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1. Introduction

Norwegian mathematician Sophus Lie introduced the notion of Lie group to study the solutions of ODEs. Lie recognized

the transformation properties of a nonlinear ODE under certain groups of continuous transformations as being fundamental

in analyzing its solution. The nonlinear ODE is:

y′′′ − y′
(
y′′

y

)4

= 0 (1)

It’s commonly used in many physical applications especially in engineering field and its very complex to be solved analytically.

2. Review of Literature

In related researches Oyombe, (2019) applied Lie symmetry analysis to solve (1) which yielded a general solution of the

form:

V =
1

(U ′)4

∫ (
U ′′
)4 (

U ′
)2

(U)−4 dU (2)

We have used this same (1) to sequentially get a mathematical solution as opposed to a general solution. We have also

shown materials and methodology used in details. Opiyo [2] solved a third order nonlinear ODE and got a solution. The

equation was of the form:

y′′′ = y

(
y′′

y′

)3

(3)
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and whose solution is:

V =
1

A (u′)4

∫
u
(
u′′
)3 (

u′
)−2

du (4)

He applied Lie groups of transformations, Lie algebras, infinitesimal transformations, invariance under transformation,

symmetry, Lie’s integrating factor, method of canonical variables, Lie point symmetries and reduction of order. In our work,

we used similar concepts except adjoint symmetries and method of canonical variables. Aminer [3] worked out a fourth

order nonlinear wave equation. The form of the equation was:

(
yy′
(
y
(
y′
)−1
)′′)′

= 0 (5)

and its solution is:

V =
1

u3 + e2u′−1

∫ (
u3 + e2u

′−1
) (

4u−1u′′2u′−4 − 4u′′3u′−6 − u−2u′−2u′′
)
du (6)

He applied Lie groups of transformations, Lie algebras, infinitesimal transformations, invariance under transformation,

symmetry, Lie’s integrating factor, method of canonical variables, Lie point symmetries, increasing of order and reduction

of order. We used similar method during our research work. Yulia [4] solved a third order ODE which was quadratic in the

second order derivative without a higher degree. He employed Lie groups, infinitesimal generators, transformation maps and

group invariants. We applied the same to our problem. Kweyama [5] researched on Lie symmetries in generating solutions

to differential equations that arise in particular physical systems. It was of the form:

2HH ′′ + 6H2H ′ −H ′2 + aH2 = b (7)

where H = H (t) and got a quadratic equation whose form is:

p2 + 2pq − 1 = 0 (8)

where p and q are invariants. He used Lie groups, Lie algebras, infinitesimal transformation, invariance under transforma-

tion, symmetry, Lie point symmetries, reduction of order, increasing the order, nonlocal symmetries and transformation of

symmetries. We borrowed similar concepts to our work. Mehmet [6] solved a fourth order generalized Burger’s equation by

confining himself to the application of Lie point symmetries. Bluman and Anco [7] worked on how to find all the integrating

factors and the corresponding first integrals for any system of ODEs. These integrating factors were shown to be all the

solutions of both the adjoint system of the linearised system and a system which presents an extra adjoint invariance con-

dition of the ODEs. Abraham-Shrauner [8] determined second order nonlinear ODE and obtained a solution by applying

Lie groups, group invariants and order reduction to get his solution. Schwarz [9] solved a second order differential equation

and obtained a solution successfully by using Lie groups, infinitesimal generators, Lie algebras, prolongation and differential

invariants which yielded the solution.

3. Materials and Methodology

3.1. Lie Groups of Transformations

A Group:

A group K is a non-empty set of elements with a law of composition Ω defined between the elements satisfying the following

conditions:
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(1). Closure Property: If x and y are elements of K, then Ω (x, y), ∀ x, y ∈ K; then Ω (x, y) ∈ K.

(2). Associative Property: For any elements x, y and z of K, ∀ x, y, z ∈ K; then Ω (x,Ω (y, z)) = Ω (Ω (x, y) , z).

(3). Identity Property: K contains a unique element called identity element I such that for any element x of K, there

exist an identity element I ∈ K such that: then Ω (I, x) = Ω (x, I) = x.

(4). Inverse Property: For any element x of K there is a unique element in K called inverse element x−1 such that

∀ x ∈ K, ∃ inverse element x−1 ∈ K, then Ω
(
x−1, x

)
= Ω

(
x, x−1

)
= I.

