

International Journal of Mathematics And its Applications

Meir Keeler Type Contraction in Soft Cone Ball Metric Space

Kanchan Barman^{1,*} and Subhashish Biswas¹

1 Department of Mathematics, Kalinga University, Raipur, Chhattisgarh, India.

Abstract: In this paper, we define a new cone ball-metric and get fixed points and common fixed points for the Meir-Keeler type functions in cone ball-metric spaces.

MSC: Primary 47H10; Secondary 54H25, 55M20.

Keywords: Meir-Keeler type mapping, cone ball-metric space, common fixed point theorem, fixed point theorem. © JS Publication.

1. Introduction and preliminaries

In this section we gives some basic definitions and previous known results which are used to prove our main results.

Definition 1.1. Let X be an initial universe set and E be a set of parameters. A pair (F, E) is called a soft set over X if and only if F is a mapping from E into the set of all subsets of the set X, i.e., $F : E \to P(X)$ where P(X) is the power set of X.

Definition 1.2. The intersection of two soft sets (F, A) and (G, B) over X is the soft set (H, C), where $C = A \cap B$ and $\forall e \in C, H(e) = F(e) \cap G(e)$. This is denoted by $(F, A) \tilde{\cap} (G, B) = (H, C)$.

Definition 1.3. The union of two soft sets (F, A) and (G, B) over X is the soft set, where $C = A \cup B$ and $\forall e \in C$,

$$H(e) = \begin{cases} F(e), & \text{if } e \in A - B \\ G(e), & \text{if } e \in B - A \\ F(e) \cup G(e), & \text{if } e \in A \cap B \end{cases}$$

This relationship is denoted by $(F, A)\tilde{\cup}(G, B) = (H, C)$.

Definition 1.4. A soft set (F, A) over X is said to be a null soft set denoted by ϕ , if for all $e \in A$, $F(e) = \phi$, (null set).

Definition 1.5. A soft set (F, A) over X is said to be an absolute soft set denoted by \tilde{X} if for all $e \in A$, F(e) = X.

Definition 1.6. The difference (H, E) of two soft sets (F, E) and (G, E) over X, denoted by $(F, E) \setminus (G, E)$, is defined as $H(e) = F(e) \setminus G(e)$ for all $e \in E$.

^{*} E-mail: kanchanbarman07@gmail.com

Definition 1.7. The complement of a soft set (F, A) is denoted by $(F, A)^c$ and is defined by $(F, A)^c = (F^c, A)$, where $F^c: A \to P(X)$ is a mapping given by $F^c(e) = X - F(e)$, for all $e \in A$.

Definition 1.8. Let \mathbb{R} be the set of real numbers and $B(\mathbb{R})$ be the collection of all non-empty bounded subsets of \mathbb{R} and E be taken as a set of parameters. Then a mapping $F : E \to B(\mathbb{R})$ is called a soft real set. If a real soft set is a singleton soft set, it will be called a soft real number and denoted by VisionRes., \tilde{s} , \tilde{t} etc. $\tilde{0}$ and $\tilde{1}$ are the soft real numbers where $\tilde{0}(e) = 0$, $\tilde{1}(e) = 1$ for all $e \in E$ respectively.

Definition 1.9. Let VisionRes., \tilde{s} be two soft real numbers. Then the following statements hold:

- (i). VisionRes. $\leq \tilde{s}$ if VisionRes. (e) $\leq \tilde{s}(e)$ for all $e \in E$,
- (ii). VisionRes. $\geq \tilde{s}$ if VisionRes. (e) $\geq \tilde{s}(e)$ for all $e \in E$,
- (iii). VisionRes. $\langle \tilde{s} \text{ if } VisionRes. (e) \langle \tilde{s}(e) \text{ for all } e \in E$,
- (iv). VisionRes. $> \tilde{s}$ if VisionRes. (e) $> \tilde{s}(e)$ for all $e \in E$.

Definition 1.10. A soft set (F, E) over X is said to be a soft point, denoted by \tilde{x}_e , if for the element $e \in E$, $F(e) = \{x\}$ and $F(\tilde{e}) = \phi$, for all $\tilde{e} \in E \setminus \{e\}$.

Definition 1.11. Two soft points \tilde{x}_e, \tilde{y}_e are said to be equal if $e = \tilde{e}$ and x = y. Thus $\tilde{x}_e \neq \tilde{y}_e$ or $e \neq \tilde{e}$.

Proposition 1.12. Every soft set can be expressed as a union of all soft points belonging to it as $(F, E) = \bigcup_{\tilde{x}_e \in (F, E)} \tilde{x}_e$. Conversely, any set of soft points can be considered as a soft set.

Definition 1.13. Let τ be a collection of soft sets over X. Then τ is said to be a soft topology on X if

- (1). ϕ, \tilde{X} belong to τ .
- (2). The union of any number of soft sets in τ belongs to τ .
- (3). The intersection of any two soft sets in τ belongs to τ .

The triplet (X, τ, E) is called a soft topological space over X.

Definition 1.14. Let (X, τ, E) be a soft topological space over X. Then soft interior of (F, E), denoted by $(F, E)^{\circ}$, is defined as the union of all soft open sets contained in (F, E).

Definition 1.15. Let (X, τ, E) be a soft topological space over X. Then soft closure of (F, E), denoted by $\overline{(F, E)}$, is defined as the intersection of all soft closed super sets of (F, E).

Definition 1.16. Let (X, τ, E) be a soft topological space over X. Then soft boundary of soft set (F, E) over X, denoted by $\partial(F, E)$, is defined as $\partial(F, E) = \overline{(F, E)} \cap \overline{(F, E)^c}$.

Definition 1.17. Let (X, τ, E) and (Y, τ', E) be two soft topological spaces, $f : (X, \tau, E) \to (Y, \tau', E)$ be a mapping. For each soft neighborhood (H, E) of $(f(\tilde{z}_{e}), E)$, if there exists a soft neighborhood (F, E) of (\tilde{x}_{e}, E) such that $f((F, E)) \subset (H, E)$, then f is said to be soft continuous mapping at (\tilde{x}_{e}, E) . If f is soft continuous mapping for all (\tilde{x}_{e}, E) , then f is called soft continuous mapping. Let $SP(\tilde{X})$ be the collection of all soft points of X and $\mathbb{R}(E)^*$ denote the set of all non-negative soft real numbers.

Definition 1.18. A mapping $\tilde{d} : SP(\tilde{X}) \times SP(\tilde{X}) \to \mathbb{R}(E)^*$ is said to be a soft metric on the soft set \tilde{X} if \tilde{d} satisfies the following conditions:

- (M1) $\tilde{d}(\tilde{x}_e, \tilde{y_{e'}}) \geq \tilde{0} \text{ for all } \tilde{x}_e, \tilde{y_{e'}} \in \tilde{X},$
- (M2) $\tilde{d}(\tilde{x}_e, \tilde{y_{e'}}) \geq \tilde{0}$ if and only if $\tilde{x}_e = \tilde{y_{e'}}$,
- (M3) $\tilde{d}(\tilde{x}_e, \tilde{y}_{e'}) = \tilde{d}(\tilde{y}_{e'}, \tilde{x}_e)$ for all $\tilde{x}_e, \tilde{y}_{e'} \in \tilde{X}$,
- (M4) For all $\tilde{x}_e, y_{\tilde{e}'}, z_{\tilde{e}''} \in \tilde{X}, \ \tilde{d}(\tilde{x}_e, z_{\tilde{e}''}) \leq \tilde{d}(\tilde{x}_e, y_{\tilde{e}'}) + \tilde{d}(y_{\tilde{e}'}, z_{\tilde{e}''}).$

The soft set \tilde{X} with a soft metric \tilde{d} on \tilde{X} is called a soft metric space and denoted by $(\tilde{X}, \tilde{d}, E)$.

Definition 1.19. Let $(\tilde{X}, \tilde{B}, E)$ be a soft metric space and ϵ be a non-negative soft real number.

$$B(\tilde{x}_e, \tilde{\epsilon}) = \{ \tilde{y}_{\tilde{\epsilon}'} \in \tilde{X} : \tilde{d}(\tilde{x}_e, \tilde{y}_{e'}) \in \tilde{\epsilon} \} \subset SP(\tilde{X})$$

is called the soft open ball with center \tilde{x}_e and radius $\tilde{\epsilon}$.

$$B(\tilde{x}_e, \tilde{\epsilon}) = \{ y_{\tilde{\epsilon}'} \in \tilde{X} : \tilde{d}(\tilde{x}_e, y_{\tilde{e}'}) \leq \tilde{\epsilon} \} \subseteq SP(\tilde{X})$$

is called the soft closed ball with center \tilde{x}_e and radius $\tilde{\epsilon}$.

Definition 1.20. Let $(\tilde{X}, \tilde{d}, E)$ be a soft metric space and (F, E) be a non-null soft subset of \tilde{X} in $(\tilde{X}, \tilde{d}, E)$. Then (F, E) is said to be a soft open set in \tilde{X} with respect to \tilde{d} if and only if all soft points of (F, E) is soft interior points of (F, E).

