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1. Statement of the Problem

Let X be a real Banach space with a convenient norm ‖ · ‖ and let x, y ∈ X be any two elements. Then the line segment xy

in X is defined by

xy = {z ∈ X | z = x+ r(y − x), 0 ≤ r ≤ 1}. (1)

Let x0 ∈ X be a fixed point and z ∈ X. Then for any x ∈ x0z, we define the sets Sx and Sx in X by

Sx = {rx | −∞ < r < 1}, (2)

and

Sx = {rx | −∞ < r ≤ 1}. (3)

Let x1, x2 ∈ xy be arbitrary. We say x1 < x2 if Sx1 ⊂ Sx2 , or equivalently, x0x1 ⊂ x0x2. In this case we also write x2 > x1.

Let M denote the σ-algebra of all subsets of X such that (X,M) is a measurable space. Let ca(X,M) be the space of all

vector measures (real signed measures) and define a norm | · | on ca(X,M) by

‖p‖ = |p|(X), (4)

where |p| is a total variation measure of p and is given by

|p|(X) = sup
σ

∞∑
i=1

| p(Ei)|, Ei ⊂ X, (5)
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where the supremum is taken over all possible partitions σ = {Ei : i ∈ N} of measurable subsets of X. It is known that

ca(X,M) is a Banach space with respect to the norm ‖ · ‖ given by (4).

Let µ be a σ-finite positive measure on X, and let p ∈ ca(X,M). We say p is absolutely continuous with respect to the

measure µ if µ(E) = 0 implies p(E) = 0 for some E ∈M . In this case we also write p << µ.

Let x0 ∈ X be fixed and let M0 denote the σ- algebra on Sx0 . Let z ∈ X be such that z > x0 and let Mz denote the

σ-algebra of all sets containing M0 and the sets of the form Sx, x ∈ x0z.

Given a vector measure p ∈ ca(X,M) with p << µ, consider the nonlinear abstract measure integrodifferential equation (in

short AMIGDE) of the form

dp

dµ
=

∫
Sx−Sx0

f
(
τ, p(Sτ )

)
dµ+

∫
Sx−Sx0

g
(
τ, p(Sτ )

)
dµ a.e. [µ] on x0z. (6)

and

p(E) = q(E), E ∈M0, (7)

where q is a given known vector measure,
dp

dµ
is a Radon-Nikodym derivative of p with respect to µ, f, g : Sz × R→ R and

x 7→ f
(
x, p(Sx)

)
and x 7→ g

(
x, p(Sx)

)
are µ-integrable for each p ∈ ca(Sz,Mz).

Definition 1.1. Given an initial real measure q on M0, a vector p ∈ ca(Sz,Mz) (z > x0) is said to be a solution of the

perturbed AMIGDE (6)-(7) if

(1). p(E) = q(E), E ∈M0,

(2). p << µ on x0z, and

(3). p satisfies (6)-(7) a.e. [µ] on x0z.

Remark 1.2. The AMIGDE (6)-(7) is equivalent to the abstract measure integral equation (in short AMIGDE)

p(E) =

∫
E

( ∫
Sx−Sx0

f
(
τ, p(Sτ )

)
dµ

)
dµ+

∫
E

( ∫
Sx−Sx0

g
(
τ, p(Sτ )

)
dµ

)
dµ, (8)

if E ∈Mz, E ⊂ x0z. and

p(E) = q(E) if E ∈M0. (9)

A solution p of the AMIGDE (6)-(7) on x0z will be denoted by p(Sx0 , q).

The existence theorem for the AMIGDE (6)-(7) is an open problem raised in Dhage and Ram [12] and this paper we prove

a local existence result under some generalized natural Lipschitz and compactness type conditions. The study of abstract

measure differential equations (in short AMDEs) is initiated by Sharma [15, 16] as the generalizations of the ordinary

differential equations in which ordinary derivative is replaced with the Radon-Nykodym derivative of vector measures in an

abstract space, whereas the study of nonlinear AMIGDEs as the generalization of the ordinary integrodifferential equations

is initiated by Dhage [2–4]. The work contained in Bellale et. al [1] and the related other papers of these authors on the