A Group of Transformations:

Consider a transformations set: x = (x1, x2, ·, xm) lie in a region D ⊂ Rm. Consider another transformations set: x∗ =

X (x, ε) defined for each x in D ⊂ R depending on real parameter ε lying in S ⊂ R. Suppose Ω (ε, δ) defines a composition

parameter law ε, δ and forms a transformation group on D [7]. x∗ = X (x, ε), x∗∗ = X (x,Ω (ε, δ)). Hence, it is a

transformations Lie group.

3.2. Lie Algebras

Commutator:

If G1 and G2 are vector fields then their commutator (also known as a Lie bracket) is defined as follows:

[G1, G2] = G1G2 −G2G1 (9)

Lie Algebra:

L, Lie algebra is a vector space over some field F , on which commutation is defined satisfying the following Sophus Lie

conditions:

1. Closure:

G1, G2 ∈ L⇒ [G1G2] ∈ L

2. Skew-symmetry:

[G1, G2] = − [G2, G1] (10)

3. Bi-linearity:

[k1G1 + k2G2, G3] = k1 [G1, G3] + k2 [G2, G3] (11)

[G1, k1G2 + k2G3] = k1 [G1, G2] + k2 [G1, G3] (12)

where k1 and k2 are constants.

4. Jacobi’s Identity:

[G1, [G2, G3]] + [G2, [G3, G1]] + [G3, [G1, G2]] = 0 (13)

for all G1, G2 and G3 in L. If [G1, G2] = 0 then we say G1 and G2 commute and if all the elements of L commute

then L is called Abelian Lie algebra.
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3.3. Infinitesimal Transformations

Let us consider a transformation of one-parameter: x∗ = X (x, y, λ) and y∗ = Y (x, y, λ) where λ is a continuous parameter.

By taking the Taylor series expansion of this transformation about the point λ = λ0 we generate:

x∗ = x+

(
∂X

∂λ

)
λ=λ0

(λ− λ0) + . . . (14)

y∗ = y +

(
∂Y

∂λ

)
λ=λ0

(λ− λ0) + . . . (15)

The partial derivatives evaluated at λ = λ0 with respect to group parameter λ are known as infinitesimals and are functions

of x andy. Let us denote them by: (
∂X

∂λ

)
λ=λ0

= ξ (x, y) (16)(
∂Y

∂λ

)
λ=λ0

= η (x, y) (17)

Considering the values of λ sufficiently close to λ0 by writing the coordinates of the transformation as follows: x∗ =

x+ ξ (x, y) (λ− λ0) and y∗ = y+ η (x, y) (λ− λ0) where terms of second and higher degree in (λ− λ0) have been neglected.

This transformation is known as an infinitesimal transformation.

Infinitesimal Generator:

The one-parameter Lie group of transformations of infinitesimal generator is an operator:

X = X (x) = γ (x) .∇ =

n∑
i=1

γi (x)
∂

∂xi
(18)

where the gradient operator ∇ is given as; ∇ =
(

∂
∂x1

, ∂
∂x2

, . . . , ∂
∂xn

)
for any function that is differentiable: F (x) =

F (x1, x2, . . . , xn) and

XF (x) = γ (x) .∇F (x) =

n∑
i=1

γi (x)
∂F (x)

∂xi
(19)

Thus a one-parameter transformations of Lie group is “equivalent” to its infinitesimal generator in the same way it is

“equivalent” to its infinitesimal transformation.

3.4. Prolongations (Extended Transformations)

When we want to apply a transformations point: x∗ = X (x, y, ω) and y∗ = Y (x, y, ω) to the differential equation:

H
(
x, y, y′, y′′, y′′′, ..., y(m)

)
= 0 (20)

y′ = dy
dx

. We want to transform the derivatives y(m) that is to extend (prolong) the point transformation to the derivatives.

The task here is extending on the transformation (20) acting on (x, y) to the (x, y, y1, y2, y3, ..., ym) space with the property

of preserving the contact of differentials conditions: dx, dy, dy1, dy2, ..., dym

dy = y1dx

dy1 = y2dx

dy2 = y3dx

...

dym = ym+1dx

(21)
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3.5. Invariance under Transformations

Invariant

An invariant is that which remains unchanged when its constituents change. The concept of invariance has a physical basis

in the conservation laws of mechanics. A functionf under a Lie group is invariant if and only if

f (x∗, y∗) = f (X (x, y, λ) , Y (x, y, λ)) = f (x, y) (22)

The function must read the same when expressed in the new variables.

