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Abstract

This manuscript gives a method of constructing multifactor BAFDS of type III. Multi-factor BAFDS
of type III are constructed from two factor BAFDS. The method was given by [21] and it generates
a BAFD from two given BAFD’s. The method can provide efficient BAFD's if efficient two factor

BAFD'’s are used. The designs constructed are balanced with orthogonal factorial structure.
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1. Introduction

In many situations there arise scenarios when an experimenter has to use factors at different levels.
The problem of obtaining confounded plans for such cases has received a good deal of attention. To
this extent, [30], by trial and hit methods obtained confounded plans of the type 3" x 2", where m and
n are any positive integers. Using orthogonal arrays of strength 2 [18] gave methods for constructing
Extended Group Divisible Designs {EGD} for s; X s, experiments in blocks of size s; < sp. [26]
starting from a basic s; X s, design in blocks of size s, (s < s1, s; being a prime number or power
of prime) obtained three factor designs. [20] constructed some series of designs from orthogonal
latin squares for s; x s experiments in block of size s; and s; — 1 replications. [25] gave a class
of balanced designs with OFS. [16] considered the use of balanced incomplete block designs for the
construction of s; x s balanced factorial designs with OFS when s; > s;. Informative accounts and
subsequent developments have been done by [10,14,24]. [22] proposed a general method of obtaining
block designs for asymmetrical confounded factorial experiments using block designs for symmetrical

factorial experiments.
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[9] describes a general method of construction of supersaturated designs for asymmetrical factorial
experiments obtained by exploiting the concept of resolvable orthogonal arrays and Hadamard
matrices. [7] considered three forms of a general null hypothesis Ho on the factorial parameters of a
general asymmetrical factorial paired comparison experiment in order to determine optimal or
efficient designs. [13] constructed designs by using confounding through equation methods.
Construction of confounded asymmetrical factorial experiments in row-column settings and efficiency
factors of confounded effects was worked out. [27] identified a Kronecker product structure for a
particular class of asymmetric factorial designs in blocks, including the classes of designs generated
by several of the generalizations of the classical methods in literature. [4] focuses on the construction
and analysis of an extra ordinary type of asymmetrical factorial experiment which corresponds to a
fraction of asymmetrical factorial experiment as indicated by [5]. [2] establishes a lower bound to
measure optimality with respect to a main effects model in a general asymmetric factorial experiment.
[1] developed a method for the construction of p x 3 x 2 asymmetrical factorial experiments with
(p — 1) replications. [23] proposed A general method of obtaining block designs for asymmetrical
confounded factorial experiments using the block designs for symmetrical factorial experiments. [31]
Constructed asymmetrical factorial designs containing clear effects. [29] explained how to choose an
optimal (s?)s" design for the practical need, where s is any prime or prime power and accordingly
considered the clear effects criterion for selecting good designs. [17] dealt with situations where there
was a need for designing an asymmetrical factorial experiment involving interactions. Failing to get
a satisfactory answer to this problem from literature, the authors developed an adhoc method of
constructing the design. It is transparent that the design provides efficient estimates for all the required
main effects and interactions. The later part of this paper deals with the issues of how this method
is extended to more general situations and how this adhoc method is translated into a systematic
approach. [19] developed The R package DoE.base which can be used for creating full factorial designs
and general factorial experiments based on orthogonal arrays. Besides design creation, some analysis
functionality is also available, particularly (augmented) half-normal effects plots.

[12] Published a monograph that is an outcome of the research works on the construction of factorial
experiments (symmetrical and asymmetrical). In this booklet, construction frameworks have been
described for factorial experiments. The construction frameworks include general construction method
of p" factorial experiments, construction methods with confounded effects and detection method of
confounded effects in a confounded plan. The concepts of combinatorial, matrix operations and linear
equation technique have been deployed to develop the methods. [4] discussed an Alternative Method
of Construction and Analysis of Asymmetrical Factorial Experiment of the type 6 x 22 in Blocks of
Size 12. [4] focuses on the construction and analysis of an extra ordinary type of asymmetrical factorial
designs which corresponds to fraction of a symmetrical factorial design as indicated by [5]. To construct
this design, they used 3 choices and for each choice they used 5 different cases. Finding the block

contents for each case showed that there are mainly two different cases for each choice. In the cases of
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analysis of variance, is seen that, for the case where the highest order interaction effect is confounded
in 4 replications, the loss of information is same for all the choices.

[11] in his book chapter discusses different methods of constructing systems of confounding for
asymmetrical factorial designs, including: Combining symmetrical systems of confounding via the
Kronecker product method, use of pseudo-factors, the method of generalized cyclic designs, method
of finite rings (this method is also used to extend the Kempthorne parameterization from symmetrical
to asymmetrical factorials), and the method of balanced factorial designs. He showed the equivalence
of balanced factorial designs and extended group divisible partially balanced incomplete block designs,
establishing again a close link between incomplete block designs and confounding in factorial designs.
[6] in her book chapter discusses confounding in single replicate experiments in which at least one
factor has more than two levels. First, the case of three-levelled factors is considered and the techniques
are then adapted to handle m-levelled factors, where m is a prime number. Next, pseudofactors are
introduced to facilitate confounding for factors with non-prime numbers of levels. Asymmetrical
experiments involving factors or pseudofactors at both two and three levels are also considered,
as well as more complicated situations where the treatment factors have a mixture of 2,3,4, and 6
levels. Analysis of an experiment with partial confounding is illustrated using the SAS and R software
packages.

[8] shows that Asymmetrical single replicate factorial designs in blocks are constructed using the
deletion technique. Results are given that are useful in simplifying expressions for calculating loss of
information on main effects and interactions, due to confounding with blocks. Designs for estimating
main effects and low order interactions are also given.

[15] in his work presents the results of a systematic literature review (SLR) and a taxonomical
classification of studies about run orders for factorial designs published between 1952 and 2021. The
objective here is to describe the findings, main and future research directions in this field. The main
components considered in each study and the methodologies they used to obtain run sequences are
also highlighted, allowing professionals to select an appropriate ordering for their problem. This
review shows that obtaining orderings with good properties for an experimental design with any
number of factors and levels is still an unresolved issue.

[28] in his present book gives, for the first time, a comprehensive and up-to-date account of the modern
theory of factorial designs. Many major classes of designs are covered in the book. While maintaining
a high level of mathematical rigor, it also provides extensive design tables for research and practical
purposes.

[3] In his book, provides a rigorous, systematic, and up-to-date treatment of the theoretical aspects of
factorial designs. To prepare readers for a general theory, the author first presents a unified treatment
of several simple designs, including completely randomized designs, block designs, and row-column
designs. As such, the book is accessible to readers with minimal exposure to experimental designs.

In this manuscript, we are going to discuss methods of constructing multifactor BAFDS by using
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known two factor BAFDS or other multifactor BAFDS already constructed.In particular we are going
to construct multifactor balanced asymmetrical factorial designs of Type IIl. We are especially
interested in BAFDS of which the main effects and lower order interactions can be estimated with
high efficiencies.