AMIGDEs is a fraud and incorrect duplication of the previously known results. In the present paper we discuss the relevance

and existence theorems to the AMIGDE (6)-(7) under suitable natural conditions via a Dhage’s hybrid fixed point technique

from nonlinear functional analysis. In the following section 2 we prove the relevance theorem for the AMIGDE (6)-(7) by

relating it to an ordinary integrodifferential equations. Section 3 deals with the fixed point results needed in the subsequent

sections of the paper. The main existence and uniqueness results along with a couple of examples are presented in section 4.
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2. Relevance Theorem

In this section we prove the relevance theorem for the AMIGDE (6)-(7) and it is shown that the AMIGDE (6)-(7) reduces

to an ordinary integrodifferential equation, viz.,

y′(x) =

∫ x

x0

f(τ, y(τ)) dτ

∫ x

x0

g(τ, y(τ)) dτ, x ≥ x0,

y(x0) = y0,

 (10)

under certain suitable natural conditions, where f is Carathéodory real-valued function on [x0, x0 + T ]× R into R.

Let X = R, µ = m, the Lebesgue measure on R, Sx = (−∞, x], x ∈ R, and q a given real Borel measure on M0. Then

equations (6)-(7) take the form

d

dm
p((−∞, x]) =

∫
[x0,x]

f
(
τ, p(−∞, τ ]

)
dm+

∫
[x0,x]

g
(
τ, p(−∞, τ ]

)
dm,

p(E) = q(E), E ∈M0.

 (11)

It will now be shown that the equations (10) and (11) are equivalent in the sense of the following theorem.

Theorem 2.1. Let q : M0 → R be a given initial measure such that q(E) = 0 for all E ∈M0 and q({x0}) = 0. Then,

(a). to each solution p = p(Sx0 , q) of (11) existing on [x0, x1), there corresponds a solution y of (10) satisfying y(x0) = y0.

(b). Conversely, to every solution y(x) of (10), there corresponds a solution p(Sx0 , q), of (11) existing on [x0, x1) with a

suitable initial measure q provided f satisfies the relation f(x0, 0) = 0.

Proof.

(a). Let p = p(Sx0 , q) be a solution of (11), existing on [x0, x1). Define a real Borel measure p1 on R as follows.

p1((−∞, x)) =


0, if x ≤ x0,

p((−∞, x])− p((−∞, x0]), if x0 < x < x1

p((−∞, x1)), if x ≥ x1,

(12)

and

p1(−∞, x0]) = p(−∞, x0]).

Define the functions y1(x) and y(x) by

y1(x) = p1((−∞, x)), x ∈ R

y(x) = y1(x) + p((−∞, x0]), x ∈ [x0, x1).
(13)

The condition q({x0}) = 0, the definition of the solution p, and the definitions of y(x) together imply that

p1({x0}) = p({x0}) = 0.

Now for each x ∈ [x0, x1) we obtain from (11) and the definition of y(x)

y(x) = y1(x) + p((−∞, x0])

= p1((−∞, x)) + p((−∞, x0])

= p(Sx).

(14)
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Since p is a solution of (11) we have p << m on [x0, x1). Hence y(x) is absolutely continuous on [x0, x1). The details

concerning these arguments appear in Rudin [14, pages 163-165]. This shows that y′(x) exists a.e. on [x0, x1). Now for

each x ∈ [x0, x1), we have, by virtue of (12) and (13)

p([x0, x]) =

∫
[x0,x]

d

dm
p((−∞, t]) dm.

Therefore,

p((−∞, x])− p((−∞, x0]) =

∫
[x0,x]

d

dm
p((−∞, t]) dm.

This further implies that

p(Sx) = p(Sx0) +

∫ x

x0

(∫ t

x0

f
(
τ, p(Sτ )

)
dm

)
dm+

∫ x

x0

(∫ t

x0

g
(
τ, p(Sτ )

)
dm

)
dm.

That is,

y(x) = y(x0) +

∫ x

x0

(∫ t

x0

f
(
τ, y(τ)

)
dτ

)
dt+

∫ x

x0

(∫ t

x0

g
(
τ, y(τ)

)
dτ

)
dt.

Hence,

y′(x) =

∫ x

x0

f
(
τ, y(τ)

)
dτ +

∫ x

x0

g
(
τ, y(τ)

)
dτ a.e on [x0, x1).

