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Abstract: In this paper we discuss the topological properties of quasi-partial b-metric spaces. The notion of quasi-partial b-metric
space was introduced and fixed point theorem and coupled fixed point theorem on this space were studied. Here the

concept of quasi-partial b-metric topology is discussed and notion of product of quasi-partial b-metric spaces is also

introduced.
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1. Introduction

The study of ordinary metric spaces is fundamental in topology and functional analysis. In the late nineties metric spaces

structure has gained much attention of the mathematicians because of development of fixed point theory in ordinary metric

spaces. The concept of b-metric space was introduced by Czerwick as a generalization of metric space. Several authors have

focused on fixed point theorems for a metric space, a partial metric space, quasi-partial metric spaxce and a partial b-metric

space. The concept of a quasi-partial-metric space was introduced by Karapinar. He studied some fixed point theorems on

these spaces. Motivated by this a modest attempt has been made to introduce the notion of quasi-partial b-metric space

where we have discussed fixed point theorem on it. Further, we have proved coupled fixed point theorem on the same space.

The aim of this paper is to study then topological properties of quasi-partial b-metric spaces. Here we also introduce product

of quasi-partial b-metric spaces and some relevant results are discussed on it.

2. Preliminaries

Definition 2.1. Let X be a nonempty set and s ≥ 1 be a given real number. A function d : X ×X → [0,∞) is a b-metric

on X if, for all x, y, z ∈ X, the following conditions hold:

(b1) d(x, y) = 0 if and only if x = y,

(b2) d(x, y) = d(y, x),

(b3) d(x, y) ≤ s[d(x, y) + d(y, z)].
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In this case, the pair (X, d) is called a b-metric space.

Definition 2.2 (Metric Space). A metric space is a set together with a metric on the set. The metric is a function that

defines a concept of distance between any two numbers of the set which are called points metric spaces are generalization of

real line. A distance or metric on a metric space x is a function.

d :X2 → R+

(x, y)→ d(x, y)

With properties

(1). d(x, y) = 0⇔ x = y

(2). d(y, x) = ∂(x, y)

(3). d(x, y) ≤ ∂(x, z) + ∂(y, z)

Definition 2.3 (Partial metric space). A partial metric space is a pair (X, p : X ×X → R) such that

P1 : p(x, x) ≤ p(x, y) (non negitivety and small self distance)

P2 : If p(x, x) = p(x, y) = p(y, y) then x = y.

P3 : P (x, y) = p(y, x) symmetry

P4 : P (x, z) ≤ p(x, y) + p(y, z)− p(y, y) (triangularity).

Definition 2.4 (Partial b-metric space). A partial b-metric space on non-empty set X is a function b : X ×X → R+ such

that x, y, z ∈ X.

(Pb1) x = y, iff b(x, x) = b(x, y) = b(y, y);

(Pb2) b(x, x) ≤ b(x, y);

(Pb3) b(x, y) = b(y, x);

(Pb4) F a real number S ≥ 1 such that b(x, y) ≤ S[b(x, z) + b(z, y)]− b(z, z).

Definition 2.5 (Quasi-partial metric space). A partial quasi-metric on a set X is a function p : X ×X → [0,∞) such that

(a). p(x, x) ≤ p(x, y) when x, y ∈ X.

(b). p(x, x) ≤ p(y, x) when x, y ∈ X.

(c). p(x, z) + p(y, y) ≤ p(x, y) + p(y, z) when x, y, z ∈ X.

(d). x = y iff [p(x, x) = p(x, y) and p(y, y) = p(y, x) when x, y ∈ X].

Definition 2.6. A Quasi-partial b-metric on a non-empty set X is a mapping qpb : X ×X → R+ such that for some real

numbers S ≥ 1 and all x, y, z ∈ X

(1). qpb(x, x) = qpb(x, y).

(2). qpb(x, x) ≤ qpb(x, y).

(3). qpb(x, x) ≤ qpb(y, x).

(4). qpb(x, x) ≤ S[qpb(x, z) + qpb(y, z)]− qpb(z, z).
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2.1. Topological Properties of Quasi-partial b-metric space

Theorem 2.7. A quasi-partial b-metric space (X, qpb) is a T0-space.

Proof. Let x0, y0 ∈ (X, qpb) such that x0 6= y0. Consider the open ball Bqpb(x0, ε) in X where qpb(x0, y0) > ε. Then by

the Definition 2.5 it is seen that y0 /∈ Bqpb(x0, ε). For if y0Bqpb(x0, ε) then qpb(y0, x0) < ε and qpb(x0, y0) > ε which is a

contradiction to the choice of ε. Hence (X, qpb) is a T0-space.

Example 2.8. Consider the usual metric qpb(x0, y0) = |x0 − y0| on [0, 1]. Let x0, y0 ∈ [0, 1] be such that x0 6= y0.