3.6. Variation Symmetries

Symmetry

Symmetry is an operation which leaves invariant that upon which it operates. Symmetry of a transformation geometrical

object apparently leaves the object unchanged. Consider the transformation of infinitesimal form:

x∗i = xi + εωi, i = 1, 2, ...,m (23)

where ε is a parameter of smallness. Here equation (23) can be written as x∗i = (1 + εG)xi, where G = ωi
∂
∂xi

is a differential

operator called the generator of the transformation (23). Consider:

G = ω
∂

∂x
+ φ

∂

∂y
(24)

Under the infinitesimal transformation generated by G, a function f (x, y) becomes:

f∗ (x∗, y∗) = (1 + εG) f (x, y) = f + ε

(
ω
∂f

∂x
+ φ

∂f

∂y

)
(25)

If the form of f is unchanged then f∗ (x∗, y∗) = f (x, y) or

ω
∂f

∂x
+ φ

∂f

∂y
= 0 (26)

then G is called a symmetry of f .

3.7. Lie Theory of Differential Equations

Lie Point Symmetries of ODEs

Point symmetry is a symmetry in which the infinitesimals depend only on coordinates [4]. We describe Lie point symmetry

as a point symmetry that depends continuously on at least one-parameter, thus the parameters can vary continuously over a

set of scalar non-zero measure. Lie point symmetries of ODEs are of the form:G = ω ∂
∂x

+φ ∂
∂y

where ω and φ are coefficients

functions of only x and y. To apply a point transformation to an mth order ODE, f
(
x, y, y′, y′′, ..., y(m)

)
= 0, where y′ = dy

dx
,

y′′ = d2y
dx2

, . . . , y(m) = dmy
dxm

, we need to know how derivatives undergo infinitesimal transformation: x∗ = x+ ∈ ω (x, y),

y∗ = y+ ∈ φ (x, y) which has a generator given by

G = ω (x, y)
∂

∂x
+ φ (x, y)

∂

∂y
(27)
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In terms of the quantities x∗ and y∗ we have the derivative:

dy

dx
=
d (y + εφ)

d (x+ εω)

=
dy
dx

+ ε dφ
dx

1 + ε dω
dx

=
(
y′ + εφ′

) (
1− εω′ + ε2ω′2 − ...

)
= y′ + ε

(
φ′ − y′ω′

)
(28)

which we have terminated at O
(
ε2
)
. The primes here are for total differentiation with respect to x. Now our second

derivative gives:

d2y∗

dx∗2
=

d

dx∗

(
dy∗

dx∗

)
=
d [y′ + ε (φ′ − y′ω′)]

d (x+ εω)

=
dy′

dx
+ ε d

dx
(φ′ − y′ω′)

1 + εω′

= y′′ + ε
(
φ′′ − 2y′′ω′ − y′ω′′

)
(29)

Further, the third derivative is as follows:

d3y∗

dx∗3
= y′′′ + ε

(
φ′′′ − 3y′′′ω′ − 3y′′ω′′ − y′ω′′′

)
In general, we generate the formula:

dmy∗

dx∗m
= y(m) + ε

(
φ(m) −

m∑
i=1

Cmi y
(i+1)ω(m−i)

)
(30)

where the superscript (i) denotes di

dxi
and Cmi is the number of combinations of m objects taken i at a time. We indicate

that a generator G has been extended by writing

G[1] = G+
(
φ′ − y′ω′

) ∂

∂y′
(31)

G[2] = G[1] +
(
φ′′ − 2y′′ω′ − y′ω′′

) ∂

∂y′′
(32)

for the first and second extensions respectively. For an mth order differential equation, the mth extension is of the form:

G[m] = G+

m∑
i=1

{
φ(i) −

i∑
j=1

[
i
j

]
y(i+1−j)ω(i)

}
∂

∂y(i)
(33)

The generator G = ω ∂
∂x

+φ ∂
∂y

is symmetry of the differential equation E(x, y, y′, y′′, ..., y(m)) = 0 if and only if G[m]EE=0 = 0

which means that the action of the mth extension of G on E is zero when the original equation is satisfied.