This proves that y(x) is a solution of (10) on [x0, x1) satisfying

y(x0) = y0.

(b). Conversely, suppose that y(x) be a solution of (10) existing on [x0, x1]. Then, y is absolutely continuous on [x0, x1].

Now, corresponding to the absolutely continuous function y(x) which is a solution of (10) on [x0, x1), we can construct

a absolutely continuous real Borel measure p on Mx1 such that,

p(E) = 0 for all E ∈M0,

p(Sx) = y(x), if x ∈ [x0, x1).
(15)

The details concerning these arguments appear in Rudin [14, pages 163-165]. Since y(x) is a solution of (10) we have

for x ∈ [x0, x1),

y(x) = y(x0) +

∫ x

x0

(∫ t

x0

f
(
τ, y(τ)

)
dτ

)
dt+

∫ x

x0

(∫ t

x0

g
(
τ, y(τ)

)
dτ

)
dt.

Now, y(x0) = p
(
Sx0
)

= 0 and so, by (15) we obtain that

[
p(Sx)− p(Sx0)

]
=

∫
[x0,x]

( ∫
[x0,t]

f
(
τ, p(Sτ )

)
dm

)
dm+

∫
[x0,x]

( ∫
[x0,t]

g
(
τ, p(Sτ )

)
dm

)
dm.

That is,

p([x0, x]) =

∫
[x0,x]

( ∫
[x0,t]

f
(
τ, p(Sτ )

)
dm

)
dm+

∫
[x0,x]

( ∫
[x0,t]

f
(
τ, p(Sτ )

)
dm

)
dm.

In general, if E ∈Mx1 , E ⊂ x0x1, then

p(E) =

∫
E

( ∫
Sx−Sx0

f
(
τ, p((−∞, τ ]

)
dm

)
dm+

∫
E

( ∫
Sx−Sx0

g
(
τ, p((−∞, τ ]

)
dm

)
dm.
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By definition of Radon-Nykodym derivative, we obtain

d

dm

[
p((−∞, x])

]
=

∫
Sx−Sx0

f
(
τ, p((−∞, τ ]

)
dm+

∫
Sx−Sx0

g
(
τ, p((−∞, τ ]

)
dm a.e. [µ] on x0z,

p(E) = 0 for E ∈M0.

This shows that p is a solution of (11) on [x0, x1) and the proof of (b) is complete. �

3. Fixed Point Results

To state the required fixed point techniques that will be used in the proofs of main results, we need the following definitions

in what follows.

Definition 3.1 (Dhage [6, 8]). An upper semi-continuous and nondecreasing function ψ : R+ → R+ is called a D-function

if ψ(0) = 0. The class of all D-functions on R+ is denoted by D.

Definition 3.2 (Dhage [6, 8]). Let X be a Banach space with a norm ‖ · ‖. An operator T : X→ X is called D-Lipschitz if

there exists a D-function ψT ∈ D such that

‖T x− T y‖ ≤ ψT
(
‖x− y‖

)
(16)

for all elements x, y ∈ X. If ψT (r) = k r, k > 0, T is called a Lipschitz operator on X with the Lipschitz constant k. Again,

if 0 ≤ k < 1, then T is called a contraction on X with contraction constant k. Furthermore, if ψT (r) < r for r > 0, then T

is called a nonlinear D-contraction on X. The class of all D-functions satisfying the condition of nonlinear D-contraction is

denoted by DN.

An operator T : X→ X is called compact if T (X) is a compact subset of X. T is called totally bounded if for any bounded

subset S of X, T (S) is a totally bounded subset of X. T is called completely continuous if T is continuous and totally bounded

on X. Every compact operator is totally bounded, but the converse may not be true, however, two notions are equivalent on

bounded subsets of X. The details of different types of nonlinear contraction, compact and completely continuous operators

appear in Granas and Dugundji [13].

To prove the main existence results of next section, we need the following hybrid fixed point principle of Dhage [8] involving

the sum of two operators in a Banach space X.

Theorem 3.3 (Dhage [8]). Let S be a closed convex and bounded subset of a Banach space X and let A : X → X and

B : S → X be two operators satisfying the following conditions.