Choose ε < min{|x0 − y0|, |x0|, |x0 − 1|}. Then x0 ∈ Bqpb(x0, ε) but y0 /∈ Bqpb(x0, ε). For if y0 ∈ Bqpb(x0, ε) then

qpb(y0, x0) < ε ⇒ |x0 − y0| < ε. But by the choice of ε, ε < |x0 − y0| which is a contradiction. So y0 /∈ Bqpb(x0, ε).

Hence (X, qpb) is a T0-space.

2.2. Product of Quasi-Partial b-metric Spaces

Theorem 2.9. For I = 1, 2, 3, . . . , n let (Xi, qpbi) be symmetric quasi-partial b-metric spaces with coefficient si ≥ 1 and let

XM =
n∑

i=1

Xi then for qpb defined by qpb(x, y) =
n∑

i=1

qpbi(xi, yi) is symmetric quasi-partial b-metric space with coefficient s

= max {si}, 1 ≤ i ≤ n.

Proof. We need to prove properties QPb1 −QPb4 for (XM , qpb).

(QPb1): Let qpb(x, y) = qpb(x, x) ⇒
n∑

i=1

qpbi(xi, yi) =
n∑

i=1

qpbi(yi, xi) =
n∑

i=1

qpbi(xi, xi) ⇒
n∑

i=1

[qpbi(xi, yi) − qpbi(xi, xi)] = 0

and
n∑

i=1

[qpbi(xi, yi)− qpbi(xi, xi)] = 0. By (QPb2) and (QPb3)

n∑
i=1

[qpbi(xi, yi)− qpbi(xi, xi)] ≥ 0 ∀ i = 1, 2, 3, . . ., n

n∑
i=1

[qpbi(yi, xi)− qpbi(xi, xi)] ≥ 0 ∀ i = 1, 2, 3, . . ., n

Hence

qpbi(xi, yi) = qpbi(xi, xi)] ≥ 0 ∀ i = 1, 2, 3, . . . , n

⇒ xi = yi ∀ i = 1, 2, 3, . . ., n

⇒x = y.

(QPb2): qpb(x, x) =
n∑

i=1

qpbi(xi, xi)

≤
n∑

i=1

qpbi(xi, xi) [by (QPb2) of (Xi, qpbi)]

= qpb(x, y).

(QPb3): Similarly , as for (QPb2).

(QPb4): Here

qpb(x, z) =

n∑
i=1

qpbi(xi, zi) ≤
n∑

i=1

{si[qpbi(xi, yi) + qpbi(yi, zi)]− qpbi(zi, zi)} (by (QPb4) of (Xi, qpbi)).

By definition, s = max
1≤i≤n

{si} ⇒ s ≥ si for all i = 1, 2, . . ., n. Also s ≥ 1 since si ≥ 1 for all i = 1, 2, . . ., n. Hence all the

four properties of a quasi-partial b-metric space are satisfied by (XM , qpb) with, s = max
1≤i≤n

{si}. Hence a quasi-partial
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b-metric space. It remains to show that it is symmetric. Let x, y ∈ X where x = (x1, . . . , xn), y = (y1, . . . , yn) and

xi, yi ∈ Xi where i = 1, 2, . . . , n. Since each (Xi, qpbi) is qpb-symmetric, therefore

qpbi(xi, yi) = qpbi(yi, yi)⇒
n∑

i=1

qpbi(xi, yi) =

n∑
i=1

qpbi(yi, xi)⇒ qpb(x, y) = qpb(y, x)

Hence it is qpb-symmetric.

3. Literature Review

Partial metric space is first introduced by Matthews. A partial metric space is an attempt to find metric space by replacing

d(x, x) = 0 with condition d(x, x) ≤ d(x, y) for all x and y. Some properties of convergence of sequence were discussed

by Matthews. According to Matthews, any mapping T of complete partial metric space X into that satisfies for some

0 < k < 1, the inequality d(Tx, Ty) ≤ kd(x, y) for all x, y ∈ X has a unique point. In the paper “Fixed point theorem

on quasi partial metric space” by Erdal Karpinar, I.M.Erhan in mathematical and computer modelling. Quasi partial

metric space introduced and discussed the space introduced and discussed the exixtence of fixed point of self mapping T

on quasi-partial metric spaces. The concept of Quasi partial b metric space introduced to generalize the concept of quasi

partial metric space. Some fixed points results are proved in paper quasi partial b metric space and some related fixed point

theorm.Some of topological properties of quasi partial b metric space used in paper Anuradha Gupta and Pragati Gautam

in International Journal of Pure Mathematical Sciences.

4. Literature Survey
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2. “Erdal Karapinar, I.M. Erhan,

Ali Ozturk”

“Fixed point theorems on quasi-

partial metric spaces”

“Mathematical and Computer
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2013 2442-2448

3. “Anuradha Gupta, Pragati

Gautam”

“Quasi-partial b-metric spaces

and some related fixed point
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“Gupta and Gautam Fixed

Point Theory and applications”

2015 2015-18

4. “Pooja Dhawan, Jatinderdeep
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“International Journal of Com-
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2017 2347-8527
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