The following combinatorial structures are used in the construction of multifactor BAFDS of type III.

Definition 1.1. A k x b array with entries from a set of v symbols is called an orthogonal array of strength t if
each t x b subarray of A contains all possible o' column vectors with the same frequency A = 5 It is denoted
OA(b,k,v,t; A); the number A is called the index of the array. The numbers b and k are known as the number of

assemblies and constraints of the orthogonal array respectively.

Example 1.2.
01111 0 0 0
1 01 1 01 0 0
1 101 0 0 1 0
111 0 0 0 01
OA(8,4,2,3,1)

Definition 1.3. Let A be a k X b array with entries from a set of v symbols. Consider the v' ordered t-tuples
(x1,...,x¢) that can be formed from a t-rowed subarray of A, and let there be associated a non-negative integer
A(x1,...,x¢) that is invariant under permutations of x1, . .., x¢. If for any t-rowed subarray of A the v ordered
t-tuples (x1, ..., xy), each occur A(x1, ..., x;) times as a column, then A is said to ba a balanced array of strength

t. It is denoted by BA(b, k, v, t) and the numbers A(x1, ..., x;) are called the index parameters of the array.

Example 1.4.
0101 01 01 01
1 1101 1 0 0 0 0
0 0111 00011
1 1.0 0 001 01 1
0o 00 0111110
BA(10,5,2,2)

A(0,0) = A(1,1) =2 and A(0,1) = A(1,0) = 3.

In particular we are interested in the BA[(ks — 1)sA, ks, s, 2] with parameters A(x,y) = (k—1)A or (kA)
according as x = y or Not. For brevity we shall call it the balanced array of type T with index A and
denote it by BA[T][k, s, A].

Definition 1.5. A transitive array TA(b,k,v,t;A) is a k x b array of v symbols such that for any choice of t

rows, the (vﬁ—'t), ordered t-tuples of distinct symbols each occur A times as a column.
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Example 1.6.
0123 01 2301 2 3
10 3 2 2301 3 210
23 01 3 21010 3 2
321 0103 22 301
TA(12,4,4,2;1)

Definition 1.7. A hadamard matrix of order n is an n x n matrix H, of +1's and —1's whose rows are
orthogonal, that is, which satisfies

H,H! = nl, 1)

For example, here are hadamard matrices of order 1,2 and 4.

)

—_
—_

S (Y
|
—_
—_
|
—_

These matrices are named after a French mathematician Jacques hadamard. He showed that if A = (a;j) is an
n x n matrix with |a;;| <1 then

|detA| < n? 3)

Hadamard matrices may be regarded as the special class of difference schemes D(r,c,s) with s = 2, r = ¢ and

index A = 3.

An experiment involving 2<m factors F;, b, ..., F, that appear at s1,...,5,, (> 2) levels is called an
§1X- - - X8y, factorial experiment (or an s; x- - - Xs,, factorial for brevity). If s; = --- =5, = 5, we have
s symmetrical BFD with r = no of replications, A; =no of blocks in which any two treatments are ith

associates, k =block size, b =no of blocks.
Example 1.8. Consider a 3 x 4 factorial arranged in twelve blocks as shown below

+— Blocks ——
00 00 00 01 01 01 02 02 02 03 03 03
11 12 13 10 12 13 10 11 13 10 11 12
22 23 21 23 20 22 21 23 20 22 20 21

The design is connected, proper with constant block size 3, and equireplicate with common replication number

r = 3. It may be seen, by explicit computation, that for the above design by using Lemma 2.28

NN = Y ML)V ®(—h)”2®...Q (Ju— Lu)'m
yeQ*



Multifactor Balanced Asymmetrical Factorial Designs of Type III / N. J. Wanyoike, Guangzhou Chen 78

=201 =)@ (o= D)’ +An(h —10)°® (] — L)*
+AMo(i =)' @ (2 —D0)°+An(h— L)' ® (o — )
=3LL+Ah®(2—L)+Ao(i —h)@L+An(Ji — L) ® (J2— L)

from the design it can be verified that Ayy = A9 = 0 while Aqq = 1 hence

NN =3L®@L+1(1—L)® (]2 — L)
=3LQL+1h—Nh1L-LL+LH®DL

=4LH QL -—LLh - L+1® )

where as usual I and I are 3 X 3 and 4 x 4 identity matrices and ], and ], are 3 x 3 and 4 x 4 matrices of all

1’s. It follows that by (29) and (30)
NN/ — 4zl1 o ZlO . ZOl + ZOO

By Definition 2.29 that NN’ has property A. Hence the design is balanced and has OFS. Furthermore by
Definition 2.27 it follows that:

1
C=3(L®h)~ NN’

=r(®@", ) —k NN’
5 1 1 1

— 7zll 7zl0 7201 o 7200
3 +3 +3 3

which also shows that C has the property A. Suppose

1 -1
vz 0
b =
1 1 =2
V2 /6 /6
and P, well chosen then
101 1 1 1 1 1 1
o |z T2 T3 T2 e 000 00
Pr= i 1 1 1 1 1 1 1 1 1 1 1
26 26 /6 26 26 26 26 26 V6 TV6 V6 6
10
and Z' = I, an identity matrix of order 12 hence P10Z1 P10 = = 1019) where 1Y) is identity matrix

01
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of order

[TG6i—1)Y = (51— (s2—1)°
B-1'(4-1)°

2

Similarly P10Z10p10" = 41(10) p10701p10" — pl0700pl0" — o [t glso follows that

1111000000 O0O0 10001000
11110000O0O0O0O0 01 0001O00
1111000000 O0O0 00100010
1111000000 O0O0 00010001
000011110000 10001000
000011110000 01 0001O00
710 _ .70 —
000011110000 00100010
000011110000 00010001
0000O0OO0OO0OT1TT1T11 10001000
0000O0O0OO0OO0OT1TT1T11 01 0001O00
0000O0O0OO0OO0OT1TT1T11 00100010
0000O0OOO0OT1TT1T11 00010001

and 700 =

S e e e Y
S S
g (S Y
g S G G
S e e e S e S =y
g g
g G Y
S | G S G
S e e Sy
e
g e S Y
S G S Y
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hence C = %Z“ + %Zm + %Zm — %ZOO that is,
(2 0 0 0 0 )30 b b
R R A
0 0 2 0 b b0 b 4o
IR e e I
0 b3 b2 o0 0 0 0 3k
B A R R I R A
b0 b0 0 2 0 3 b0 -
b0 o0 0 02 3 ko
o 4L h 0 k42 0 0 o
o bbb o b0 2 0 o
I I T A S R
bbb o b b0 0 0 o 2]
3 ]
hence P1OCPY = . = 31019) where 1Y) is the Identity matrix of order