(a). A is nonlinear D-contraction,

(b). B is completely continuous, and

(c). Ax+ By = x =⇒ x ∈ S for all y ∈ S.

Then the operator equation Ax+ Bx = x has a solution in S.

4. Existence Theorem

We need the following definition in the sequel.
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Definition 4.1. A function β : Sz × R→ R is called Carathéodory if

(i). x 7→ β(x, u) is µ-measurable for each u ∈ R, and

(ii). u 7→ β(x, u) is continuous almost everywhere [µ] on x0z.

Further a Carathéodory function β(x, u) is called LµR-Carathéodory if

(iii). there exists a µ-integrable function h : Sz → R such that

|β(x, u)| ≤ h(x) a.e. [µ] on x ∈ x0z,

for all u ∈ R.

We consider the following set of assumptions.

(H0) For any z > x0, the σ-algebra Mz is compact with respect to the topology generated by the Pseudo-metric d defined

on Mz by

d(E1, E2) = µ(E1∆E2)

for all E1, E2 ∈Mz.

(H1) µ({x0}) = 0.

(H2) There exists a D-function ψf ∈ D such that

|f(x, u)− f(x, v)| ≤ ψf
(
|u− v|

)
a.e. [µ] on x ∈ x0z,

for all u, v ∈ R. Moreover, ψf (r) < r for each r > 0.

(H3) q is continuous on M0 with respect to the Pseudo-metric d defined in (H0).

(H4) The function g(x, u) is LµR-Carathéodory.

Theorem 4.2. Suppose that the hypotheses (H0)-(H4) hold. Then the AMIGDE (6)-(7) has a solution.

Proof. By expressions (2) and (3), we have a real number r(> 1) such that r → 1 and Srx0 ⊃ Sx0 . Then, from hypothesis

(H1), it follows that ⋂
r→1

(
Srx0 − Sx0

)
= {x0}

and

µ
(
Srx0 − Sx0

)
= µ({x0}) = 0

whenever r → 1.

Therefore, we can choose a real number r∗ such that Sr∗x0 ⊃ Sx0 and satisfying

µ
(
Sr∗x0 − Sx0

)
< 1 and

∫
Sr∗x0

−Sx0

h(x) dµ < 1.

Let z∗ = r∗x0. Consider the vector measure p0 on Mz∗ which is a continuous extension of the measure q on M0 defined by

p0(E) =


q(E) if E ∈M0,

0 if E 6∈M0.
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Now, we define a subset S(ρ) of ca(Sz∗ ,Mz∗) by

S(ρ) =
{
p ∈ ca(Sz∗ ,Mz∗) | ‖p− p0‖ ≤ ρ

}
(17)

where ρ = Mf + 1. Clearly, S(ρ) is a closed convex ball in ca(Sz∗ ,Mz∗) centered at p0 of radius ρ and q ∈ S(ρ).

Define the two operators A : ca(Sz∗ ,Mz∗)→ ca(Sz∗ ,Mz∗) and B : S(ρ)→ ca(Sz∗ ,Mz∗) by

Ap(E) =


∫
E

( ∫
Sx−Sx0

f
(
τ, p(Sτ )

)
dµ

)
dµ if E ∈Mz∗ , E ⊂ x0z∗,

0 if E ∈M0.

(18)

and

Bp(E) =


∫
E

( ∫
Sx−Sx0

f
(
τ, p(Sτ )

)
dµ

)
dµ if E ∈Mz∗ , E ⊂ x0z∗, q(E) if E ∈M0. (19)

Then the AMIGDE (6)-(7) is equivalent to the operator equation

Ap(E) + Bp(E) = p(E), E ∈Mz. (20)

We shall show that the operators A and B satisfy all the conditions of the hybrid fixed point theorem, Theorem 2.1 on S(ρ).

This will be done in a series of following steps.

Step I: Firstly, we show that A is bounded on X = ca(Sz∗ ,Mz∗). Let p ∈ ca(Sz∗ ,Mz∗) be arbitrary element. Then for

any E ∈Mz∗ , there exist subsets F ∈M0 and G ∈Mz∗ , G ⊂ x0z∗ such that E = F ∪G and F ∩G 6= ∅. Now, by definition

of the operator A, we obtain Ap(F ) = 0. Therefore, we have

|Ap(E)| ≤
∫
G

( ∫
Sx−Sx0

|f(x, p(Sτ ))| dµ
)
dµ ≤Mf

for all E ∈Mz∗ . Therefore, by definition of the norm,

‖Ap‖ = |Ap|(E) = sup
σ

∞∑
i=1

|Tp(Ei)| ≤Mf

for all p ∈ X. As a result, A is a bounded operator on ca(Sz∗ ,Mz∗) into itself.