3.8. Reduction of Order

If a differential equation: E
(
x, y, y′, ..., y(m)

)
= 0 has symmetry:

G = ω (x, y)
∂

∂x
+ φ (x, y)

∂

∂y
(34)

we obtain an equation of order (m− 1) in a systematic manner. This is achieved by using the zeroth and first order

differential invariants which are the two characteristics associated with G[1]. The characteristics are obtained by solving the

following system of ODEs:

dx

ω
=
dy

φ
=

dy′

φ′ − y′ω′ (35)
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3.9. Integrating Factors

3.9.1. Theorem on Integrating Factor

Consider a first order ODE: M(x, y)dx + N(x, y)dy = 0 which admits a one-parameter Lie group G with an infinitesimal

generator: X = σ(x, y) ∂
∂x

+ ψ(x, y) ∂
∂y

if and only if the function:

ρ =
1

σM + ψN
(36)

is the integrating factor provided that σM + ψN 6= 0

4. Results and Discussion

We solved a third order nonlinear ODE of fourth degree in second derivative which is a form of a wave equation:

F (x, y, y′, y′′, y′′′) = 0 or

y′′′ = f
(
x, y, y′, y′′

)
(37)

Our objective was to solve the special case (37) using the method of Lie symmetry. By expressing (1) in other ways gives:

y′′′ − y′
(
y′′4

y4

)
= 0, when the power is brought into the bracket:

y′′′ − y′ (y)−4 (y′′)4 = 0 (38)

after applying the law of indices and removal of the fraction. By applying the mth extension of G given as:

G[m] = G+

m∑
i=1

(
φ(i) −

i∑
j=1

[
i
j

]
y(i+1−j)ω(i)

)
∂

∂y(i)
(39)

where m is the order, i is the upper limit and j is the lower limit. Then the third extension of G[3] is:

G[3] = ω
∂

∂x
+ φ

∂

∂y
+
(
φ′ − ω′y′

) ∂

∂y′
+
(
φ′′ − 2y′′ω′ − y′ω′′

) ∂

∂y′′
+
(
φ′′′ − 3y′′′ω′ − 3y′′ω′′ − y′ω′′′

) ∂

∂y′′′
(40)

Now, manipulating G[3] on (38) yields:

(
ω
∂

∂x
+ φ

∂

∂y
+
(
φ′ − ω′y′

) ∂

∂y′
+
(
φ′′ − 2ω′y′′ − ω′′y′

) ∂

∂y′′

+
(
φ′′′ − 3ω′y′′′ − 3ω′′y′′ − ω′′′y′

) ∂

∂y′′′

)(
y′′′ − y′

(
y′′
)4

(y)−4
)

= 0 (41)

Hence, expansion of (41) gives:

⇒ ω
∂

∂x

[
y′′′ − y′

(
y′′
)4

(y)−4
]

+ φ
∂

∂y

[
y′′′ − y′

(
y′′
)4

(y)−4
]

+
(
φ′ − ω′y′

) ∂

∂y′
+
(
φ′′ − 2y′′ω′ − y′ω′′

) ∂

∂y′′

[
y′′′ − y′

(
y′′
)4

(y)−4
]

+
(
φ′′′ − 3y′′′ω′ − 3y′′ω′′ − y′ω′′′

) ∂

∂y′′′

[
y′′′ − y′

(
y′′
)4

(y)−4
]

= 0 (42)

From (42) after simplifying and then combining gives:

ω [ y(iv) −
(
y′′
)5

(y)−4 − 4y′
(
y′′
)3

(y)−4 y′′′ + 4
(
y′
)2 (

y′′
)4

(y)−5 ]
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+ φ
[
4y′
(
y′′
)4

(y)−5
]

+
(
φ′ − ω′y′

) [
−
(
y′′
)5

(y)−4
]

+
(
φ′′ − 2y′′ω′ − y′ω′′

) [
−4y′

(
y′′
)3

(y)−4 y′′′
]

+
(
φ′′′ − 3y′′′ω′ − 3y′′ω′′ − y′ω′′′

)
= 0 (43)

Thus, from (38) we have: y′′′ − y′ (y′′)4 (y)−4 = 0

⇒ y′′′ = y′
(
y′′
)4

(y)−4 (44)

and y(iv) = (y′′′)
′

hence y(iv) =
(
y′ (y′′)