Definition 1.21. Let $\{x_{e_n}^{\tilde{n}}\}$ be a sequence of soft points in a soft metric space $(\tilde{X}, \tilde{d}, E)$. Then the sequence $\{x_{e_n}^{\tilde{n}}\}$ is said to be convergent in $(\tilde{X}, \tilde{d}, E)$ if there is a soft point $x_{e_0}^{\tilde{0}} \in \tilde{X}$ such that $\tilde{d}(x_{e_n}^{\tilde{n}}, x_{e_0}^{\tilde{0}}) \to \tilde{0}$ as $n \to \infty$. This means for every $\tilde{\epsilon} > \tilde{0}$, chosen arbitrarily, there is a natural number $N = N(\tilde{\epsilon})$ such that $\tilde{0} < \tilde{d}(x_{e_n}^{\tilde{n}}, x_{e_0}^{\tilde{0}}) \le \tilde{\epsilon}$ whenever n > N.

Definition 1.22. Limit of a sequence in a soft metric space, if exist, is unique.

Definition 1.23 (Cauchy Sequence). The sequence $\{x_{e_n}^{\tilde{n}}\}$ of soft points in $(\tilde{X}, \tilde{B}, E)$ is called a Cauchy sequence in \tilde{X} if corresponding to every $\tilde{\epsilon} > \tilde{0}$, there is a $m \in N$ such that $\tilde{d}(x_{e_i}^{\tilde{i}}, x_{e_j}^{\tilde{j}}) \leq \tilde{\epsilon}$ for all $i, j \geq m$ i.e. $\tilde{d}(x_{e_i}^{\tilde{i}}, x_{e_j}^{\tilde{j}}) \to \tilde{0}$ as $i, j \to \infty$.

Definition 1.24 (Complete Metric Space). The soft metric space $(\tilde{X}, \tilde{B}, E)$ is called complete if every Cauchy Sequence in \tilde{X} converges to some point of \tilde{X} . The soft metric space $(\tilde{X}, \tilde{d}, E)$ is called incomplete if it is not complete.

Definition 1.25. Let $(\tilde{E}, \|.\|, A)$ (here we denote A be parametric set) be a soft real Banach space and $(P, A) \in S(\tilde{E})$ be a soft subset of \tilde{E} . Then (P, A) is called a soft cone if and only if

- (1). (P, A) is closed, $(P, A) \neq \phi$ and $(P, A) \neq SS(\theta)$,
- (2). $\tilde{a}, \tilde{b} \in R(A) \; \tilde{x}, \tilde{y}\tilde{\epsilon}(P, A) \text{ implies } \tilde{a}\tilde{x} + \tilde{y}\tilde{y}\tilde{\epsilon}(P, A),$
- (3). $\tilde{x} \in (P, A)$ and $-\tilde{x} \in (P, A)$ implies $\tilde{x} = \theta$.

Given a soft cone $(P, A) \in S(\tilde{E})$, we define a soft partial ordering $\leq \tilde{\leq}$ with respect to (P, A) by $\tilde{x} \leq \tilde{y}$ if and only if $\tilde{y} - \tilde{x} \in (P, A)$. We write $\tilde{x} \prec \tilde{y}$ to indicate that $\tilde{x} \leq \tilde{y}$ but $\tilde{x} \neq \tilde{y}$, while $\tilde{x} \ll \tilde{y}$ will stand for $\tilde{y} - \tilde{x} \in Int(P, A)$, Int(P, A) denotes the interior of (P, A).

Definition 1.26. The soft cone (P, A) in soft real Banach space \tilde{E} is called

- (a). normal, if there is a soft real number $\tilde{\alpha} > \tilde{0}$ such that for all $\tilde{x}, \tilde{y} \in \tilde{E}$, $\theta \preceq \tilde{x} \preceq \tilde{y}$ implies $\|\tilde{x}\| \preceq \tilde{\alpha} \|\tilde{y}\|$, where $\tilde{\alpha}$ is called soft constant of (P, A).
- (b). minihedral, if $\sup(\tilde{x}, \tilde{y})$ exists for all $\tilde{x}, \tilde{y} \in \tilde{E}$.
- (c). strongly minihedral, if every soft set in \tilde{E} which is bounded from above has a supremum.
- (d). solid, if $Int(P, A) \neq \phi$.
- (e). regular, if every increasing sequence of soft elements in \tilde{E} which is bounded from above is convergent. That is, if $\{\tilde{x}_n\}$ is a sequence of soft elements in \tilde{E} such that $\tilde{x}_1 \preceq \tilde{x}_2 \preceq \ldots \preceq \tilde{x}_n \preceq \ldots$

for some soft elements in \tilde{E} then there is $\tilde{x} \in \tilde{E}$ such that $\|\tilde{x}_n - \tilde{x}\| \to \tilde{0}$ as $n \to \infty$. Equivalently, the soft cone (P, A) is regular if and only if every decreasing sequence of soft elements in \tilde{E} which is bounded from below is convergent.

Example 1.27. Let $\mathbb{R}(A)$ be all soft real number, where A is a finite set of parameters. Let $\mathbb{R}^n(A) = \mathbb{R}(A) \times \mathbb{R}(A) \times \cdots \times \mathbb{R}(A)$. Then, $\mathbb{R}^n(A)$ is a soft Banach space. Let $\tilde{E} = \mathbb{R}^n(A)$ with $(P, A) = SS\{(\tilde{x}_1, \tilde{x}_2, \dots, \tilde{x}_n) : \tilde{x}_i \succeq \tilde{0}, \forall i = 1, 2, \dots, n\}$. Then the soft cone (P, A) is normal, minihedral, strongly minihedral and solid.

In fact Chen and Tsai [3] introduced the following notion of the cone ball-metric \mathcal{B} .

Definition 1.28. Let X be a non-empty set and \tilde{X} be absolute soft set. Then the mapping $\tilde{\mathcal{B}} : SE(\tilde{X}) \times SE(\tilde{X}) \times SE(\tilde{X}) \rightarrow SE(\tilde{X})$ is soft cone ball-metric on \tilde{X} if $\tilde{\mathcal{B}}$ satisfy the following properties:

- (1). $\tilde{\mathcal{B}}(\tilde{x}, \tilde{y}, \tilde{z}) = \tilde{\theta}$ if and only if $\tilde{x} = \tilde{y} = \tilde{z}$;
- (2). $\tilde{\mathcal{B}}(\tilde{x}, \tilde{x}, \tilde{y}) \succ \tilde{\theta}$, for all $\tilde{x} \neq \tilde{y}$;
- (3). $\tilde{\mathcal{B}}(\tilde{x}, \tilde{x}, \tilde{y}) \preceq \tilde{\mathcal{B}}(\tilde{x}, \tilde{y}, \tilde{z})$, for all $\tilde{x}, \tilde{y}, \tilde{z} \in \tilde{X}$;
- (4). $\tilde{\mathcal{B}}(\tilde{x}, \tilde{y}, \tilde{z}) = \tilde{\mathcal{B}}(\tilde{x}, \tilde{z}, \tilde{y}) = \tilde{\mathcal{B}}(\tilde{z}, \tilde{y}, \tilde{x}) = \cdots$ (symmetric in all three variables);
- (5). $\tilde{\mathcal{B}}(\tilde{x}, \tilde{y}, \tilde{z}) \preceq \tilde{\mathcal{B}}(\tilde{x}, \tilde{w}, \tilde{w}) + \tilde{\mathcal{B}}(\tilde{w}, \tilde{y}, \tilde{z}), \text{ for all } \tilde{x}, \tilde{y}, \tilde{z}, \tilde{w} \in \tilde{X};$
- (6). $\tilde{\mathcal{B}}(\tilde{x}, \tilde{y}, \tilde{z}) \leq \tilde{\mathcal{B}}(\tilde{x}, \tilde{w}, \tilde{w}) + \tilde{\mathcal{B}}(\tilde{y}, \tilde{w}, \tilde{w}) + \tilde{\mathcal{B}}(\tilde{z}, \tilde{w}, \tilde{w}), \text{ for all } \tilde{x}, \tilde{y}, \tilde{z}, \tilde{w} \in \tilde{X}.$

Definition 1.29. Let (\tilde{X}, \tilde{d}) be a soft cone metric space, $\tilde{\mathcal{B}} : SE(\tilde{X}) \times SE(\tilde{X}) \times SE(\tilde{X}) \rightarrow SE(\tilde{X}), \tilde{x}, \tilde{y}, \tilde{z} \in \tilde{X}$ and we denote

$$\delta(B) = \sup\{\tilde{d}(\tilde{a}, \tilde{b}) : \tilde{a}, \tilde{b} \in \tilde{\mathcal{B}}\}\$$

and

$$\tilde{\mathcal{B}}(\tilde{x}, \tilde{y}, \tilde{z}) = \delta(\tilde{\mathcal{B}}),$$

where $\tilde{\mathcal{B}} = \tilde{\cap} \{F \subset \tilde{X} | F \text{ is a soft closed ball and } \{\tilde{x}, \tilde{y}, \tilde{z}\} \subset F\}$. Then we call $\tilde{\mathcal{B}}$ a ball-metric with respect to the cone metric \tilde{d} , and $(\tilde{X}, \tilde{\mathcal{B}})$ a soft cone ball-metric space. It is clear that $\tilde{\mathcal{B}}(\tilde{x}, \tilde{x}, \tilde{y}) = \tilde{d}(\tilde{x}, \tilde{y})$.