(s —1)(sp —1)°
=(B-1)'(4-1)°

=2

[1G

Similarly it may be seen that P"'CPY =
p(1,0) = 3,0(0,1) = % and p(1,1) =

under consideration are given by

8100, piicp! = 5101, By equations (25) and (26) shows that

2. Hence by Corollary 2.26 the interaction efficiencies in the design

E[1,0] = p(lr’o) = g =10
_p(01) 8 8
Ep1) =R =55 =5
(L1 5 5
=P =g =

2. Type III Designs

Let there exist a BA(T)(n1,s,1), by Corollary 2.5. This corresponds to n1s x s BAFD with k = nys,
b= (n1s—1)s, and

A(0,0) =ms—1; A0,1)=0; A(1,0)=m —1; A(L,1)=m (4)
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by equations (15), (16) and (17), the eigenvalues of NN T are

g(1,0) =0; g(0,1)=0; g(1,1) =ms (5)

If there exists a resolvable BA(T)(ny,s,1),then this corresponds to a resolvable nys x s BAFD. By
Theorem 2.8, if we replace the levels of the second factor of the nys x s BAFD by the blocks of
the nys x s BAFD, we get an n1s X nps X s BAFD with k = nynys?2,b = (n1s — 1)(n2s — 1)s, and

A(0,0,0) = A(0,0)(n2s — 1) = (m35 — 1) (nps — 1)

A(0,0,1) = A(0,1) (1125 —1) =0

A(0,1,0) = A(0,0) (112 — 1) + A(0,1) (n2s — np) = (mys — 1)(np — 1)

A(0,1,1) = A(0,0)nz + A(0,1) (115 — nz — 1) = (15 — 1)y

A(1,0,0) = A(1,0)(nas — 1) = (n1 — 1) (125 — 1)

A1,0,1) = A(1,1)(n2s — 1) = ny(nos — 1) (6)
A(1,1,0) = A(1,0)(ny — 1) + A(1,1)(n2s — 1)

I
~~
S
—_
|
—_
~—
—~
S
N
|
—_
SN~—
+
S

—_
—~
S
N
V5
|
S
N
~

= (ng —1)np +ny(nps —np — 1)

where A(0,0),A(0,1),A(1,0),A(1,1) are given by equation (4). The eigenvalues of NN are

ninys?, fri=yp=y3=1
gy y2,y3l = § mnas?(ms —1)(nas — 1), ify1 =y2=y3=0; ()
0, Otherwise.

hence E[1,1,1] = 1 — , and all the main effects and first order interactions are estimated

1
(n15—1)(nas—1)
with full efficiency. If further there exists a resolvable BA(T)(ns,s,1), we can replace the levels of the
third factor of the nys x nys x s BAFD by the blocks of the n13s x s BAFD to obtain 715 X ns X n3zs x s
BAFD with k = nynyn3s® such that all the main effects and interactions are estimated with full

efficiency except the third order interactions, which are estimated with efficiency,

- (nls_l)(nzg_l)(nss_l). Continuing this procedure, we can get an 135 X n2s x ... x nrs x s BAFD with
k = stmny...n.,b = s(nys — 1)(nas — 1)... (ns — 1). The A’s can be calculated recursively by the

following formulae:
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Note: Replace y; with x;.

Ay, Y2, -, y1-2,0,0) = Ay, y2,...,y1—2,0)(nrs — 1)
A(yll Yo, YL-2, 0/ 1) = )\(yl/yZI e YrL—2, )(TlLS - 1) (8)
AWy, Y2, y1-2,1,0) = A(y1,y2,---,¥1—2,0)(np — 1) + A(y1,y2, ..., yr—2,1)(nps — ng)
A,y y—2,1,1) = Ay, y2, .., y1—2,0)(nr) + A(y1,v2, - .., y1—2,1)(nps —np — 1)
we now prove that
1
ELL 1] =1- (n1s —1)(nps —1)...(nrs —1)
and all other efficiencies are 1. The proof is given by induction. Equation (19) can be written as
Sy, Y] = Z -L:_1 1—y;)ns—1 B X
xllle--qul{ = {( y) } }
XL+1
|:)L<xl/x2/- . .,XL_],O,()) X {(1 —yL nrs — 1 { 1 —yL+1 S — 1} .
XL XL+1
+ A(x1,x2,...,%.-1,0,1) {(1 —yp)nis — 1} {(1 —YL11)S — 1} |
XL XL+1
+ )\<x11-x2/- <, XL—1, 1/0) {(1 — yL)TlLS — 1} {(1 — yL+1)S — 1} ’
XL XL+1
+A(x1, %2, ,x0-1,1,1) {(1 —yL)nLs — 1} {(1 —Yr41)s — 1} | }
using equation (7) we have
gy vz . y1-1,0,00 = ). { - 1{(1—]/1)715—1} i} [)\(XlzxZ/---/xL—lzo)(an_1)
X1,X2,.40,X[,—1
1
+ A(x1,x2,...,x1-1,1)(nps — 1) {(1 —0)s — 1}
N A(xl,xz, .. .,XL_l,O)(TlL — 1) + A(xl,xz, .. .,XL_l,l) {nLS B 1}
(nps —np)
Axq,x0,...,x1-1,0)(np) + A(xq,x2,...,x1-1,1
N (x1, %2 1-1,0)(nr) + A(xq, x2 r-1,1) (an—l)(s—l)]
(nps —np —1)
Xi
=nrs(nps —1) Z { - 1{(1—yl)ns—1} } [)\(Xler/uwa—l/O)
X1,X2,..,X1—1
+ )\(Xl, X2, .. .,xL_l,l)(s — 1)]
=nrs(nes —1)gly1,y2, .- -, yr-1,0] )

gy, y-1,0,1] = ) { i 1{(1_%)715_1}9:,} [/\(xLXZ/---/xL—er)(nLS_1)

X1,X2,---, X1

+ A(x1,x0,...,xp1,1)(nps — 1) {(1 —1)s — 1}1

+ [/\(xl,xz, cee,xp-1,0)(np — 1) + A(xq, x2, ..., xp-1,1) (nLs — nL)]
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X { an—l}l

|:)\ xl,xz, . ,fol,O)(TlL) + A(Xl,XQ, . .,xL,l,l)(an —np — 1)]

<o -oms 1} {0 -1}

=(nps—1) ), { Z-L__f{(l—yi)nis—l}Xi}[/\(xhxz/---/xL—l,O)

X1,X2,--,X[—1

_l’_

— A(Xl, X2, .. .,XL,1,1) + A(xl, X2,.. .,fol,O)(l’lL — 1)

+ A(x1,x2,...,x0-1,1)(nrs — np)
— A(x1,x2,...,x1-1,0)(np) — A(x1,x2,...,x0-1,1)(nps —np — 1)]
= (nrs—1)(0) =0 (10)

gy, oy, 1,00 = ) { iy {(1 — Yi)ns — 1}X[} [)\(Xler/---/xL—lfo)(nLS —-1)

X1,X2,0., X1 —1
1
+ A(xg, 20,0, x0-1,1) (nps — 1) {(1 —0)s — 1}
+ [/\(xl,xz, ceo,x0-1,0)(np — 1) + A(xq, x2, ..., xp-1,1) (nLs — nL)]