4
(y)−4

)′
y(iv) =

(
y′′
)5

(y)−4 + 4y′
(
y′′
)3
y′′′ (y)−4 − 4

(
y′
)2 (

y′′
)4

(y)−5 (45)

By substituting gives:

ω [
(
y′′
)5

(y)−4 + 4y′
(
y′′
)3
y′′′ (y)−4 − 4

(
y′
)2 (

y′′
)4

(y)−5 −
(
y′′
)5

(y)−4

− 4y′
(
y′′
)3

(y)−4 y′′′ + 4
(
y′
)2 (

y′′
)4

(y)−5 ] + [ 4y′
(
y′′
)4

(y)−5 ]φ

−
[(
y′′
)5

(y)−4
] (
φ′ − ω′y′

)
−
[
4y′
(
y′′
)3

(y)−4 y′′′
] (
φ′′ − 2y′′ω′ − y′ω′′

)
+
(
φ′′′ − 3y′′′ω′ − 3y′′ω′′ − y′ω′′′

)
= 0 (46)

Further simplification gives:

ω
(
y′′
)5

(y)−4 + 4ωy′
(
y′′
)3

(y)−4 y′′′ − 4ω
(
y′
)2 (

y′′
)4

(y)−5 − ω
(
y′′
)5

(y)−4

− 4ωy′
(
y′′
)3

(y)−4 y′′′ + 4ω
(
y′
)2 (

y′′
)4

(y)−5 + 4φy′
(
y′′
)4

(y)−4 − φ′
(
y′′
)5

(y)−4

+ ω′y′
(
y′′
)5

(y)−4 − 4φ′′y′
(
y′′
)3

(y)−4 y′′′ + 8ω′y′
(
y′′
)4

(y)−4 y′′′ + 4ω′′
(
y′
)2 (

y′′
)3

(y)−4 y′′′

+ φ′′′ − 3ω′y′′′ − 3ω′′y′′ − y′ω′′′ = 0 (47)

Again when simplified, it gives:

4φy′ (y)−4 (y′′)4 − φ′ (y)−4 (y′′)5 − 4φ′′y′ (y)−4 (y′′)3 y′′′ + φ′′′

+ 8ω′y′ (y)−4 (y′′)4 y′′′ + ω′y′ (y)−4 (y′′)5 − 3ω′y′′′ − 3ω′′y′′

4ω′′ (y)−4 (y′)2 (y′′)3 y′′′ − y′ω′′′ = 0 (48)

By expressing first, second and third derivatives of ω and φ in terms of partial derivatives given that: ω = ω (x, y) then

d (x) =
(
∂ω
∂x

)
dx+

(
∂ω
∂y

)
dy. Therefore

ω′ =
∂ω

∂x
+ y′

∂ω

∂y
(49)

ω′′ =
∂2ω

∂x2
+ 2y′

∂2ω

∂x∂y
+ y′2

∂2ω

∂y2
+ y′′

∂ω

∂y
(50)

ω′′′ =
∂3ω

∂x3
+ 3y′

∂3ω

∂x2∂y
+ 3y′′

∂2ω

∂x∂y
+ y′′′

∂ω

∂y
+ 3y′y′′

∂2ω

∂y2
+ y′3

∂3ω

∂y3
+ 3y′2

∂3ω

∂x∂y2
(51)

and also φ = φ (x, y) then d (φ) =
(
∂φ
∂x

)
dx+

(
∂φ
∂y

)
dy. Therefore

φ′ =
∂φ

∂x
+ y′

∂φ

∂y
(52)
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φ′′ =
∂2φ

∂x2
+ 2y′

∂2φ

∂x∂y
+ y′2

∂2φ

∂y2
+ y′′

∂φ

∂y
(53)

φ′′′ =
∂3φ

∂x3
+ 3y′

∂3φ

∂x2∂y
+ 3y′′

∂2φ

∂x∂y
+ y′′′

∂φ

∂y
+ 3y′2

∂3φ

∂x∂y2
+ 3y′y′′

∂2φ

∂y2
+ y′3

∂3φ

∂y3
(54)

When we substitute (49), (50), (51), (52), (53) into (48) we get:

⇒ 4φy′ (y)−4 (y′′)4 − φ′ (y)−4 (y′′)5 − 4φ′′y′ (y)−4 (y′′)3 y′′′ + φ′′′ + 8ω′y′ (y)−4 (y′′)4 y′′′ + ω′y′ (y)−4 (y′′)5
− 3ω′y′′′ − 3ω′′y′′ + 4ω′′ (y)−4 (y′)2 (y′′)3 y′′′ − y′ω′′′ = 0 (55)

When we expand, it yields:

4φy′ (y)−4 (y′′)4 − (y)−4 (y′′)5 ∂φ
∂x

(y)−4 (y′′)5 y′ ∂φ
∂y
− 4y′ (y)−4 (y′′)3 y′′′ ∂2φ

∂x2

− 8
(
y′
)2

(y)−4 (y′′)3 y′′′ ∂2φ

∂x∂y
− 4

(
y′
)3

(y)−4 (y′′)3 y′′′ ∂2φ

∂y2
− 4y′ (y)−4 (y′′)4 y′′′ ∂φ

∂y
+
∂3φ

∂x3

+ 3y′
∂3φ

∂x2∂y
+ 3y′′

∂2φ

∂x∂y
+ y′′′

∂φ

∂y
+ 3

(
y′
)2 ∂3φ

∂x∂y2
+ 3y′′y′

∂2φ

∂y2
+
(
y′
)3 ∂3φ

∂y3
+ y′′′

∂φ

∂y

+ 8y′ (y)−4 (y′′)4 y′′′ ∂ω
∂x

+ 8
(
y′
)2

(y)−4 (y′′)4 y′′′ ∂ω
∂y

+ y′ (y)−4 (y′′)5 ∂ω
∂x

+
(
y′
)2

(y)−4 (y′′)5 ∂ω
∂y

− 3y′′′
∂ω

∂x
− 3y′′′y′

∂ω

∂y
− 3y′′

∂2ω

∂x2
− 6y′′y′

∂2ω

∂x∂y
− 3y′′

(
y′
)2 ∂2ω

∂y2
− 3

(
y′′
)2 ∂ω
∂y

+ 4 (y)−4 (y′)2 (y′′)3 y′′′ ∂2ω

∂x2

+ 8
(
y′
)3

(y)−4 (y′′)3 y′′′ ∂2ω

∂x∂y
+ 4

(
y′
)4

(y)−4 (y′′)3 y′′′ ∂2ω

∂y2
+ 4

(
y′′
)4

(y)−4 (y′)2 y′′′ ∂ω
∂y
− y′ ∂

3ω

∂x3

− 3
(
y′
)2 ∂3ω

∂x2∂y
− 3y′y′′

∂2ω

∂x∂y
− 3

(
y′
)3 ∂3ω

∂x∂y2
− 3y′′

(
y′
)2 ∂2ω

∂y2
−
(
y′
)4 ∂3ω

∂y3
− y′y′′ ∂ω

∂y
= 0 (56)

where (56) forms an identity in x, y, y′, y′′, y′′′. Given that ω and φ are functions in x and y alone, by equating the

combinations of coefficients of the powers of y′, y′′, y′′′ to zero and integrating yields:

ω = A1y +A2 (57)

where A1 and A2 are arbitrary functions of x.

φ = A′1y
2 +A3y +A4 (58)

where A3 and A4 are arbitrary functions of x.

3A′′1y + 2A′3 −A′′2 = 0 (59)

By equating the coefficients of powers of y0 and y1 to zero in (59) and substituting yields:

A′′′1 y
−2 +A′′3 (y)−3 +A

′′
4 (y)−4 = 0 (60)

By equating the coefficients of powers of y−4, y−3 and y−2 to zero and solving yields:

A1 = B1x+B2, A3 = B3x+B4, A2 = B3x
2 +B5x+B6 and A4 = B7x+B8

where B1, B2, B3, B4, B5, B6, B7, B8 are arbitrary constants. From ω = A1y +A2 and substituting A1 and A2 gives:

ω = B1xy +B2y +B3x
2 +B5x+B6 (61)
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From φ = A′1y
2 +A3y +A4 then by substituting A1, A3 and A4:

φ = (B1x+B2)′ y2 + (B3x+B4) y +B7x+B8 (62)