Definition 1.30. Let $(\tilde{X}, \tilde{\mathcal{B}})$ be a soft cone ball-metric space and $\{\tilde{x}_n^n\}$ be a sequence in \tilde{X} . We say that $\{\tilde{x}_n\}$ is

- (1). Cauchy sequence if for every $\tilde{\epsilon} \in \tilde{E}$ with $\theta \ll \tilde{\epsilon}$, there exists $n_0 \in \mathbb{N}$ such that for all $n, m, l > n_0$, $\tilde{\mathcal{B}}(\tilde{x}_n^n, \tilde{x}_m^m, \tilde{x}_l^l) \ll \tilde{\epsilon}$.
- (2). Convergent sequence if for every $\tilde{\epsilon} \in E$ with $\theta \ll \tilde{\epsilon}$, there exists $n_0 \cap \mathbb{N}$ such that for all $n, m > n_0$, $\tilde{\mathcal{B}}(\tilde{x}_n^n, \tilde{x}_m^m, \tilde{x}) \ll \tilde{\epsilon}$ for some $\tilde{x} \in \tilde{X}$. Here \tilde{x} is called the limit of the sequence $\{\tilde{x}_n^n\}$ and is denoted by $\lim_{n\to\infty} \tilde{x}_n^n = \tilde{x}$ or $\tilde{x}_n^n \to \tilde{x}$ as $n \to \infty$.

Definition 1.31. Let $(\tilde{X}, \tilde{\mathcal{B}})$ be a soft cone ball-metric space. Then \tilde{X} is said to be complete if every Cauchy sequence is convergent in \tilde{X} .

Proposition 1.32. Let $(\tilde{X}, \tilde{\mathcal{B}})$ be a soft cone ball-metric space and $\{\tilde{x}_n^n\}$ be a sequence in \tilde{X} . Then the following are equivalent:

- (1). $\{\tilde{x}_n^n\}$ converges to \tilde{x} ;
- (2). $\tilde{\mathcal{B}}(\tilde{x}_n^n, \tilde{x}_n^n, \tilde{x}) \to \tilde{\theta} \text{ as } n \to \infty;$
- (3). $\tilde{\mathcal{B}}(\tilde{x}_n^n, \tilde{x}, \tilde{x}) \to \tilde{\theta} \text{ as } n \to \infty;$
- (4). $\tilde{\mathcal{B}}(\tilde{x}_n^n, \tilde{x}_m^m, \tilde{x}) \to \tilde{\theta} \text{ as } n, m \to \infty.$

Proposition 1.33. Let $(\tilde{X}, \tilde{\mathcal{B}})$ be a soft cone ball-metric space and $\{\tilde{x}_n^n\}$ be a sequence in $\tilde{X}, \tilde{x}, \tilde{y} \in \tilde{X}$. If $\tilde{x}_n^n \to \tilde{x}$ and $\tilde{x}_n^n \to \tilde{y}$ as $n \to \infty$, then $\tilde{x} = \tilde{y}$.

Proof. Let $\tilde{\epsilon} \in E$ with $\theta \in \tilde{\epsilon}$ be given. Since $\tilde{x}_n^n \to \tilde{x}$ and $\tilde{x}_n^n \to \tilde{y}$ as $n \to \infty$, there exists $n_0 \in \mathbb{N}$ such that for all $m, n > n_0$,

$$\tilde{\mathcal{B}}(\tilde{x}_n^n, \tilde{x}_m^m, \tilde{x}) \tilde{\ll} \frac{\tilde{\epsilon}}{3}$$
 and $\tilde{\mathcal{B}}(\tilde{x}_n^n, \tilde{x}_m^m, y) \tilde{\ll} \frac{\tilde{\epsilon}}{3}$.

Therefore,

$$\begin{split} \tilde{\mathcal{B}}(\tilde{x}, \tilde{x}, \tilde{y}) & \stackrel{\sim}{\preceq} & \tilde{\mathcal{B}}(\tilde{x}, \tilde{x}_n^n, \tilde{x}_n^n) + \tilde{\mathcal{B}}(\tilde{x}_n^n, \tilde{x}, \tilde{y}) \\ &= & \tilde{\mathcal{B}}(\tilde{x}, \tilde{x}_n^n, \tilde{x}_n^n) + \tilde{\mathcal{B}}(\tilde{y}, \tilde{x}_n^n, \tilde{x}) \\ & \stackrel{\sim}{\preceq} & \tilde{\mathcal{B}}(\tilde{x}, \tilde{x}_n^n, \tilde{x}_n^n) + \tilde{\mathcal{B}}(\tilde{y}, \tilde{x}_m^m, \tilde{x}_m^m) + \tilde{\mathcal{B}}(\tilde{x}_m^m, \tilde{x}_n^n, \tilde{x}) \\ & \quad \tilde{\epsilon} & \frac{\tilde{\epsilon}}{3} + \frac{\tilde{\epsilon}}{3} + \frac{\tilde{\epsilon}}{3} = \tilde{\epsilon}. \end{split}$$

Hence, $\tilde{\mathcal{B}}(\tilde{x}, \tilde{x}, \tilde{y}) \ll \tilde{\epsilon}_{\alpha} \tilde{\epsilon}$ for all $\alpha \geq 1$, and so $\frac{\tilde{\epsilon}}{\alpha} - \tilde{\mathcal{B}}(\tilde{x}, \tilde{x}, \tilde{y}) \in P$ for all $\alpha \geq 1$. Since $\frac{\tilde{\epsilon}}{\alpha} \to \theta$ as $\alpha \to \infty$ and P is closed, we have that $-\tilde{\mathcal{B}}(\tilde{x}, \tilde{x}, \tilde{y}) \in P$. This implies that $\tilde{\mathcal{B}}(\tilde{x}, \tilde{x}, \tilde{y}) = \tilde{\theta}$, since $\tilde{\mathcal{B}}(\tilde{x}, \tilde{x}, \tilde{y}) \in P$. So $\tilde{x} = \tilde{y}$.

Proposition 1.34. Let $(\tilde{X}, \tilde{\mathcal{B}})$ be a soft cone ball-metric space and $\{\tilde{x}_n^n\}, \{\tilde{y}_m^m\}, \{\tilde{z}_l^l\}$ be three sequences in \tilde{X} . If $\tilde{x}_n^n \to \tilde{x}$, $\tilde{y}_m^m \to \tilde{y}, \tilde{z}_l^l \to \tilde{z}$ as $n \to \infty$, then $\tilde{\mathcal{B}}(\tilde{x}_n^n, \tilde{y}_m^m, \tilde{z}_l^l) \to \tilde{\mathcal{B}}(\tilde{x}, \tilde{y}, \tilde{z})$ as $n \to \infty$.

Proof. Let $\tilde{\epsilon} \in E$ with $\theta \ll \tilde{\epsilon}$ be given. Since $\tilde{x}_n^n \to \tilde{x}$, $\tilde{y}_m^m \to \tilde{y}$, $\tilde{z}_l^l \to \tilde{z}$ as $n \to \infty$, there exists $n_0 \in \mathbb{N}$ such that for all $n, m, l > n_0$,

$$\tilde{\mathcal{B}}(\tilde{x}_n^n,\tilde{x},\tilde{x})\tilde{\ll}\frac{\tilde{\epsilon}}{3}, \ \tilde{\mathcal{B}}(\tilde{y}_m^m,\tilde{y},\tilde{y})\tilde{\ll}\frac{\tilde{\epsilon}}{3}, \ \tilde{\mathcal{B}}(\tilde{z}_l^l,\tilde{z},\tilde{z})\tilde{\ll}\frac{\tilde{\epsilon}}{3},$$