X{ 1-1 s—1}

+ |:)\ xl,xz, e, XL— 1,0)(7’1L) +)L(x1,x2,...,xL,1,1)(an —nyp — 1)]

x{ 1-1 an—1}1{(1—0)5—1}1]

S { L 1{(1_yl)ns_1}xi} [A(xl,xz,...,xL_l,O)(an—1)

X1,X2,0-,X[,—1
+ A(xy,x2,...,x0-1, 1) (nps —1)(s — 1)

— /\(xl,xz, .. .,fol,O)(TlL — 1) — A(xl,xz, .. .,xL,l,l)(an — TZL)

— A(xq,x2, ..., x1-1,0)(n)(s — 1) — A(xq, x2,...,xp-1,1)(nps —np —1)(s — 1)]

= ) { - 1{(1_%)}15_1}9@}

X1,X2,0.,X[—1
X {koan — ko + kll’lL52 —kings —kis + ki — konp + ko — kynrs + kll’lL}
+ [—koﬂLS + konp — k]ﬂL52 +kyngs + kynps — kingp + Kis — kJ

=0 (11)

where kg = A(x1,x2,...,x.-1,0) and k1 = A(x1,x2,...,x.-1,1)

X1,X2,+-,XL—1

g[l/lz ]/2/ cee Inyll 1/ 1] - Z { iL:_11 {(1 — yi)nis — 1}Xi} [A(XLXZI B o . 0/ 0)



Multifactor Balanced Asymmetrical Factorial Designs of Type III / N. J. Wanyoike, Guangzhou Chen 84

XL+1

+A(X1,X2,.~~IXL—1/0/1) {(1_]/L+1 1

J
+ A(x1,x2,...,x1-1,1,0) {(1 —YL)nis — 1}“
J

XL XL+1
+A(x1, %2, ,x0-1,1,1) {(1—]/L ynps —1 { (1—yri1) s—1} ]

= X { vy {(1—yi)nis_1}Xi} [A(xl,xz,...,xL_l,O)(an—1)

X1,X2,+,XL—1

1
+ A(x1,x2,...,x1-1,1)(nps — 1) {(1 —1)s— 1}
+ {/\(xl,xz, coexp-1,0)(np — 1) + A(xq, x2,. .., xp—1, 1) (nps — nL)] X
1
{(1 —1)ngs — 1}

+ [)L(XLXQ, .. .,fol,O)(TlL) + )\(xl,JQ, . .,fol,l)(TZLS —nr — 1)]

X {(1—1)71Ls—1}1 {(1—1)5—1}1]

- Z { iL:_11 {(1 — y;)n;s — 1}X1} [A(xl,xz,,, ., x-1,0)(nps — 1)

X1,X2,+-,XL—1
— /\(xl, X2, .., X1—1, 1)(1’lLS — 1)

— A(Xl, X2, .. .,fol,O)(l’lL — 1) — A(xl,xz,. . .,fol,l)(TlLS — nL)

+ |:)\(X1,X2,. . .,fol,O)(i’lL) + A(Xl,XQ,. . .,xL,l,l)(an —nyp — 1)] ]

= X {HiL:_f {(1 — Yi)nis — 1}Xi}

X1,X2,-, XL -1

konps — ko — kynps + ki — konp + ko — kyngs
+king + konp + kinps — kynp — kq

= ) {HiL:_f {(1 — yi)n;s — 1}Xi} [koan - klan}

X1,X2,--, XL -1

=ns Z { I-L:]l {(1 — Yi)ns — 1}xi} [ko — kl}

X1,X2,++XL—1
[ A('xll X2, evey XL—1, O) ]

=nzs Z {HiL:_11 {(1—yi)”is_l}Xi}

X1,X2,-+, XL -1 —)\(Xl, X2, ,X1-1, 1)

=nrsgly1, y2, .-, Yr-1,1] (12)

where kg = A(x1,x2,...,x.-1,0) and k3 = A(x1,x2,...,x.-1,1). By the recursive formulae (9), (10),
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(11), (12) and the initial values (7) we have

L

WYz, - YL41) = SLH”i if i=ym=...=yq=1
i=1
- (13)
= sLHni(nis—l) if yi=yp=...=yry1=0
i=1
=0 otherwise
hence the efficiencies are
1
Elyuya oy =1— ————— (14)
ITi (mis — 1)
If yy =y» = ... = yr4+1 = 1 and 0 otherwise. From the discussion of the type III designs, we state the

following theorem,;

Theorem 2.1. If there exists a BA(T)(ny,s,1), and a resolvable BA(T)(n;,s,1) fori =2,3, ..., 1 then we can

always construct an nys X nzs x ...nys BAFD with

L L
k=stTnib=s]](ns—1)
i=1

i=1

and
L

r=]](ns—1)

i=1

such that E[1,1,...,1] = _71 + 1 and all other efficiencies are 1.0.

Proof. 1f there exist a BA(T)(ny,s,1) by Corollary 2.5 this corresponds to n1s X s BAFD with k =
n1s,b = (n1s — 1)s If there exist a BA(T)(na,s,1) by Theorem 2.8 we can replace levels of the second
factor in 115 x s by blocks of ns x s to obtain k = (n15)(n25) = s?myng, b = (s — 1)(n2s — 1)s.
Continuing with this procedure if there exist a BA(T)(np,s,1) this corresponds to nrs x s BAFD. If we
replace the levels of L factor in n1s x 135 x - -+ x n_1s X s by using blocks of n;s we obtain 115 x
125 X - --np_15 X n.s BAFD with k = st HiL:1 n,b=m—-1)(ny—1)---(ngs—1)s = sHiLzl(nis —1)
and by using equations (13) and (14) it follows that E[1,1,---,1] = —% + 1 and all other efficiencies
are 1.00. O

Example 2.2. A BA(T)(3,2,1) is given in example 2.10 and a resolvable BA(T)(2,2,1) given in example 2.6
which is equivalent to the following 4 x 2 resolvable BAFD.

Xo X1 Yo Y1 20 21
00 01 00 01 00 O1
10 11 11 10 11 10
21 20 20 21 21 20
31 30 31 30 30 31

Table 1: 4 x 2 Resolvable BAFD
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where x¢, x1, Yo, Y1, Zo, 21 represent the blocks can be used to construct a 6 x 4 x 2 BAFD with k = 24,
b=230,r =15 1(0,0,1) =0, A(0,1,0) =5, A(0,1,1) = 10, A(1,0,0) = 6, A(1,0,1) =9, A(1,1,0) = §,
A(1,1,1) = 7. The efficiencies are E(1,1,1) = 1}, and all other efficiencies are 1.0. The design can be
expressed as the same table in example 2.10 the differences are the rows representing the levels of the

first factor and the xo, x1, yo, Y1, Zo, z1 representing the blocks as shown above.

Example 2.3. A BA(T)(2,2,2) given in example 2.11 and a resolvable BA(T)(2,2,1) given in Example 2.6
which is equivalent to the following 4 x 2 resolvable BAFD.