Now the infinitesimal generator G is of the form: G = ω ∂
∂x

+ φ ∂
∂y

By substituting ω and φ, this form is then given as:

G =
(
B1xy +B2y +B3x

2 +B5x+B6

) ∂

∂x
+
(
B1y

2 +B3xy +B4y +B7x+B8

) ∂

∂y

Therefore

G = B1

(
xy

∂

∂x
+ y2

∂

∂y

)
+B2

(
y
∂

∂x

)
+B3

(
x2

∂

∂x
+ xy

∂

∂y

)
+B4

(
y
∂

∂y

)
+B5

(
x
∂

∂x

)
+B6

(
∂

∂x

)
+B7

(
x
∂

∂y

)
+B8

(
∂

∂y

)
(63)

which is eight parameter symmetry. We can generate an eight− one parameter symmetry given by:

G1 =
∂

∂x
,G2 =

∂

∂y
,G3 = x

∂

∂x
,G4 = y

∂

∂x
,G5 = y

∂

∂y
,

G6 = x
∂

∂y
,G7 = xy

∂

∂x
+ y2

∂

∂y
,G8 = x2

∂

∂x
+ xy

∂

∂y

(64)

Now, the non-zero Lie brackets are given as follows:

[G1, G3] = G1, [G1, G6] = G2, [G2, G4] = G1, [G2, G5] = G2, [G2, G8] = G6,

[G3, G4] = −G4, [G3, G6] = G6, [G4, G5] = −G4 [G4, G8] = G7, [G5, G7] = G7

The process of finding the symmetries of ordinary differential equations is highly systematic. Thus let

S1 =
∂

∂x
, S3 = x

∂

∂x
(65)

which are the Lie solvable algebra of the admitted eight-one parameter symmetry (64). By solving using prolongation:

G[3] = G[2] +
(
φ′′′ − 3y′′′ω′ − 3y′′ω′′ − y′ω′′′

) ∂

∂y′′′
(66)

Consider the third order prolongation for the differential invariant operator: G = S = ω ∂
∂x

+ φ ∂
∂y

. It then follows that:

S
[0]
1 = ∂

∂x
, S

[1]
1 = ∂

∂x
, S

[2]
1 = ∂

∂x
,

S
[3]
1 = 1 • ∂

∂x
+ 0 • ∂

∂y
(67)

By solving for the characteristic: dx
1

= dy
0

, then dy = 0 and integrating yields the differential invariant:

y = U (68)

where U is a constant, a function of x. Again, consider the third order prolongation of the differential invariant operator:

G = S = ω ∂
∂x

+ φ ∂
∂y

and when S3 = x ∂
∂x

it follows that:

S
[0]
3 = x

∂

∂x
, S

[1]
3 = x

∂

∂x
− y′ ∂

∂y′
, S

[2]
3 = x

∂

∂x
− y′ ∂

∂y′
− 2y′′

∂

∂y′′
,

S
[3]
3 = x

∂

∂x
− y′ ∂

∂y′
− 2y′′

∂

∂y′′
− 3y′′′

∂

∂y′′′

(69)

By solving for the characteristics:

dy

1
=

dy′

−y′ =
dy′′

−2y′′
=

dy′′′

−3y′′′
(70)

Then by integrating (70) the differential invariants are as follows:
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(i). dy
1

= dy′

−y′ . Therefore

y = ln

∣∣∣∣C1

y′

∣∣∣∣ (71)

where C1 is a constant.

(ii). dy′

−y′ = dy′′

−2y′′ , t1 = 1
C2

. Therefore

t1 =
y′′

(y′)2
(72)

where C2and t1 are constants.

(iii). dy′

−y′ = dy′′′

−3y′′′ , t2 = 1
C3

. Therefore

t2 =
y′′′

(y′)3
(73)

where C3and t2are constants.