Therefore,

$$\begin{split} \tilde{\mathcal{B}}(\tilde{x}_n^n, \tilde{y}_m^m, \tilde{z}_l^l) & \stackrel{\sim}{\preceq} & \tilde{\mathcal{B}}(\tilde{x}_n^n, \tilde{x}, \tilde{x}) + \tilde{\mathcal{B}}(\tilde{x}, \tilde{y}_m^m, \tilde{z}_l^l) \\ & \stackrel{\sim}{\preceq} & \tilde{\mathcal{B}}(\tilde{x}_n^n, \tilde{x}, \tilde{x}) + \tilde{\mathcal{B}}(\tilde{y}_m^m, \tilde{y}, \tilde{y}) + \tilde{\mathcal{B}}(\tilde{y}, \tilde{x}, \tilde{z}_l^l) \\ & \stackrel{\sim}{\preceq} & \tilde{\mathcal{B}}(\tilde{x}_n^n, \tilde{x}, \tilde{x}) + \tilde{\mathcal{B}}(\tilde{y}_m^m, \tilde{y}, \tilde{y}) + \tilde{\mathcal{B}}(\tilde{z}_l^l, \tilde{z}, \tilde{z}) + \tilde{\mathcal{B}}(\tilde{z}, \tilde{x}, \tilde{y}) \\ & \stackrel{\ll}{\ll} & \frac{\tilde{\epsilon}}{3} + \frac{\tilde{\epsilon}}{3} + \frac{\tilde{\epsilon}}{3} + \tilde{\mathcal{B}}(\tilde{x}, \tilde{y}, \tilde{z}), \end{split}$$

that is,

$$\tilde{\mathcal{B}}(\tilde{x}_n^n, \tilde{y}_m^m, \tilde{z}_l^l) - \tilde{\mathcal{B}}(\tilde{x}, \tilde{y}, \tilde{z}) \tilde{\ll} \tilde{\epsilon}$$

Similarly,

$$\tilde{\mathcal{B}}(\tilde{x}, \tilde{y}, \tilde{z}) - \tilde{\mathcal{B}}(\tilde{x}_n^n, \tilde{y}_m^m, \tilde{z}_l^l) \tilde{\ll} \tilde{\epsilon}.$$

Therefore, for all $\alpha \geq 1$, we have

$$\tilde{\mathcal{B}}(\tilde{x}_n^n, \tilde{y}_m^m, \tilde{z}_l^l) - \tilde{\mathcal{B}}(\tilde{x}, \tilde{y}, \tilde{z}) \tilde{\ll} \frac{\tilde{\epsilon}}{\alpha},$$

and

$$\tilde{\mathcal{B}}(\tilde{x}, \tilde{y}, \tilde{z}) - \tilde{\mathcal{B}}(\tilde{x}_n^n, \tilde{y}_m^m, \tilde{z}_l^l) \tilde{\ll} \frac{\tilde{\epsilon}}{\alpha}$$

These imply that

$$\frac{\tilde{\epsilon}}{\alpha} - \tilde{\mathcal{B}}(\tilde{x}_n^n, \tilde{y}_m^m, \tilde{z}_l^l) + \tilde{\mathcal{B}}(\tilde{x}, \tilde{y}, \tilde{z})\tilde{\in}P,$$
$$\frac{\tilde{\epsilon}}{\alpha} + \tilde{\mathcal{B}}(\tilde{x}_n^n, \tilde{y}_m^m, \tilde{z}_l^l) - \tilde{\mathcal{B}}(\tilde{x}, \tilde{y}, \tilde{z})\tilde{\in}P.$$

Since P is closed and $\frac{\tilde{\epsilon}}{\alpha} \to \theta$ as $\alpha \to \infty$, we have that

$$\lim_{n,m,l\to\infty} [-\tilde{\mathcal{B}}(\tilde{x}_n^n, \tilde{y}_m^m, \tilde{z}_l^l) + \tilde{\mathcal{B}}(\tilde{x}, \tilde{y}, \tilde{z})] \tilde{\in} P,$$
$$\lim_{n,m,l\to\infty} [\tilde{\mathcal{B}}(\tilde{x}_n^n, \tilde{y}_m^m, \tilde{z}_l^l) - \tilde{\mathcal{B}}(\tilde{x}, \tilde{y}, \tilde{z})] \tilde{\in} P.$$

These show that

$$\lim_{n,m,l\to\infty}\tilde{\mathcal{B}}(\tilde{x}_n^n,\tilde{y}_m^m,\tilde{z}_l^l)=\tilde{\mathcal{B}}(\tilde{x},\tilde{y},\tilde{z}).$$

So we complete the proof.

2. Main results

In the section, we first recall the notion of the Meir-Keeler type function. A function $\psi : \mathbb{R}^+ \to \mathbb{R}^+$ is said to be a Meir-Keeler type function (see [5]), if for each $\eta \in \mathbb{R}^+$, there exists $\delta > 0$ such that for $t \in \mathbb{R}^+$ with $\eta \le t < \eta + \delta$, we have $\psi(t) < \eta$. We now define a new weaker Meir-Keeler type function in a soft cone ball-metric space $(\tilde{X}, \tilde{\mathcal{B}})$, as follows:

Definition 2.1. Let $(\tilde{X}, \tilde{\mathcal{B}})$ be a cone ball-metric space with cone P, and let $\psi : int P \cup \{\tilde{\theta}\} \to int P \tilde{\cup}\{\tilde{\theta}\}$. Then the function ψ is called a weaker Meir-Keeler type function in \tilde{X} , if for each $\tilde{\eta}$, $\tilde{\theta} \ll \tilde{\eta}$, there exists $\tilde{\delta}$, $\tilde{\theta} \ll \tilde{\delta}$ such that for $(\tilde{x}, \tilde{y}, \tilde{z}) \in \tilde{X}$ with $\tilde{\eta} \preceq \tilde{\mathcal{B}}(\tilde{x}, \tilde{y}, \tilde{z}) \ll \tilde{\delta} + \tilde{\eta}$, there exists $n_0 \in \mathbb{N}$ such that $\psi^{n_0}(\tilde{\mathcal{B}}(\tilde{x}, \tilde{y}, \tilde{z})) \ll \tilde{\eta}$. Further, we let the function $\psi : int P \tilde{\cup}\{\tilde{\theta}\} \to int P \tilde{\cup}\{\tilde{\theta}\}$ satisfying the following conditions:

- (i) ψ be a weaker Meir-Keeler type function;
- (ii) for each $t \in intP$, we have $\tilde{\theta} \ll \psi(t) \ll t$ and $\psi(\tilde{\theta}) = \tilde{\theta}$;
- (iii) for $t_n \in int P\tilde{\cup}\{\tilde{\theta}\}$, if $\lim_{n\to\infty} t_n = \gamma \gg \tilde{\theta}$, then $\lim_{n\to\infty} \psi(t_n) \tilde{\ll} \tilde{\gamma}$;
- (iv) $\{\psi^n(t)\}_{n\in\mathbb{N}}$ is non-increasing.

Then we call this mapping a ψ -function.

We now state our main common fixed point result for the weaker Meir-Keeler type function in a soft cone ball-metric space (\tilde{X}, \tilde{B}) , as follows:

Theorem 2.2. Let $(\tilde{X}, \tilde{\mathcal{B}})$ be a complete soft cone ball-metric space, P be a regular cone in \tilde{E} and f, g be two self-mapplings of \tilde{X} such that $f\tilde{X} \subset g\tilde{X}$. Suppose that there exists a ψ -function such that

$$\tilde{\mathcal{B}}(f\tilde{x}, f\tilde{y}, f\tilde{z}) \preccurlyeq \psi(L(\tilde{x}, \tilde{y}, \tilde{z})), \tag{1}$$

where

$$L(\tilde{x}, \tilde{y}, \tilde{z}) = \max\{\tilde{\mathcal{B}}(g\tilde{x}, g\tilde{y}, g\tilde{z}), \tilde{\mathcal{B}}(g\tilde{x}, f\tilde{x}, f\tilde{x}), \tilde{\mathcal{B}}(g\tilde{y}, f\tilde{y}, f\tilde{y}), \tilde{\mathcal{B}}(g\tilde{z}, f\tilde{z}, f\tilde{z})\}$$

If $g\tilde{X}$ is closed, then f and g have a coincidence point in \tilde{X} . Moreover, if f and g commute at their coincidence points, then f and g have a unique common fixed point in \tilde{X}

Proof. Given $\tilde{x}_0^0 \in \tilde{X}$. Since $f\tilde{X} \subset g\tilde{X}$, we can choose $\tilde{x}_1^1 \in \tilde{X}$ such that $g\tilde{x}_1^1 = f\tilde{x}_0^0$. Continuing this process, we define the sequence $\{\tilde{x}_n^n\}$ in \tilde{X} recursively as follows:

$$f\tilde{x}_n^n = g\tilde{x}_{n+1}^{n+1}$$
 for each $n \in \mathbb{N}\tilde{\cup}\{0\}$

