicity of g(y1, y2, . . . , ym) is ∏m
i=1 (si − 1)yi . Since C = r(⊗m

i=1 Ii) −

k−1NN′, The columns of Py′ y ∈ Ω are also the eigenvectors of C with corresponding eigenvalues

ρ(y) = r− 1
k

g(y1, y2, . . . , ym) (25)

= r− 1
k

g(y), y ∈ Ω (26)

Corollary 2.26. Let E(y) denote the interaction efficiencies of a BAFD, where g(y) denotes the eigenvalues of

NNT then E(y) = 1− 1
rk g(y) and E(y) = 1 if and only if g(y) = 0

Definition 2.27. Suppose we have a C− matrix of the design in v(= s1s2 . . . sm) treatment combinations, then

the design is said to possess property A if

C = ∑
y∈Ω∗

g(y)(J1 − I1)
y1 ⊗ (J2 − I2)

y2 ⊗ . . .⊗ (Jm − Im)
ym (27)

where g(y)’s are constants depending on yi’s and yi = 0 or 1 and (Ji − Ii)
yi = Ji − Ii if yi = 1 while

(Ji − Ii)
yi = Ii if yi = 0

The element which is in the (x1, x2, . . . , xm)th row and (y1, y2, . . . , ym)th column of the matrix (the

treatments are in lexicographic order) is 1 if (x1, x2, . . . , xm) and (y1, y2, . . . , ym) are (y1, y2, . . . , ym)th

associates, and 0 otherwise. Two treatments which are (y1, y2, . . . , ym)th associates occur together in

λy1y2 . . . ym blocks; hence we have the following lemma

Lemma 2.28. Let N be the incidence matrix of a BAFD; then

NN′ = ∑
y∈Ω∗

λy1y2 . . . ym(J1 − I1)
y1 ⊗ (J2 − I2)

y2 ⊗ . . .⊗ (Jm − Im)
ym (28)

where λ000...0 is defined to be r.

Further let Ji = si⊗ si to be a matrix with all elements equal to 1. Let Ω∗ be the set of all m− component

binary vectors, that is Ω∗ = Ω∪ {(0, 0, . . . , 0)} where Ω is the set of 2m− 1 none null binary m− tuples.

For y = (y1, y2, . . . , ym) ∈ Ω∗ let

Zy = ⊗m
i=1Zi

yi (29)

where for 1 ≤ i ≤ m,

Zyi
i = Ii if yi = 1

= Ji if yi = 0
(30)

Definition 2.29. A v × v matrix G where v = Πsi will be said to have property A if it is of the form G =

∑
y∈Ω∗

h(y)Zy where h(y), y ∈ Ω∗, are real numbers
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Let M000...0 = ⊗m
i=1(s

−1
i Ji), (31)

Which defines My for every y ∈ Ω∗. Also let the (v− 1)× v matrix P be defined as

P = (. . . , Py′ , . . .)
′
, (32)

where Py is included in P for every y ∈ Ω. For example if m = 2 then P = (P01
′
, P10

′
, P11

′
)
′

Definition 2.30. An r× c array D with entries from A is called a difference scheme based on (A,+) if it has

the property that for all i and j with 1 ≤ i, j ≤ c, the vector difference between the ith and jth columns contains

every element of A equally often if i ̸= j

Example 2.31. We illustrate the construction for the case p = 3, m = 2, n = 1, this will result to a difference

scheme D(9, 9, 3). In this special case the field GF(pn) in the construction is actually the subfield of GF(pm)

and the multiplication of elements of GF(pn) is the same in both fields. Table 18 is a multiplication table for

GF(32), based on the irreducible polynomial f (x) = x2 + x + 2, we represent the nine elements of GF(32) in

condensed notation writing 0 as 00, 1 as 10, 1 + 2x as 01 and so on.

(*) 00 10 20 01 11 21 02 12 22
00 00 00 00 00 00 00 00 00 00
10 00 10 20 01 11 21 02 12 22
20 00 20 10 02 22 12 01 21 11
01 00 01 02 12 10 11 21 22 20
11 00 11 22 10 21 02 20 01 12
21 00 21 12 11 02 20 22 10 01
02 00 02 01 21 20 22 12 11 10
12 00 12 21 22 01 10 11 20 02
22 00 22 11 20 12 01 10 02 21

Table 18: Multiplication table for GF(32)

Upon applying the map: For m = 2 : b0 + b1x is the polynomial and for n = 1 : b0 is the polynomial

hence we apply the map. b0 + b1x 7→ b0 to the entries of this table to obtain the Difference Scheme

D(9, 9, 3) based on (GF(3),+) which is exhibited in Table 19

0 0 0 0 0 0 0 0 0
0 1 2 0 1 2 0 1 2
0 2 1 0 2 1 0 2 1
0 0 0 1 1 1 2 2 2
0 1 2 1 2 0 2 0 1
0 2 1 1 0 2 2 1 0
0 0 0 2 2 2 1 1 1
0 1 2 2 0 1 1 2 0
0 2 1 2 1 0 1 0 2

Table 19: A difference scheme based on (GF(3),+)
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