Xo X1 Yo Y1 Zo Z1
00 01 00 01 00 O1
10 11 11 10 11 10
21 20 20 21 21 20
31 30 31 30 30 31

Table 2: 4 x 2 Resolvable BAFD

where x¢, x1, Yo, Y1, 20, 21 represent the blocks can be used to construct a 4 x 4 x 2 BAFD with different
parameters as the ones given in Theorem 2.1 and hence with different values of A as the ones given in
equation (6). For this design k =16, b = 36, r = 18, A(1,0) = 6, A(1,1) =12, A(2,0) =10, A(2,1) =8
and the efficiencies are E[1,0] = E[1,1] = E[2,0] = E[0,1] = 1.00and E[2,1] = § ~1— 1. The 4 x 4 x 2
BAFD is given below

Blocks 1 2 3 4 5 6 7 8 9 10 11 12
Levelsof F; | Levels of K and L

0 X0 X0 Xo X0 Xp0 Xp X1 X1 X1 X1 X1 X1

1 X1 X1 Xo X1 Xo X1 X0 Xo X1 X0 X1 Xp

2 X0 X0 X1 X1 X1 X1 X1 X1 Xpo Xpo Xpo X0

3 X1 X1 X1 Xp X1 Xp X9 Xo Xpo X1 X0 X1

Block 13 14 15 16 17 18 19 20 21 22 23 24
Levelsof [} | Levels of E and £

0 Yo Yo Yo Yo Yo Yo V1 V1 Y1 Y1 Y1 W

1 n vi Yo ¥1 Yo Y1 Yo Yo Y1 Yo Y1 Yo

2 Yo Yo Y1 ¥v1 Y1 Y1 Y1 Y1 Yo Yo Yo Yo

3 n Vi Y1 Yo Y1 Yo Yo Yo Yo Y1 Yo N

Block 25 26 27 28 29 30 31 32 33 34 35 36
Levelsof [; | Levels of E and F

0 20 Z0 Z0 Z0 Z0 Z0 Z1 21 zZ1 Z1 Z1 71

1 Z1 zZ1  zZo 21 Zo Z1 20 Z0 Z1 Zo Z1 2o

2 20 Z0 Z1 Zq Z1 Z1 Z1 Z1 Zo Z0 Z0 20

3 Z1 Z1 21 ) 21 20 Z0 20 Z0 Z1 20 21

Table 3: 4 x 4 x 2 BAFD

Other BAFDs that can be constructed by using Theorem 2.1 include 4 x 4 x 2,6 x 6 X 3,6 X 3 x 3,6 x
9%x3,8x4x4...etc.
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Corollary 2.4. If s is a prime power,then there exists a (2s)' x s™(m > 1) BAFD with k = 2tst+m=1,
r=02s—Ds—1)""1 b= (2s—1)(s — 1)L, E(L,m) = 1— L, and all other efficiencies are 1.

Proof. This is a consequence of Theorem 2.1 since a resolvable BA(T)(2,s,1) and a BA(T)(1,s,1)i.e
a TA[s(s —1),s,s,2| exists for s a prime power. If in addition to the conditions in Theorem 2.1, there
exists a resolvable BIBD with n s treatments and block size nr 1, then we can replace the levels of the
last factor of the 1115 X 1135 x ... X nys x s BAFD by the blocks of the BIBD to get an 7115 X 125 X ...nps x
nr+15 BAFD with block size nq...npny1st. All the main effects and interactions are estimated with

full efficiency except the L order interactions. O

Corollary 2.5. In an s; x s, BAFD with block size sy(> s1) the main effects of Fy and F, are estimated with
full efficiency if and only if s, = msy,Ayg = 0 and j\\—fﬁ = "1 for some m. The design is equivalent to a
BA[(msy — 1)s1A, msy,s1,2] with parameters A(x,y) = (m — 1)A or mA according as x = y or not, i.e. a
BA(T)(m,s1,A). By Theorem 2.12 for any given m and s; we can always construct a BA(T)(m, s1, A) for some
A. Thus we can always construct an msy x s; BAFD such that all main effects are estimated with full efficiency,

but a large replication may be needed. The construction of a BA(T)(m, s1,1) for some m and sy are discussed in

Corollary 2.14, 2.16, and 2.18. In Example 2.21 and 2.22 we also gave a BA(T)[4,3,2] and a BA(T)(3,4,2).
The following examples use Corollary 2.5

Example 2.6. A 2 x 4 BAFD withb = 6,k = 4,r = 3,A19 = 0, can be constructed from a BA(T)(2,2,1) =
BA6,4,2,2] with A(x,y) = 1 or 2 according as x = y or not

Blocks 1 2 3 4 5 6
Levelsof I, | Levels of F

0 1 0O 1 0 1 0
1 0 1 1 0 0 1
2 1 0O 0 1 0 1
3 0 1 0 1 1 O

Table 4: Table of a 2 x 4 BAFD

In this design, the efficiencies are: E[0,1] =1, E[1,0] = 1 and E[1,1] = 3.

Example 2.7. A 7 x 42 BAFD with b = 287,k = 42,r = 41, 190 = 0, Ag1 = 5,A11 = 6 can be constructed
froma BA(T)[6,7,1] = BA[287,42,7,2] with A(x,y) = 5 or 6 according as x = y or Not. The efficiencies of
this designs are: E[0,1] = 1.0, E[1,0] = 1.0 and E[1,1] =

Let N be the incidence matrix of a BAFD the eigenvalues of NN are given by
g(l,O) =r+ (52—1))\01 — Ao — (52—1))\11 (15)

g(O,l) =71 — /\01 + (Sl — 1))\10 — (51 — 1))\11 (16)
g(1,1) =7 — Aot — Ao + Aur (17)
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Theorem 2.8. Let there be a BAFD with the incidence matrix N in n + 1 factors Fy, Fyyi1,..., Fnin at
4,Sm+1,- - - Sm+n levels respectively in b blocks of k plots each.Also let there be two BAFDs with incidence
matrices N* and N*,, as given by equations (20) and (21) respectively.If the level j — 1 of the factor Fy is
replaced by the block Ajq4;(j =1,2,...,q) in each of the treatments of N ,then the design obtained by adjoining
the p designs so formed (for i =0,1,2,...,p —1) isa BAFD in m + n factors in bp blocks of kk* plots each.

This method generates an m + n factor BAFD from an n + 1 factor BAFD and an m factor BAFD.
Thus from the two-factor BAFD’s we can generate a three-factor BAFD. If the two-factor BAFDs
are efficient, then three-factor BAFD is also efficient. We can therefore construct efficient multi-factor
BAFD'’s step by step from efficient two-factor BAFD’s. While applying this method, the number of

blocks does not increase so quickly as in the first method, but the block size does increase.