In what follows we will suppose that $f\tilde{x}_{n+1}^{n+1} \neq f\tilde{x}_n^n$ for all $n \in \mathbb{N}$, since if $f\tilde{x}_{n+1}^{n+1} = f\tilde{x}_n^n$ for some n, then $f\tilde{x}_{n+1}^{n+1} = g\tilde{x}_{n+1}^{n+1}$, that is , f, g have a coincidence point \tilde{x}_{n+1}^{n+1} , and so we complete the proof. By (1), we have

$$\tilde{\mathcal{B}}(f\tilde{x}_{n}^{n}, f\tilde{x}_{n+1}^{n+1}, f\tilde{x}_{n+1}^{n+1}) \preccurlyeq \psi(L(\tilde{x}_{n}^{n}, \tilde{x}_{n+1}^{n+1}, \tilde{x}_{n+1}^{n+1})),$$

where

$$\begin{split} L(\tilde{x}_{n}^{n}, \tilde{x}_{n+1}^{n+1}, \tilde{x}_{n+1}^{n+1}) &= & \max\{\tilde{\mathcal{B}}(g\tilde{x}_{n}^{n}, g\tilde{x}_{n+1}^{n+1}, g\tilde{x}_{n+1}^{n+1}), \tilde{\mathcal{B}}(g\tilde{x}_{n}^{n}, f\tilde{x}_{n}^{n}, f\tilde{x}_{n}^{n}), \\ & \quad \tilde{\mathcal{B}}(g\tilde{x}_{n+1}^{n+1}, f\tilde{x}_{n+1}^{n+1}, f\tilde{x}_{n+1}^{n+1}), \tilde{\mathcal{B}}(g\tilde{x}_{n+1}^{n+1}, f\tilde{x}_{n+1}^{n+1}, f\tilde{x}_{n+1}^{n+1})\} \\ &= & \max\{\tilde{\mathcal{B}}(f\tilde{x}_{n-1}^{n-1}, f\tilde{x}_{n}^{n}, f\tilde{x}_{n}^{n}), \tilde{\mathcal{B}}(f\tilde{x}_{n-1}^{n-1}, f\tilde{x}_{n}^{n}, f\tilde{x}_{n}^{n}), \\ & \quad \tilde{\mathcal{B}}(f\tilde{x}_{n}^{n}, f\tilde{x}_{n+1}^{n+1}, f\tilde{x}_{n+1}^{n+1}), \tilde{\mathcal{B}}(f\tilde{x}_{n}^{n}, f\tilde{x}_{n+1}^{n+1}, f\tilde{x}_{n+1}^{n+1})\} \\ &= & \max\{\tilde{\mathcal{B}}(f\tilde{x}_{n-1}^{n-1}, f\tilde{x}_{n}^{n}, f\tilde{x}_{n}^{n}), \tilde{\mathcal{B}}(f\tilde{x}_{n}^{n}, f\tilde{x}_{n+1}^{n+1}, f\tilde{x}_{n+1}^{n+1})\} \end{split}$$

Therefore, by the condition (ii) of ψ , we conclude that for each $n \in \mathbb{N}$,

$$\tilde{\mathcal{B}}(f\tilde{x}_n^n, f\tilde{x}_{n+1}^{n+1}, f\tilde{x}_{n+1}^{n+1}) \;\; \tilde{\ll} \;\; \tilde{\mathcal{B}}(f\tilde{x}_{n-1}^{n-1}, f\tilde{x}_n^n, f\tilde{x}_n^n),$$

and

$$\begin{split} \tilde{\mathcal{B}}(f\tilde{x}_{n}^{n}, f\tilde{x}_{n+1}^{n+1}, f\tilde{x}_{n+1}^{n+1}) \tilde{\preceq} \psi(\tilde{\mathcal{B}}(f\tilde{x}_{n-1}^{n-1}, f\tilde{x}_{n}^{n}, f\tilde{x}_{n}^{n})) \\ \tilde{\preceq} \cdots \\ \tilde{\preceq} \psi^{n}(\tilde{\mathcal{B}}(f\tilde{x}_{0}^{0}, f\tilde{x}_{1}^{1}, f\tilde{x}_{1}^{1})). \end{split}$$

Since $\{\psi^n(\tilde{\mathcal{B}}(f\tilde{x}_0^0, f\tilde{x}_1^1, f\tilde{x}_1^1))\}_{n\in\mathbb{N}}$ is non-increasing, it must converge to some $\tilde{\eta}, \tilde{\theta} \preccurlyeq \tilde{\eta}$. We claim that $\tilde{\eta} = \tilde{\theta}$. On the contrary, assume that $\tilde{\theta} \ll \tilde{\eta}$. Then by the definition of the ψ -function, there exists $\delta, \tilde{\theta} \ll \delta$ such that for $\tilde{\theta} \ll \tilde{\mathcal{B}}(f\tilde{x}_0^0, f\tilde{x}_1^1, f\tilde{x}_1^1)$ with $\tilde{\eta} \preccurlyeq \tilde{\eta} \ll \tilde{\theta}$.

 $\tilde{\mathcal{B}}(f\tilde{x}_{0}^{0}, f\tilde{x}_{1}^{1}, f\tilde{x}_{1}^{1}) \tilde{\ll} \delta + \tilde{\eta}, \text{ there exists } n_{0} \in \mathbb{N} \text{ such that } \psi^{n_{0}}(\tilde{\mathcal{B}}(f\tilde{x}_{0}^{0}, f\tilde{x}_{1}^{1}, f\tilde{x}_{1}^{1})) \tilde{\ll} \tilde{\eta}. \text{ Since } \lim_{n \to \infty} \psi^{n}(\tilde{\mathcal{B}}(f\tilde{x}_{0}^{0}, f\tilde{x}_{1}^{1}, f\tilde{x}_{1}^{1})) = \tilde{\eta}, \text{ there exists } m_{0} \in \mathbb{N} \text{ such that } \tilde{\eta} \preccurlyeq \psi^{m} \tilde{\mathcal{B}}(f\tilde{x}_{0}^{0}, f\tilde{x}_{1}^{1}, f\tilde{x}_{1}^{1}) \tilde{\ll} \tilde{\delta} + \tilde{\eta}, \text{ for all } m \geq m_{0}. \text{ Thus, we conclude that } \tilde{\eta} \preccurlyeq \psi^{m} \tilde{\mathcal{B}}(f\tilde{x}_{0}^{0}, f\tilde{x}_{1}^{1}, f\tilde{x}_{1}^{1}) \tilde{\ll} \tilde{\delta} + \tilde{\eta}, \text{ for all } m \geq m_{0}. \text{ Thus, we conclude that } \tilde{\eta} \preccurlyeq \tilde{\mathcal{B}}(f\tilde{x}_{0}^{0}, f\tilde{x}_{1}^{1}, f\tilde{x}_{1}^{1}) \tilde{\ll} \tilde{\delta} + \tilde{\eta}, \text{ for all } m \geq m_{0}. \text{ Thus, we conclude that } \tilde{\eta} \end{cases}$

$$\psi^{m_0+n_0}(\tilde{\mathcal{B}}(f\tilde{x}_0^0, f\tilde{x}_1^1, f\tilde{x}_1^1)) \tilde{\ll} \tilde{\eta}.$$

So we get a contradiction. So $\lim_{n\to\infty} \psi^n(\tilde{\mathcal{B}}(f\tilde{x}_0^0, f\tilde{x}_1^1, f\tilde{x}_1^1)) = \tilde{\theta}$, and so we have $\lim_{n\to\infty} \tilde{\mathcal{B}}(f\tilde{x}_n^n, f\tilde{x}_{n+1}^{n+1}, f\tilde{x}_{n+1}^{n+1}) = \tilde{\theta}$. Next, we claim that the sequence $\{f\tilde{x}_n^n\}$ is a Cauchy sequence. Suppose that $\{f\tilde{x}_n^n\}$ is not a Cauchy sequence. Then there exists $\tilde{\gamma} \in \tilde{E}$ with $\tilde{\theta} \ll \tilde{\gamma}$ such that for all $k \in \mathbb{N}$, there are $m_k, n_k \in \mathbb{N}$ with $m_k > n_k \ge k$ satisfying:

- (1) m_k is even and n_k is odd,
- (2) $\tilde{\mathcal{B}}(f\tilde{x}_{n_k}^{n_k}, f\tilde{x}_{m_k}^{m_k}, f\tilde{x}_{m_k}^{m_k}) \succeq \tilde{\gamma}$, and
- (3) m_k is the smallest even number such that the conditions (1), (2) hold.