Step II: First we show that A is a nonlinear D- contraction on ca(Sz∗ ,Mz∗). Let p1, p2 ∈ ca(Sz∗ ,Mz∗) be any two

elements. Then, by definition of the operator T , we obtain

Ap1(E)−Ap2(E) = 0 if E ∈M0,

and

Ap1(E)−Ap2(E) =

∫
E

[( ∫
Sx−Sx0

[
f
(
τ, p1(Sτ )

)
− f

(
τ, p2(Sτ )

)]
dµ

)]
dµ

for all E ∈Mz∗ , E ⊂ x0z∗.
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Therefore, by hypotheses (H4), we obtain

|Ap1(E)−Ap2(E)| ≤
∫
E

∣∣∣∣ ∫
Sx−Sx0

∣∣f(τ, p1(Sτ )
)
− f

(
τ, p2(Sτ )

)∣∣ dµ∣∣∣∣ dµ
≤
∫
E

( ∫
x0x

ψf
(∣∣p1(Sτ )− p2(Sτ )

∣∣) dµ) dµ
≤
∫
E

( ∫
x0x

ψf
(∣∣p1 − p2

∣∣(Sτ )
)
dµ

)
dµ

≤
∫
E

( ∫
x0z∗

ψf
(∥∥p1 − p2

∥∥) dµ) dµ
≤
∫

x0z∗

ψf
(∥∥p1 − p2

∥∥) dµ
≤ ψf

(∥∥p1 − p2

∥∥)
for all E ∈Mz∗ , E ⊂ x0z∗. This further in view of definition of the norm in ca(Sz∗ ,Mz∗) implies that

‖Ap1 −Ap2‖ ≤ ψf
(∥∥p1 − p2

∥∥)

for all E ∈Mz∗ , E ⊂ x0z∗. Hence, T is a nonlinear D-contraction on ca(Sz∗ ,Mz∗).

Step III : Thirdly, we show that B is continuous on S(ρ). Let {pn} be a sequence of vector measures in S(ρ) converging

to a vector measure p. Then by dominated convergence theorem,

lim
n→∞

Bpn(E) = lim
n→∞

∫
E

( ∫
Sx−Sx0

g
(
τ, pn(Sτ )

)
dµ

)
dµ

=

∫
E

( ∫
Sx−Sx0

[
lim
n→∞

g
(
τ, pn(Sτ )

)]
dµ

)
dµ

=

∫
E

( ∫
Sx−Sx0

g
(
τ, pn(Sτ )

)
dµ

)
dµ

= Bp(E)

for all E ∈Mz∗ , E ⊂ x0z∗. Similarly, if E ∈M0, then

lim
n→∞

Bpn(E) = q(E) = Bp(E),

and so B is a pointwise continuous operator on S(ρ).

Next we show that {Bpn : n ∈ N} is a equi-continuous sequence in ca(Sz∗ ,Mz∗). Let E1, E2 ∈ Mz∗ . Then there exist

subsets F1, F2 ∈M0 and G1, G2 ∈Mz∗ , G1 ⊂ x0z∗, G2 ⊂ x0z∗ such that

E1 = F1 ∪G1 with F1 ∩G1 = ∅

and

E2 = F2 ∪G2 with F2 ∩G2 = ∅.

We know the identities

G1 = (G1 −G2) ∪ (G2 ∩G1), (21)
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and

G2 = (G2 −G1) ∪ (G1 ∩G2). (22)

Therefore, we have

Bpn(E1)− Bpn(E2) ≤ q(F1)− q(F2) +

∫
G1−G2

( ∫
Sx−Sx0

g
(
τ, pn(Sτ )

)
dµ

)
dµ+

∫
G2−G1

( ∫
Sx−Sx0

g
(
τ, pn(Sτ )

)
dµ

)
dµ.