Example 2.9. Let N be the incidence matrix of the 3 x 6 BAFD constructed by identifying rows,columns and
symbols, with the levels of the second factor, the blocks ,and the levels of the first factors respectively in the
BA(T)(2,3,1) given in Example 2.19. Let N* be the incidence matrix of the resolvable 3* symmetrical balanced

factorial design given below

Xo X1 X2 Yo Y1 Y2
00 01 02 00 01 02
11 12 10 12 10 11
22 20 21 21 22 20

Table 5: 3% Symmetrical BFD

where x¢, x1, X2, 0, Y1, y2 represents blocks. Then by Theorem 2.8 we can construct a 32 x 6 BAFD with
r=10,b =30, A(2,0) =5, A(0,1) = 2,A(2,1) =3, A(1,1) =4, A(1,0) =0, E[2,1] = 19—0 and all main

effects and first order interactions are estimated with full efficiency.The BAFD is given below.

Blocks 1 2 3 4 5 6 7 8 9 10
Levelsof I3 | Levels of F and b

0 X0 Xo Xo Xp Xo X1 X1 X1 X1 X1

1 X1 X2 X1 X2 Xp X2 Xp X2 Xo X1

2 Xo X1 X1 Xp Xp X9 X2 Xp X1 Xo

3 X2 X2  Xp X1 X1 Xo Xo X1 X2 X2

4 X0 X1 Xp Xo X1 X1 X2 Xo Xo Xp

5 X1 Xgo X2 X1 X2 X2 X1 Xo X2 Xo

Blocks 11 12 13 14 15 16 17 18 19 20
Levelsof 5 | Levels of F and K

0 X2 X2 X2 X2 X2 Yo Yo Yo Yo Yo

1 X0 X1 X0 X1 X2 Y1 Y2 Y1 Y2 Yo

2 X1 Xo Xo X2 X1 Y2 Y1 Y1 Yo Y2

3 X1 X1 X2 Xo Xo Y2 Y2 Yo Y1 Y1

4 X2 Xo X1 X1 X0 Yo Y1 Y2 Y2 W1

5 X0 Xp X1 Xo X1 Y1 Yo Y2 Y1 W2
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Blocks 21 22 23 24 25 26 27 28 29 30
Levelsof I5 | Levels of [ and B
0 1 Vi Vi1 o Y2 Y2 Y2 Y2 y2
1 Y2 Yo Y2 Yo Y1 Yo Y1 Yo Y1 Y2
2 Yo Yo Y2 1 Yo Y1 Yo Yo Y2 W
3 Yo Yo Y1 Y2 Y2 1 Y1 Y2 Yo Yo
4 Vi Yy2 Yo Yo Y2 Y2 Yo Y1 Y1 Yo
5 Y2 Y1 Yo Y2 Yo Yo Y2 Y1 Yo Wi

Table 6: 32 x 6 BAFD

If there exists TA[s;(s; — 1),8m,s;,2] for i = 1,2,...,m — 1 then we can construct an s; X s X ...Sp
BAFD with k = sy, b = [T/ 'si(s; — 1), r = [T (si — 1), A(1,1,...,1) = 1 and other A’s being 0. By
Theorem 2.25 the eigenvalues of NNT of a BAFD are given by

S Y2, ym) = rk—ko(y1,y2,- -, Ym)

=rk— {V(k —1) = Lrea Mx) {H;":l [(1 —Yi)si — 1}%}} (18)
=r+ Zé)/\(x) {H;'nzl [(1 —Yi)si — 1]}(1} (19)

By Theorem 2.23 we can construct a 4 x 6 BAFD with k = 12,7 = Ay = 15,b = 30,A10 = 5, Ann =
6, A1 =8 with E[1,0] = 1, E[0,1] = 1, E[1,1] = 5.

Example 2.10. A 4 x 6 BAFD with block size 12 can be constructed using BA[10,6,2,2] and a resolvable BIBD
with 4 treatments and block size 2 as shown below. Consider the following BIBD with 4 treatments and block

size 2 where Xo, X1, Yo, Y1, Zo, Z1 represents the blocks.

Xo X1 Yo Y1 Zy Z4
o 2 0 1 o0 1
1 3 2 3 3 2

Table 7: Table of BIBD[4,6,2]

Also consider the BA(T)(3,2,1) given below

0 000011111
0 0111 00011
100 1 1 11000
0110101100
1110 01 0 0 01
1101000110

Table 8: Table of BA(T)[3,2,1]
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The example below uses Theorem 2.20.

Example 2.11. Let M = [0,1]. Among the differences of the corresponding elements of any two rows of the

following array 0 occurs twice wheres 1 occurs four times

00 0O0O0OQO
110101
001111
111010

hence we can construct a BA[12,4,2,2] shown in table 9 below

0 0000O0OT1TT1TT1T1T11
1101 01 0010 1O0
0011111140000
111010000101

Table 9: Table BA[12,4,2,2] = BA(T)[2,2,2]

Parameters of this Balanced array:
A(0,0) = A(1,1) =2; A(0,1) =A(1,0) =4

Theorem 2.12. For all k and s,there always exists a BA[T|[k, s, A] for some A.

Proof. For all k and s, there exists a TA[(ks — 1)ksn, ks, ks, 2] for some n. Let the symbols of the transitive
array be denoted by [0, 1, ..., ks — 1]. If we replace each symbol in the transitive array by x(modk). Then
the transitive array becomes a BA[(ks — 1)ksn, ks,s,2] with parameters A(x,y) = (k— 1)kn or k’n
according as x = y or not, which is a BA[T][ks,s, kn|. The method of construction in Theorem 2.12

does not usually provide balanced arrays with a small number of assemblies as we desire. O

Example 2.13. Suppose k = 2,s = 2, and n = 1 then we can construct a TA[(ks — 1)ksn, ks, ks,2] =
TA[12,4,4,2]

310213 202013
13202013 310 2
2 01 3 310213220
0 23102 3102 31

Table 10: TA[12,4,4,2]

replacing every symbol in TA[12, 4, 4,2] by x(mod2), we have a BA[12,4,2,2] = BA(T)|2,2,2]
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110 01 1 000011
110000111100
0 01111001100
0 01 100110011

Table 11: BA[12,4,2,2]

parameters of BA[12,4,4,2] are A(0,0) = A(1,1) =2 = (k—1)kn and A(1,0) = A(0,1) = 4 = K*n.

Corollary 2.14. If a hadamard matrix of order 4k exists, then a BA(T)[k,2,1] exists, and can always be

constructed.

Proof. If a hadamard matrix of order 4k exists, we can arrange its elements such that all the elements in
the first column and the first row are +1. All other columns must then contain 2k(+1’s) and 2k(—1's).
Deleting 2k rows whose second column is 1. We obtain OA[4k, 2k, 2,2] with all the elements equal to
+1 in the first column and equal to —1 in the second column. We then construct a BA(T)Ik, 2, 1] since

the OA[4k, 2k, 2,2] is partly resolvable. dJ

Example 2.15. Using the Sylvester type hadamard matrix of order 8, k = 4, that leads to an OA[16,8,2,2] We
then obtain BA[T][4,2,1].