Since $\lim_{n\to\infty} \tilde{\mathcal{B}}(f\tilde{x}_n^n, f\tilde{x}_{n+1}^{n+1}, f\tilde{x}_{n+1}^{n+1}) = \tilde{\theta}$ and by (2), (3), we have that

$$\begin{split} \tilde{\gamma} & \stackrel{\sim}{\preceq} & \tilde{\mathcal{B}}(f\tilde{x}_{n_{k}}^{n_{k}}, f\tilde{x}_{m_{k}}^{m_{k}}, f\tilde{x}_{m_{k}}^{m_{k}}) \\ & \stackrel{\simeq}{\preceq} & \tilde{\mathcal{B}}(f\tilde{x}_{n_{k}}^{n_{k}}, f\tilde{x}_{m_{k}-1}^{m_{k}-1}, f\tilde{x}_{m_{k}-1}^{m_{k}-1}) + \tilde{\mathcal{B}}(f\tilde{x}_{m_{k}-1}^{m_{k}-1}, f\tilde{x}_{m_{k}}^{m_{k}}, f\tilde{x}_{m_{k}}^{m_{k}}) \\ & \stackrel{\simeq}{\preceq} & \tilde{\mathcal{B}}(f\tilde{x}_{n_{k}}^{n_{k}}, f\tilde{x}_{m_{k}-2}^{m_{k}-2}, f\tilde{x}_{m_{k}-2}^{m_{k}-2}) + \tilde{\mathcal{B}}(f\tilde{x}_{m_{k}-2}^{m_{k}-2}, f\tilde{x}_{m_{k}-1}^{m_{k}-1}, f\tilde{x}_{m_{k}-1}^{m_{k}-1}) \\ & \quad + \tilde{\mathcal{B}}(f\tilde{x}_{m_{k}-1}^{m_{k}-1}, f\tilde{x}_{m_{k}-1}^{m_{k}-1}, f\tilde{x}_{m_{k}-1}^{m_{k}-1}) \\ & \stackrel{\simeq}{\preceq} & \gamma + \tilde{\mathcal{B}}(f\tilde{x}_{m_{k}-2}^{m_{k}-2}, f\tilde{x}_{m_{k}-1}^{m_{k}-1}, f\tilde{x}_{m_{k}-1}^{m_{k}-1}) + \tilde{\mathcal{B}}(f\tilde{x}_{m_{k}-1}^{m_{k}-1}, f\tilde{x}_{m_{k}}^{m_{k}}, f\tilde{x}_{m_{k}}^{m_{k}}). \end{split}$$

Taking $\lim_{k\to\infty}$, we deduce

$$\lim_{k \to \infty} \tilde{\mathcal{B}}(f \tilde{x}_{n_k}^{n_k}, f \tilde{x}_{m_k}^{m_k}, f \tilde{x}_{m_k}^{m_k}) = \tilde{\gamma}.$$

Since

$$\begin{split} \tilde{\mathcal{B}}(f\tilde{x}_{n_{k}-1}^{n_{k}-1}, f\tilde{x}_{m_{k}-1}^{m_{k}-1}, f\tilde{x}_{m_{k}-1}^{m_{k}-1}) & \stackrel{\sim}{\preceq} & \tilde{\mathcal{B}}(f\tilde{x}_{n_{k}-1}^{n_{k}-1}, f\tilde{x}_{n_{k}}^{n_{k}}, f\tilde{x}_{n_{k}}^{n_{k}}) + \tilde{\mathcal{B}}(f\tilde{x}_{n_{k}}^{n_{k}}, f\tilde{x}_{m_{k}}^{m_{k}}, f\tilde{x}_{m_{k}}^{m_{k}}) \\ & + \tilde{\mathcal{B}}(f\tilde{x}_{m_{k}}^{m_{k}}, f\tilde{x}_{m_{k}-1}^{m_{k}-1}, f\tilde{x}_{m_{k}-1}^{m_{k}-1}). \end{split}$$

Taking $\lim_{k\to\infty}$, we deduce

$$\lim_{k \to \infty} \tilde{\mathcal{B}}(f \tilde{x}_{n_k-1}^{n_k-1}, f \tilde{x}_{m_k-1}^{m_k-1}, f \tilde{x}_{m_k-1}^{m_k-1}) \preccurlyeq \gamma.$$
(2)

On the other hand,

$$\begin{split} \tilde{\gamma} & \stackrel{\sim}{\preceq} & \tilde{\mathcal{B}}(f\tilde{x}_{n_{k}}^{n_{k}}, f\tilde{x}_{m_{k}}^{m_{k}}, f\tilde{x}_{m_{k}}^{m_{k}}) \\ & \stackrel{\simeq}{\preceq} & \tilde{\mathcal{B}}(f\tilde{x}_{n_{k}}^{n_{k}}, f\tilde{x}_{n_{k}-1}^{n_{k}-1}, f\tilde{x}_{n_{k}-1}^{n_{k}-1}) + \tilde{\mathcal{B}}(f\tilde{x}_{n_{k}-1}^{n_{k}-1}, f\tilde{x}_{m_{k}}^{m_{k}}, f\tilde{x}_{m_{k}}^{m_{k}}) \\ & \stackrel{\simeq}{\preceq} & \tilde{\mathcal{B}}(f\tilde{x}_{n_{k}}^{n_{k}}, f\tilde{x}_{n_{k}-1}^{n_{k}-1}, f\tilde{x}_{n_{k}-1}^{n_{k}-1}) + \tilde{\mathcal{B}}(f\tilde{x}_{n_{k}-1}^{n_{k}-1}, f\tilde{x}_{m_{k}-1}^{m_{k}-1}, f\tilde{x}_{m_{k}-1}^{m_{k}-1}) \\ & \quad + \tilde{\mathcal{B}}(f\tilde{x}_{m_{k}-1}^{m_{k}-1}, f\tilde{x}_{m_{k}}^{m_{k}}, f\tilde{x}_{m_{k}}^{m_{k}}). \end{split}$$

Taking $\lim_{k\to\infty}$, we also deduce

$$\tilde{\mathcal{Y}} \stackrel{\sim}{\preceq} \lim_{k \to \infty} \tilde{\mathcal{B}}(f \tilde{x}_{n_k-1}^{n_k-1}, f \tilde{x}_{m_k-1}^{m_k-1}, f \tilde{x}_{m_k-1}^{m_k-1}).$$
(3)

By (2) and (3), we get

$$\lim_{k \to \infty} \tilde{\mathcal{B}}(f \tilde{x}_{n_k-1}^{n_k-1}, f \tilde{x}_{m_k-1}^{m_k-1}, f \tilde{x}_{m_k-1}^{m_k-1}) = \tilde{\gamma}.$$

And, by (1), we have that

$$\tilde{\mathcal{B}}(f\tilde{x}_{n_k}^{n_k}, f\tilde{x}_{m_k}^{m_k}, f\tilde{x}_{m_k}^{m_k}) \preccurlyeq \psi(L(\tilde{x}_{n_k}^{n_k}, \tilde{x}_{m_k}^{m_k}, \tilde{x}_{m_k}^{m_k}))$$

where

$$\begin{split} L(\tilde{x}_{n_{k}}^{n_{k}}, \tilde{x}_{m_{k}}^{m_{k}}, \tilde{x}_{m_{k}}^{m_{k}}) &= \max\{\tilde{\mathcal{B}}(g\tilde{x}_{n_{k}}^{n_{k}}, g\tilde{x}_{m_{k}}^{m_{k}}, g\tilde{x}_{m_{k}}^{m_{k}}), \tilde{\mathcal{B}}(g\tilde{x}_{n_{k}}^{n_{k}}, f\tilde{x}_{n_{k}}^{n_{k}}, f\tilde{x}_{n_{k}}^{n_{k}}), \\ \tilde{\mathcal{B}}(g\tilde{x}_{m_{k}}^{m_{k}}, f\tilde{x}_{m_{k}}^{m_{k}}, f\tilde{x}_{m_{k}}^{m_{k}}), \tilde{\mathcal{B}}(g\tilde{x}_{m_{k}}^{m_{k}}, f\tilde{x}_{m_{k}}^{m_{k}}, f\tilde{x}_{m_{k}}^{m_{k}})\} \\ &= \max\{\tilde{\mathcal{B}}(f\tilde{x}_{n_{k}-1}^{n_{k}-1}, f\tilde{x}_{m_{k}-1}^{m_{k}-1}, f\tilde{x}_{m_{k}-1}^{m_{k}-1}), \tilde{\mathcal{B}}(f\tilde{x}_{n_{k}-1}^{n_{k}-1}, f\tilde{x}_{n_{k}}^{n_{k}}, f\tilde{x}_{n_{k}}^{n_{k}}), \\ \tilde{\mathcal{B}}(f\tilde{x}_{m_{k}-1}^{m_{k}-1}, f\tilde{x}_{m_{k}}^{m_{k}}, f\tilde{x}_{m_{k}}^{m_{k}}), \tilde{\mathcal{B}}(f\tilde{x}_{m_{k}-1}^{m_{k}-1}, f\tilde{x}_{m_{k}}^{m_{k}}, f\tilde{x}_{m_{k}}^{m_{k}})\}. \end{split}$$