(iv). dy′′

−2y′′ = dy′′′

−3y′′′ , t3 = 1
C4

. Therefore

t3 =
(y′′′)

2

(y′′)3
(74)

where C4 and t3 are constants. By taking (68) and (72) such that:

y = U , t1 = y′′

(y′)2
and if we let t1 = V then t1 becomes:

V =
y′′

(y′)2
(75)

Now reducing (1) to first order ODE yields:

dV

dy
=
Dx (V )

Dx (y)
=
Dx
(
y′′

y′2

)
Dx (y)

=
y′′′ (y′)

2

(y′)5
− 2y′y′′y′′

(y′)5
=

y′′′

(y′)3
− 2y′′y′′

(y′)4
=
y′ (y′′)

4
(y)−4

(y′)3
− 2y′′y′′

(y′)2 (y′)2

=
y′ (y′′)

4
(y)−4

(y′)3
− 2 (y′′) (y′′)

(y′)2 (y′)2
=
(
y′′
)4 (

y′
)−2

(y)−4 − 2 (y′′) (y′′)

(y′)2 (y′)2
(76)

From (68) and (75) through substitution leads to: dV
dy

= (y′′)
4

(y′)
−2

(y)−4 − 2V 2. Therefore

dV

dy
+ 2V 2 =

(
y′′
)4 (

y′
)−2

(y)−4 (77)

Then (77) is of the form:

dV

dy
+ P (y)V = Q (y) (78)

implying that we have managed to reduce a third order equation (1) to a simple first order linear equation (77) that is easily

solvable by other known simpler methods. If P (y) = 2V and Q (y) = (y′′)
4

(y′)
−2

(y)−4, then (1) reduces to (78) which can

be easily integrated using integrating factors given by: I (y). Thus

I (y) = e∫ P (y)dy (79)

I (y) = e∫ 2V dy = e2 ∫ V dy = e
2 ∫

(
y′′

(y′)2

)
dy

= e2 ln|y′|2+C = eln|y
′|4 • eC

= Meln|y
′|4

(If eC = M) = eln|y
′|4 (Since C = 0, M = 1) then therefore I (y) = eln|y

′|4 = (y′)
4

where C and M are constants. From the

form:

V =
1

I (y)

∫ (
y′
)4
Q (y) dy (80)
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Then it follows that: V = 1
(y′)4

∫
(y′)

4
[
(y′′)

4
(y′)

−2
(y)−4] dy whose simplification leads to

V =
1

(y′)4
∫
(
y′′
)4 (

y′
)2

(y)−4 dy (81)

which now completes the process of integration hence (81) is a simple first order form of the required mathematical solution

of the special type wave equation (1).

5. Conclusion

Our interest was to get a mathematical solution whose form can be used by other mathematicians, engineers and researchers

in science to solve specific wave equations which forms the basis of future predictions aiming at saving human loss of life and

properties. For example, once the range of amplitude or velocity of a particular wave across the ocean has been calculated,

a decision can be made to clear the vicinity including human evacuation in order to minimize damages.

References

[1] A. Oyombe, Lie Symmetry Solution of Third Order First Degree Nonlinear Wave Equation of Fourth Degree in Second

Derivative, 7(11)(2019).

[2] N. Opiyo, Symmetry Analysis of Third Order Nonlinear Ordinary Differential Equation which is Cubic in the Second

Order Derivative, Masters Thesis, Bondo, Kenya: Jaramogi Oginga Odinga University of Science and Technology, (2015).

[3] T. Aminer, Lie Symmetry Solution of Fourth Order Nonlinear Ordinary Differential Equation, PhD Thesis, Bondo,

Kenya: Jaramogi Oginga Odinga University of Science and Technology, (2014).

[4] Y. B. Yulia, Equivalence of Third Order Ordinary Differential Equations to Chazy Equations IXIII, Massachusetts:

Massachusetts Institute of Technology, (2008).

[5] M. Kweyama, Applications of Symmetry Analysis to Physically Relevant Differential Equations, Masters Thesis, Durban,

South Africa: University of KwaZulu-Natal, Howard College Campus, (2005).

[6] C. Mehmet, Lie Symmetries of Differential Equations by Computer Algebra, Istanbul Turkiye: Instanbul Technical

University, Mathematics Department, (2004).

[7] G. W. Bluman and S. C. Anco, Symmetry and Integration Methods for Differential Equations, Springer, New York, USA,

(2002).

[8] B. Abraham-Shraunner, Hidden Symmetries and Linearization of the Modified Painlev’e - Ince Equation, J. Math. Phys,

34(1993), 4808-4816.

[9] F. Schwarz, Symmetries of Differential Equations from Sophus Lie to Computer Algebra, Siam Rev., 30(1988), 450-481.

154


	Introduction
	Review of Literature
	Materials and Methodology
	Results and Discussion
	Conclusion
	References