0 0000001111111
10101 01O0101O0T10O0
0110 0111001100
110011 0O0O01 1001
0 001 1111110000
101 10100100101
011110 01O0O0O0O0T11
1101001 0010110

Table 12: Table BA[14,8,2,2] = BA[(T)[4,2,1]]

Parameters of BA(T)[4,2,1]

e A(0,0) =A(1,1) =3
e A(0,1) = A(1,0) =4
Corollary 2.16. If k and s are both powers of the same prime p a BA(T)[k, s, 1] can always be constructed.

Proof. We can always construct a completely resolvable orthogonal array OA[As?, A(s + 1) +1,s,2] by

deleting any A + 1 constraints(factors) we obtain OA[As?, As, s,2]. O

Example 2.17. For k = 3 and s = 3 we can construct a BA(T)[3,3,1] by first constructing a completely
resolvable OA[27,9,3,2] We eventually obtain BA(T)I[3,3,1]
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0 0000O0OO0GOGOTLT1T1T1T1T1111222222222
0120120121201201202012¢0712°01
021021021102 102102210210271°0
0001112221112 220002272¢00°011:1
0121202011202 0710122010127120
021102210102 210072712710027171°0 2
000222111111 00027222221110°00
01220112012 00122012071120012
021210102710202121027101072¢0 21
Table 13: An OA(27,9,3,2)A =3
0000O0OO0OOOOT1711 1111122222222
1 2012012201201 20012¢0T1201
2102102102102 10271021072T10
001112221122 200027200¢0T1T1:1
12120201202010712010712120
211022 100221002717100271T1F0 2
0022211111000 222221171000
12201120200122010112001?2
2121010202021 210710102°0 21

Table 14: Table BA(T)[3,3,1] = BA[24,9,3,2]

Parameters are; A(0,0) = A(1,1) = A(2,2) = 2, A(0,1) = A(1,0) = A(0,2) = A(2,0) = A(L,2) =
A2,1) = 3.

Corollary 2.18. If s = p", k = 2s where p is an odd prime, n > 1 and | > 0, then a BA(T)[k,s, 1] can always

be constructed.

Proof. We can always construct OA[ks? ks, s, 2] by developing a difference scheme D(2s,2s,s). We then
construct a BA(T)(k,s, A) O

Example 2.19. For s = 3 and k = 2 implies 3 = 3,k = 2.3% = n = 1 and | = 0 We can therefore construct
0A[2.3%,2.3,3,2] = OA[18,6,3,2]

by developing a difference scheme D(2s,2s,s) = D(6,6,3)

Table 15 shows a difference scheme D(6,6,3) constructed in a similar way from GF(3)

0 000 0 O
01 21 20
0 21 10 2
0 2 2 011
0 01 2 21
01 0 2 1 2

Table 15: A difference Scheme D(6,6,3)
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o 0000011111112 222272

o1 212012502201 220T1T°071 2

02110210221 021¢00 21

0220111001 2221172200

0oo0o122111200222201T1S7F®O0

010 2121210202250 21°01

Table 16: Table OA[18,6,3,2]
From this orthogonal array we obtain BA(T)|[2,3,1]

o 000011111222 22
121202 02 010101 2
21102 0221010021
22011 00122112200
01 2211200220110
10 21 2 21 02002101

Table 17: Table BA(T)[2,3,1] = BA[15,6,3,2]

Parameters of BA(T)[2,3,1]

¢ A(0,0) =A(1,1) =A(2,2) =1
¢ A(0,1) = A(1,0) = A(0,2) = A(2,0) = A(1,2) = A(2,1) =2

Theorem 2.20. Let M be a module of s elements. It is possible to choose k rows and N columns (N =

A1+ Ax(s — 1), Ay and Ay integers)

a1 412 . . . 41N
a1 dpyp . . . d2N
a1 Ay .- . . KN

with elements belonging to M such that among the differences of the corresponding elements of any two rows,
the element O occurs Aq times and the other non zero elements occur Ay times, then by adding the elements of the
module to the elements in the above array and reducing mod s, we can generate Ns columns: this constitutes a

BA|N, k, s, 2] with parameters A(x,y) = Ay or Ay according as x =y or x # y.

Example 2.21. Let M = [0,1,2]. Among the Differences of corresponding elements of any two rows of the

following array,0 occurs 6 times wheres 1 and 2 each occur 8 times.
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NNORFRPROONRFRDNRFR PO
NOROONRNRRNO
O R OONRFRFNRFRRFRLRNNO
R OONRNRRNNOO
OCONRNRRLRNNORO
ONNEFPFNRFRPREFPNNORFR, OO
N, NP PRP,PNNOROOO
R NP, R, NNOROONO
NP, L, DNNORFROONRFRO
R R NNOROONRNO
R NNOROONRNRO
_ _ ONOO R NEFEFDNDNO
— ONOORFRDNFDNDNRFRO
ONOORNRFRNNRRO
N OO R NFDNNRFERRROO
OO FRLRNEFEFDNNRFRERL,ONO
O RN EFDNNRFRFRLRONOO
P NP NNRPRL,PONOOO
N L, NNNRPRR,PONOOO RO
R NN RR,ONOORNO
NNFEPR P ONOO R, DNRFRO
NP P ONOORFRL,RDNRFLFDNO

hence we can construct a BA[66,12, 3, 2] with parameters A(x,y) = 6 or 8 according as x = y or not. i.e

BA(T)[4,3,2].

Example 2.22. Let M = [0,1, 2, 3]. Among the differences of the corresponding elements of any two rows of the

following array,0 occurs 4 times, wheres 1,2 and 3 occur 6 times each.

O FRL NODNRFRRFRWDNWWOOo
R NONRFRFEFRWNWWOO
N ONRFRE R WDNWWOORFRO
ONNPFP P WNWWOoORRLDNO
NP P WNWWORLNOO
_ = WONWWOoO R, NODNO
R WNWWORNONRO
WNWWORNONR—=O
N WWORRLrNODNRFR PR WO
W WO L NODNRFR P WDNhDO
WO R NONRFRRFRWNWO
O WINODNWWEFELEDNRERR=,O
W INONWWEFREDNRFRRFR,OO
N ODNWWEFRDNRFRERFRO WO
ON WWEFRErNRFER R, OWNO
N WWRNRFRRPRPOWNDOO
WWRNRROWNONO
WL NNR PO WNON WO
RPN R R, O WNONWWO
NP, P OWNODNWWROoO
— kP, O WNONWWRFLDNO
— O WDNODMNWWEFEDNRFEO

hence we can construct a BA[88, 12,4, 2] with parameters )\(x,y) = 4 or 6 according as x = y or not,i.e
BA(T)[3,4,2].
Assume that there exists a BAFD with m factors Fy, F,, ... Fy, at s1,52,. .., 5y levels respectively, each of

the v* treatments replicated r* times in b* blocks of k* plots each, with the incidence matrix:

N* = [Af|A3]... |Aj+] 0)

Further assume that b* = pg, and the pq bloacks can be divided into p groups of g blocks each, such
that the design consisting of p blocks formed by adding together all the blocks of a group is a BAFD.