(I) If

 $L(\tilde{x}_{n_k}^{n_k}, \tilde{x}_{m_k}^{m_k}, \tilde{x}_{m_k}^{m_k}) = \tilde{\mathcal{B}}(f\tilde{x}_{n_k-1}^{n_k-1}, f\tilde{x}_{m_k-2}^{m_k-2}, f\tilde{x}_{m_k-1}^{m_k-1}),$

then taking $\lim_{k\to\infty}$, we deduce

 $\lim_{k \to \infty} \tilde{\mathcal{B}}(f \tilde{x}_{n_k - 1}^{n_k - 1}, f \tilde{x}_{m_k - 1}^{m_k - 1}, f \tilde{x}_{m_k - 1}^{m_k - 1}) = \tilde{\gamma},$

and

$$\tilde{\gamma} \tilde{\preceq} \lim_{k \to \infty} \tilde{\mathcal{B}}(f \tilde{x}_{n_k}^{n_k}, f \tilde{x}_{m_k}^{m_k}, f \tilde{x}_{m_k}^{m_k}) \tilde{\ll} \tilde{\gamma}$$

a contradiction. (II) If

$$L(\tilde{x}_{n_k}^{n_k}, \tilde{x}_{m_k}^{m_k}, \tilde{x}_{m_k}^{m_k}) = \tilde{\mathcal{B}}(f\tilde{x}_{n_k-1}^{n_k-1}, f\tilde{x}_{n_k}^{n_k}, f\tilde{x}_{n_k}^{n_k})$$

or

$$L(\tilde{x}_{n_{k}}^{n_{k}}, \tilde{x}_{m_{k}}^{m_{k}}, \tilde{x}_{m_{k}}^{m_{k}}) = \tilde{\mathcal{B}}(f\tilde{x}_{m_{k}-1}^{m_{k}-1}, f\tilde{x}_{m_{k}}^{m_{k}}, f\tilde{x}_{m_{k}}^{m_{k}}),$$

then taking $\lim_{k\to\infty}$, we deduce

$$\lim_{k \to \infty} \tilde{\mathcal{B}}(f \tilde{x}_{n_k-1}^{n_k-1}, f \tilde{x}_{n_k}^{n_k}, f \tilde{x}_{n_k}^{n_k}) = \tilde{\theta},$$
$$\lim_{k \to \infty} \tilde{\mathcal{B}}(f \tilde{x}_{m_k-1}^{m_k-1}, f \tilde{x}_{m_k}^{m_k}, f \tilde{x}_{m_k}^{m_k}) = \tilde{\theta},$$

and

$$\gamma \stackrel{\sim}{\preceq} \lim_{k \to \infty} \tilde{\mathcal{B}}(f \tilde{x}_{n_k}^{n_k}, f \tilde{x}_{m_k}^{m_k}, f \tilde{x}_{m_k}^{m_k}) \stackrel{\sim}{\preceq} \tilde{\theta},$$

a contradiction. Follow (I) and (II), we get the sequence $\{f\tilde{x}_n^n\}$ is a Cauchy sequence. Since \tilde{X} is complete and $g\tilde{X}$ is closed, there exist $\tilde{\nu}, \tilde{\mu} \in \tilde{X}$ such that

$$\lim_{n \to \infty} g(\tilde{x}_n^n) = \lim_{n \to \infty} f(\tilde{x}_n^n) = g(\tilde{\mu}) = \tilde{\nu}$$

We shall show that $\tilde{\mu}$ is a coincidence point of f and g, that is, we claim that

$$\tilde{\mathcal{B}}(g\tilde{\mu}, f\tilde{\mu}, f\tilde{\mu}) = \tilde{\theta}.$$

If not, assume that $\tilde{\mathcal{B}}(g\tilde{\mu}, f\tilde{\mu}, f\tilde{\mu}) \neq \tilde{\theta}$, then by (1), we have

$$\begin{split} \tilde{\mathcal{B}}(g\tilde{\mu}, f\tilde{\mu}, f\tilde{\mu}) & \stackrel{\sim}{\preceq} & \tilde{\mathcal{B}}(g\tilde{\mu}, f\tilde{x}_n^n, f\tilde{x}_n^n) + \tilde{\mathcal{B}}(f\tilde{x}_n^n, f\tilde{\mu}, f\tilde{\mu}) \\ & \stackrel{\sim}{\preceq} & \tilde{\mathcal{B}}(g\tilde{\mu}, f\tilde{x}_n^n, f\tilde{x}_n^n) + \psi(L(\tilde{x}_n^n, \tilde{\mu}, \tilde{\mu})), \end{split}$$

where

$$L(\tilde{x}_n^n,\tilde{\mu},\tilde{\mu})\in\{\tilde{\mathcal{B}}(g\tilde{x}_n^n,g\tilde{\mu},g\tilde{\mu}),\tilde{\mathcal{B}}(g\tilde{x}_n^n,f\tilde{x}_n^n,f\tilde{x}_n^n),\tilde{\mathcal{B}}(g\tilde{\mu},f\tilde{\mu},f\tilde{\mu}),\tilde{\mathcal{B}}(g\tilde{\mu},f\tilde{\mu},f\tilde{\mu})\}$$

(III) If

$$L(\tilde{x}_n^n, \tilde{\mu}, \tilde{\mu}) = \tilde{\mathcal{B}}(g\tilde{x}_n^n, g\tilde{\mu}, g\tilde{\mu})$$

then taking $\lim_{n\to\infty}$, we deduce

$$\lim_{n \to \infty} \tilde{\mathcal{B}}(g\tilde{x}_n^n, g\tilde{\mu}, g\tilde{\mu}) = \tilde{\mathcal{B}}(g\tilde{\mu}, g\tilde{\mu}, g\tilde{\mu}) = \theta$$

and

$$\begin{split} \tilde{\mathcal{B}}(g\tilde{\mu}, f\tilde{\mu}, f\tilde{\mu}) &= \lim_{n \to \infty} \tilde{\mathcal{B}}(g\tilde{\mu}, f\tilde{x}_n^n, f\tilde{x}_n^n) + \lim_{n \to \infty} \psi(\tilde{\mathcal{B}}(g\tilde{x}_n^n, g\tilde{\mu}, g\tilde{\mu})) \\ & \quad \tilde{\leq} \quad \tilde{\theta}, \end{split}$$

a contradiction. (IV) If

$$L(\tilde{x}_n^n, \tilde{\mu}, \tilde{\mu}) = \tilde{\mathcal{B}}(g\tilde{x}_n^n, f\tilde{x}_n^n, f\tilde{x}_n^n),$$

then taking $\lim_{n\to\infty}$, we deduce

$$\lim_{n \to \infty} \tilde{\mathcal{B}}(g\tilde{x}_n^n, f\tilde{x}_n^n, f\tilde{x}_n^n) = \tilde{\mathcal{B}}(g\tilde{\mu}, g\tilde{\mu}, g\tilde{\mu}) = \tilde{\theta}$$

and

$$\tilde{\mathcal{B}}(g\tilde{\mu}, f\tilde{\mu}, f\tilde{\mu}) = \lim_{n \to \infty} \tilde{\mathcal{B}}(g\tilde{\mu}, f\tilde{x}^n_n, f\tilde{x}^n_n) + \lim_{n \to \infty} \psi(\tilde{\mathcal{B}}(g\tilde{x}^n_n, f\tilde{x}^n_n, f\tilde{x}^n_n) \check{\preceq} \tilde{\theta},$$

a contradiction. (V) If

$$L(\tilde{x}_n^n, \tilde{\mu}, \tilde{\mu}) = \tilde{\mathcal{B}}(g\tilde{\mu}, f\tilde{\mu}, f\tilde{\mu}),$$

then

$$\tilde{\mathcal{B}}(g\tilde{\mu}, f\tilde{\mu}, f\tilde{\mu}) = \psi(\tilde{\mathcal{B}}(g\tilde{\mu}, f\tilde{\mu}, f\tilde{\mu})) \tilde{\ll} \tilde{\mathcal{B}}(g\tilde{\mu}, f\tilde{\mu}, f\tilde{\mu}),$$

a contradiction. Follow (III)-(V), we obtain that $\tilde{\mathcal{B}}(g\tilde{\mu}, f\tilde{\mu}, f\tilde{\mu}) = \tilde{\theta}$, that is, $g\tilde{\mu} = f\tilde{\mu} = \tilde{\nu}$, and so $\tilde{\mu}$ is a coincidence point of f and g. Suppose that f and g commute at $\tilde{\mu}$. Then

$$f\tilde{\nu} = fg\tilde{\mu} = gf\tilde{\mu} = g\tilde{\nu}.$$

Later, we claim that $\tilde{\mathcal{B}}(f\tilde{\mu}, f\tilde{\nu}, f\tilde{\nu}) = \tilde{\theta}$. By (1), we have

$$\tilde{\mathcal{B}}(f\tilde{\mu}, f\tilde{\nu}, f\tilde{\nu}) \check{\preceq} \psi(L(\tilde{\mu}, \tilde{\nu}, \tilde{\nu})),$$

where

$$\begin{split} L(\tilde{x}, \tilde{y}, \tilde{z}) &= \max\{\tilde{\mathcal{B}}(g\tilde{\mu}, g\tilde{\nu}, g\tilde{\nu}), \tilde{\mathcal{B}}(g\tilde{\mu}, f\tilde{\mu}, f\tilde{\mu}), \tilde{\mathcal{B}}(g\tilde{\nu}, f\tilde{\nu}, f\tilde{\nu}), \tilde{\mathcal{B}}(g\tilde{\nu}, f\tilde{\nu}, f\tilde{\nu})\} \\ &= \max\{\tilde{\mathcal{B}}(f\tilde{\mu}, f\tilde{\nu}, f\tilde{\nu}), \tilde{\mathcal{B}}(f\tilde{\mu}, f\tilde{\mu}, f\tilde{\mu}), \tilde{\mathcal{B}}(f\tilde{\nu}, f\tilde{\nu}, f\tilde{\nu}), \tilde{\mathcal{B}}(f\tilde{\nu}, f\tilde{\nu}, f\tilde{\nu})\} \\ &= \max\{\tilde{\mathcal{B}}(f\tilde{\mu}, f\tilde{\nu}, f\tilde{\nu}), \tilde{\theta}\}. \end{split}$$