Since f(x, y) is LµR- Carathéodory, we have that

|Bpn(E1)− Bpn(E2)| ≤ |q(F1)− q(F2)|+
∫

G1∆G2

∣∣∣∣( ∫
Sx−Sx0

g
(
τ, p(Sτ )

)
dµ

)∣∣∣∣ dµ
≤ |q(F1)− q(F2)|+

∫
G1∆G2

h(x) dµ.

Assume that

d(E1, E2) = µ(E1∆E2)→ 0.

Then we have that E1 → E2. As a result F1 → F2 and µ(G1∆G2)→ 0. As q is continuous on compact Mz∗ , it is uniformly

continuous and so

|Bpn(E1)− Bpn(E2)| ≤ |q(F1)− q(F2)|+
∫

G1∆G2

h(x)dµ → 0 as E1 → E2

uniformly for all n ∈ N. This shows that {Bpn : n ∈ N} is a equi-continuous set in ca(Sz∗ ,Mz∗). As a result, {Bpn}

converges to Bp uniformly on Mz∗ and a fortiori B is a continuous operator on S(ρ) into ca(Sz∗ ,Mz∗).

Step IV: Next we show that T (S(ρ)) is a totally bounded set in ca(Sz∗ ,Mz∗). We shall show that the set is uniformly

bounded and equi-continuous set in ca(Sz∗ ,Mz∗). Firstly, we show that T (S(ρ)) is a uniformly bounded set in ca(Sz∗ ,Mz∗).

Let λ ∈ T (S) be an arbitrary element. Then, there is a member p ∈ S such that λ(E) = Bp(E) for all E ∈ Mz∗ . Let

E ∈Mz∗ . Then there exists two subsets F ∈M0 and G ∈Mz∗ , G ⊂ x0z∗ such that

E = F ∪G and F ∩G = φ.

Hence by definition of B ,

|λ(E)| = |Bp(E)|

≤ |q(F )|+
∫
G

∣∣∣∣( ∫
Sx−Sx0

g
(
τ, p(Sτ )

)
dµ

)∣∣∣∣ dµ
≤ ‖q‖+

∫
G

h(x)dµ

≤ ‖q‖+

∫
E

h(x)dµ

< ‖q‖+ 1

for all E ∈Mz∗ . From (3.5) it follows that

‖λ‖ = ‖Bp‖ = |Bp|(E) = sup
σ

∞∑
i=1

|Tp(Ei)| ≤ ‖q‖+ 1
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for all λ ∈ B(S(ρ)). As a result B defines a mapping B : S(ρ) → S(ρ). Moreover, B(S(ρ)) is a uniformly bounded set in

ca(Sz∗ ,Mz∗).

Next we show that B(S(ρ)) is a equi-continuous set of measures in ca(Sz∗ ,Mz∗). Let E1, E2 ∈Mz∗ . Then there exist subsets

F1, F2 ∈M0 and G1, G2 ∈Mz∗ , G1 ⊂ x0z∗, G2 ⊂ x0z∗ such that

E1 = F1 ∪G1 with F1 ∩G1 = ∅

and

E2 = F2 ∪G2 with F2 ∩G2 = ∅.

We know the identities

G1 = (G1 −G2) ∪ (G2 ∩G1), (23)

and

G2 = (G2 −G1) ∪ (G1 ∩G2). (24)

Therefore, we have

|λ(E1)− λ(E2)| = |Bp(E1)− Bp(E2)|

≤ |q(F1)− q(F2)|+
∫

G1−G2

∣∣∣∣( ∫
Sx−Sx0

g
(
τ, p(Sτ )

)
dµ

)∣∣∣∣ dµ+

∫
G2−G1

∣∣∣∣( ∫
Sx−Sx0

g
(
τ, p(Sτ )

)
dµ

)∣∣∣∣ dµ.

Since g(x, y) is LµR- Carathéodory, we have that

|λ(E1)− λ(E2)| ≤ |q(F1)− q(F2)|+
∫

G1∆G2

∣∣∣∣( ∫
Sx−Sx0

g
(
τ, p(Sτ )

)
dµ

)∣∣∣∣ dµ
≤ |q(F1)− q(F2)|+

∫
G1∆G2

h(x) dµ.