The incidence matrix is

* q % q * q *
Npq - [ijl A j| Z]‘:l A J'+q‘ e ’ 2;:1 A pa—q+j (21)

for a resolvable design N*, the corresponding N, exists with p = r*.
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Theorem 2.23. If there exists a resolvable BIBD with gs treatments and block size q, then there exists a ps x gs

BAFD with block size pqs such that all main effects are estimated with full efficiency.

Proof. Construct a BA(T)(p,s,n) for some integer n by Theorem 2.12. In the resolvable BIBD, there
being s blocks in each replication , we can number the block in each replication by 0,1,---,s — 1.
Replacing each symbol in the balanced array by a group of symbols which represents blocks in the
BIBD for each replication, we obtain a pgs x [ps — 1]snr’ matrix, where 7' is the number of replications
in the BIBD. Assign i level of F; to the rows from the (i, + 1) to the (i+ 1), wherei = 0,1,- -+, ps —
1.Identifying columns and symbols with blocks and the levels of F,, we get a ps x gs design with block
size pgs.

We shall show that all the main effects of the design constructed above are estimated with full
efficiency.Let A’ be the number of blocks in which two treatments occur together in the BIBD, then
(gs —1)A" = (g —1)r'. Assume that 7 = (gs —1)m and A" = (g — 1)m, where m need not be an integer.
Let Ag1, Ao, A1 denote the parameters and r denote the number of replications in the ps x gs design,

then through inspection we have O

A(x,y) = (ps— 1) (gs — 1)V (p — 1)" (g — 1)Ymn + (xy)(pq) (s — 1)Ymn (22)
x,y =0or1in mod 2

Aor = (ps —1)(q — 1)mn
Ao = (gs —1)(p — 1)mn
A = (p—1)(q —L)mn+ pg(s — 1)mn

(23)

Ao =1=(ps—1)(gs —1)mn

if we substitute the parameters of the equations (15), (16) and (17) in equations (23) and Corollary 2.26

we get
s—1

(ps —1)(gs — 1)

Given any g and s, there always exists a resolvable BIBD with gs treatments and block size g if the

E[0,1] =E[1,0] =1 and E[1,1] = — +1

number of replications is allowed to be large.

s
Example 2.24. The irreducible BIBD of qs treatments with block size q in which each of the (q

) possible q—
q

element combinations form a block is resolvable with parameters

-1 -2
v=gs, b= 9 , r= 7 , k=g, A= 1 (24)
q q—1 q—2

Let Fi,F,...,Fy, be m factors at sq,sy,...,5, levels respectively and N be the incidence matrix of a

BAFD
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Theorem 2.25. The eigenvalues of NN’ of a BAFD are g(y1,Y2,-..,Ym)’s with corresponding eigenvectors
given by the columns of p¥ where y = (y1,y2, ..., Ym) € Q.

It should be noted that the multiplicity of g(vi,y2,...,ym) is [Ti%; (si — 1)¥. Since C = r(®",I;) —

k~'NN’, The columns of PY y € Q are also the eigenvectors of C with corresponding eigenvalues

1
py) =728 y2 - Ym) (25)
=71- %g(y% yen (26)

Corollary 2.26. Let E(y) denote the interaction efficiencies of a BAFD, where g(y) denotes the eigenvalues of
NNT then E(y) = 1— *¢(y) and E(y) = 1if and only if g(y) = 0

Definition 2.27. Suppose we have a C— matrix of the design in v(= s1s2 . ..sy) treatment combinations, then

the design is said to possess property A if

C=Y s)(h-h)"@(L-L)"2®...0 (Ju— L)’ (27)
yeQ*

where g(y)’s are constants depending on y;'s and y; = 0 or 1 and (J; — L;)¥ = J; — I if y; = 1 while
(Ji— L)Y =1Liify; =0

The element which is in the (x1,x2,...,%,)" row and (yl,yz,...,ym)th column of the matrix (the
treatments are in lexicographic order) is 1 if (x1,x2,..., %) and (y1,Y2,-..,Ym) are (y1,Y2,.- -, ym)fh
associates, and 0 otherwise. Two treatments which are (y1,12,... ,ym)th associates occur together in

AY1Y2 ... Ym blocks; hence we have the following lemma
Lemma 2.28. Let N be the incidence matrix of a BAFD; then

= 2 )\ylyzym(h — I])yl &® (]2 — Iz)yz ®...Q (]m - Im)ym (28)
yeQ*

where Ayo...o is defined to be r.

Further let J; = s; ® s; to be a matrix with all elements equal to 1. Let ()* be the set of all m— component
binary vectors, thatis Q* = QU {(0,0,...,0) } where Q) is the set of 2" — 1 none null binary m— tuples.
Fory = (y1,y2,---,ym) € QO let

7V =@M, ZY (29)

where for 1 <i <m,
Zl-yi:Ii if yizl

=] if y;=0

(30)

Definition 2.29. A v x v matrix G where v = Ils; will be said to have property A if it is of the form G =

Y. h(y)ZY where h(y),y € QF, are real numbers
yeQ*
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Let M0 =@ (s/';), (31)
Which defines MY for every y € QO*. Also let the (v — 1) x v matrix P be defined as

/ !/

P=(..,P,. ), (32)

!

where PY is included in P for every y € (). For example if m = 2 then P = (Pm,, Plo,, Pll,)

Definition 2.30. An r x ¢ array D with entries from A is called a difference scheme based on (A, +) if it has
the property that for all i and j with 1 < i, j < c, the vector difference between the it" and j*™* columns contains

every element of A equally often if i # j

Example 2.31. We illustrate the construction for the case p = 3,m = 2,n = 1, this will result to a difference
scheme D(9,9,3). In this special case the field GF(p") in the construction is actually the subfield of GF(p™)
and the multiplication of elements of GF(p") is the same in both fields. Table 18 is a multiplication table for
GF(3?%), based on the irreducible polynomial f(x) = x* + x + 2, we represent the nine elements of GF(32) in

condensed notation writing 0 as 00, 1 as 10, 1 + 2x as 01 and so on.

(* 00 10 20 01 11 21 02 12 22
00 00 00O 00 00O 00 00 00 00 00
10 00 10 20 01 11 21 02 12 22
20 00 20 10 02 22 12 01 21 11
01 00 01 02 12 10 11 21 22 20
11 00 11 22 10 21 02 20 01 12
21 00 21 12 11 02 20 22 10 O1
02 00 02 01 21 20 22 12 11 10
12 00 12 21 22 01 10 11 20 02
22 00 22 11 20 12 01 10 02 21

Table 18: Multiplication table for GF(3?)

Upon applying the map: For m = 2 : by + by x is the polynomial and for n = 1 : by is the polynomial
hence we apply the map. by + bjx — bg to the entries of this table to obtain the Difference Scheme
D(9,9,3) based on (GF(3),+) which is exhibited in Table 19

0 0 00O O O0OO0OTFPO
01201201 2
0210210 21
0 001 112 2 2
01 212 0 2 01
0 21102210
0 00222111
0122011220
02121010 2

Table 19: A difference scheme based on (GF(3), +)
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