Assume that

d(E1, E2) = µ(E1∆E2)→ 0.

Then we have that E1 → E2. As a result F1 → F2 and µ(G1∆G2)→ 0. As q is continuous on compact M0, it is uniformly

continuous and so

|λ(E1)− λ(E2)| ≤ |q(F1)− q(F2)|+
∫

G1∆G2

h(x) dµ → 0 as E1 → E2

uniformly for all λ ∈ B(S). This shows that T (S(ρ)) is a equi-continuous set in ca(Sz∗ ,Mz∗). Now an application of the

Arzelà-Ascoli theorem yields that B is a totally bounded operator on S(ρ). Now, B is continuous and totally bounded, it is

completely continuous operator on S(ρ) into itself.

Step V: Finally, we show that the hypothesis (c) of Theorem 3.3 is satisfied. Let p ∈ S(ρ) be arbitrary and let there is an

element u ∈ ca(Sz∗ ,Mz∗) such that Au+ Bp = u. We show that u ∈ S. Now, by definitions of the operators A and B,

u(E) =


∫
E

( ∫
Sx−Sx0

f
(
τ, p(Sτ )

)
dµ

)
dµ+

∫
E

( ∫
Sx−Sx0

g
(
τ, p(Sτ )

)
dµ

)
dµ, if E ∈Mz, E ⊂ x0z∗,

q(E), if E ∈M0.
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for all E ∈ Mz. If E ∈ Mz∗ , then there exist sets F ∈ M0 and G ∈ Mz∗ , G ⊂ x0z∗ such that E = F ∪ G and F ∩ G = ∅.

Then we have

u(E) = q(F ) +

∫
E

( ∫
Sx−Sx0

f
(
τ, p(Sτ )

)
dµ

)
dµ+

∫
E

( ∫
Sx−Sx0

g
(
τ, p(Sτ )

)
dµ

)
dµ.

which further yields

u(E)− p0(E) =

∫
E

( ∫
Sx−Sx0

f
(
τ, p(Sτ )

)
dµ

)
dµ+

∫
E

( ∫
Sx−Sx0

g
(
τ, p(Sτ )

)
dµ

)
dµ.

Hence,

|u(E)− p0(E)| ≤
∫
E

( ∫
Sx−Sx0

∣∣f(τ, p(Sτ )
)∣∣ dµ) dµ+

∫
E

( ∫
Sx−Sx0

∣∣g(τ, p(Sτ )
)∣∣ dµ) dµ

≤ Mf +

∫
x0z∗

h(x) dµ

< Mf + 1

which further implies that

‖u− p0‖ ≤Mf + 1 = ρ.

As a result, we have u ∈ S and so hypothesis (c) of Theorem 3.3 is satisfied. In consequence, the operator equation

Ap(E) + Bp(E) = p(E) has a solution p(Sx0 , q) in ca(Sz∗ ,Mz∗). This further implies that the AMIGDE (6)-(7) has a

solution on x0z. This completes the proof. �

Example 4.3. Given a vector measure p ∈ ca(X,M) with p << µ, consider the AMIGDE with a linear perturbation of

second type of the form

dp

dµ
=

∫
Sx−Sx0

|p(Sτ )|
1 + |p(Sτ )|

dµ+

∫
Sx−Sx0

ln(1 + |p(Sτ )|)
1 + |p(Sτ )|

dµ a.e. [µ] on x0z. (25)

and

p(E)) = 0, (26)

where
dp

dµ
is a Radon-Nikodym derivative of p with respect to µ.

Here, f(x, u) =
|u|)

1 + |u| and g(x, u) =
ln(1 + |u|)

1 + |u| for all x ∈ x0z and u ∈ R. Clearly, f is a continuous and bounded function

on Sz×R with bound Mf = 1. Again, the function f satisfies the hypothesis (H3) on Sz×R with D-function ψf (r) =
r

1 + r
.

Furthermore, g is a continuous and bounded function on Sz × R with the growth or comparison function h(x) = 1 for all

x ∈ Sz and so, the hypotheses (H3) and (H4) are satisfied. Therefore, if the assumptions (H0)-(H1) hold, then the AMIGDE

(25) - (26) has a solution p(Sx0 , q) defined on x0z∗ provided µ(x0z∗) < 1.
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