Therefore, if

$$\tilde{\mathcal{B}}(f\tilde{\mu}, f\tilde{\nu}, f\tilde{\nu}) \leq \psi(\tilde{\mathcal{B}}(f\tilde{\mu}, f\tilde{\nu}, f\tilde{\nu})) \ll \tilde{\mathcal{B}}(f\tilde{\mu}, f\tilde{\nu}, f\tilde{\nu}),$$

then we get a contradition, which implies that $\tilde{\mathcal{B}}(f\tilde{\mu}, f\tilde{\nu}, f\tilde{\nu}) = \tilde{\theta}, \tilde{\mathcal{B}}(\tilde{\nu}, f\tilde{\nu}, f\tilde{\nu}) = \tilde{\theta}$, that is, $\tilde{\nu} = f\tilde{\nu} = g\tilde{\nu}$. So $\tilde{\nu}$ is a common fixed point of f and g. Let $\overline{\tilde{\nu}}$ be another common fixed point of f and g. By (1),

$$\tilde{\mathcal{B}}(\overline{\tilde{\nu}}, \tilde{\nu}, \tilde{\nu}) = \tilde{\mathcal{B}}(f\overline{\tilde{\nu}}, f\tilde{\nu}, f\tilde{\nu}) \tilde{\preceq} \psi(L(\overline{\tilde{\nu}}, \tilde{\nu}, \tilde{\nu})),$$

where

$$\begin{split} L(\tilde{x}, \tilde{y}, \tilde{z}) &= \max\{\tilde{\mathcal{B}}(g\overline{\tilde{\nu}}, g\tilde{\nu}, g\tilde{\nu}), \tilde{\mathcal{B}}(g\overline{\tilde{\nu}}, f\overline{\tilde{\nu}}, f\overline{\tilde{\nu}}), \tilde{\mathcal{B}}(g\tilde{\nu}, f\tilde{\nu}, f\tilde{\nu}), \tilde{\mathcal{B}}(g\tilde{\nu}, f\tilde{\nu}, f\tilde{\nu})\} \\ &= \max\{\tilde{\mathcal{B}}(f\overline{\tilde{\nu}}, f\tilde{\nu}, f\tilde{\nu}), \tilde{\mathcal{B}}(f\overline{\tilde{\nu}}, f\overline{\tilde{\nu}}), \tilde{\mathcal{B}}(f\tilde{\nu}, f\tilde{\nu}, f\tilde{\nu}), \tilde{\mathcal{B}}(f\tilde{\nu}, f\tilde{\nu}, f\tilde{\nu})\} \\ &= \max\{\tilde{\mathcal{B}}(f\overline{\tilde{\nu}}, f\tilde{\nu}, f\tilde{\nu}), \tilde{\theta}\} \\ &= \{\tilde{\mathcal{B}}(\overline{\tilde{\nu}}, \tilde{\nu}, \tilde{\nu}), \tilde{\theta}\}. \end{split}$$

Therefore, we also conclude that $\tilde{\mathcal{B}}(\tilde{\nu}, \tilde{\nu}, \tilde{\nu}) = \tilde{\theta}$, that is $\tilde{\nu} = \tilde{\nu}$. So we show that $\tilde{\nu}$ is the unique common fixed point of g and f.

Next, we state the following fixed point results for the weaker Meir-Keeler type functions in ball-metric spaces.

Theorem 2.3. Let $(X, \tilde{\mathcal{B}})$ be a complete soft cone ball -metric space, P be a regular cone in E and $f : X \to X$. Suppose that there exists a ψ -function such that

$$\tilde{\mathcal{B}}(f\tilde{x}, f\tilde{y}, f\tilde{z}) \stackrel{\sim}{\preceq} \psi(\mathcal{L}(\tilde{x}, \tilde{y}, \tilde{z})) \text{ for all } \tilde{x}, \tilde{y}, \tilde{z} \in \tilde{X},$$

$$\tag{4}$$

where

$$\mathcal{L}(\tilde{x}, \tilde{y}, \tilde{z}) = \max\{\tilde{\mathcal{B}}(\tilde{x}, \tilde{y}, \tilde{z}), \tilde{\mathcal{B}}(\tilde{x}, f\tilde{x}, f\tilde{x}), \tilde{\mathcal{B}}(\tilde{y}, f\tilde{y}, f\tilde{y}), \tilde{\mathcal{B}}(f\tilde{x}, \tilde{y}, \tilde{z})\}$$

Then f has a unique fixed point (say $\tilde{\mu}$) in \tilde{X} and f is continuous at $\tilde{\mu}$.

Proof. Given $\tilde{x}_0^0 \in X$. Define the sequence $\{\tilde{x}_n^n\}$ in X recursively as follows:

$$f\tilde{x}_{n-1}^{n-1} = \tilde{x}_n^n$$
 for each $n \in \mathbb{N}$.

In what follows we will suppose that $\tilde{x}_{n+1}^{n+1} \neq \tilde{x}_n^n$ for all $n \in \mathbb{N}$, since if $\tilde{x}_{n+1}^{n+1} = \tilde{x}_n^n$ for some n, then $\tilde{x}_{n+1}^{n+1} = f\tilde{x}_n^n = \tilde{x}_n^n$, and so we complete the proof. By (4), we deduce

$$\tilde{\mathcal{B}}(\tilde{x}_{n}^{n}, \tilde{x}_{n+1}^{n+1}, \tilde{x}_{n+1}^{n+1}) = \tilde{\mathcal{B}}(f\tilde{x}_{n-1}^{n-1}, f\tilde{x}_{n}^{n}, f\tilde{x}_{n}^{n})$$

$$\tilde{\preceq} \psi(\mathcal{L}(\tilde{x}_{n-1}^{n-1}, \tilde{x}_n^n, \tilde{x}_n^n)),$$

where

$$\begin{split} \mathcal{L}(\tilde{x}_{n-1}^{n-1}, \tilde{x}_n^n, \tilde{x}_n^n) &= & \max\{\tilde{\mathcal{B}}(\tilde{x}_{n-1}^{n-1}, \tilde{x}_n^n, \tilde{x}_n^n), \tilde{\mathcal{B}}(\tilde{x}_{n-1}^{n-1}, f\tilde{x}_{n-1}^{n-1}, f\tilde{x}_{n-1}^{n-1}), \\ & \quad \tilde{\mathcal{B}}(\tilde{x}_n^n, f\tilde{x}_n^n, f\tilde{x}_n^n), \tilde{\mathcal{B}}(f\tilde{x}_{n-1}^{n-1}, \tilde{x}_n^n, \tilde{x}_n^n)\} \\ &= & \max\{\tilde{\mathcal{B}}(\tilde{x}_{n-1}^{n-1}, \tilde{x}_n^n, \tilde{x}_n^n), \tilde{\mathcal{B}}(\tilde{x}_{n-1}^{n-1}, \tilde{x}_n^n, \tilde{x}_n^n), \\ & \quad \tilde{\mathcal{B}}(\tilde{x}_n^n, \tilde{x}_{n+1}^{n+1}, \tilde{x}_{n+1}^{n+1}), \tilde{\mathcal{B}}(\tilde{x}_n^n, \tilde{x}_n^n, \tilde{x}_n^n)\} \\ &= & \max\{\tilde{\mathcal{B}}(\tilde{x}_{n-1}^{n-1}, \tilde{x}_n^n, \tilde{x}_n^n), \tilde{\mathcal{B}}(\tilde{x}_n^n, \tilde{x}_{n+1}^{n+1}, \tilde{x}_{n+1}^{n+1})\}. \end{split}$$

If

 $\mathcal{L}(\tilde{x}_{n-1}^{n-1}, \tilde{x}_{n}^{n}, \tilde{x}_{n}^{n}) = \tilde{\mathcal{B}}(\tilde{x}_{n}^{n}, \tilde{x}_{n+1}^{n+1}, \tilde{x}_{n+1}^{n+1}),$

then

a contradiction. So we deduce that

and

$$\begin{split} \tilde{\mathcal{B}}(\tilde{x}_n^n, \tilde{x}_{n+1}^{n+1}, \tilde{x}_{n+1}^{n+1}) & \stackrel{\sim}{\preceq} & \psi(\tilde{\mathcal{B}}(\tilde{x}_{n-1}^{n-1}, \tilde{x}_n^n, \tilde{x}_n^n)) \\ & \stackrel{\sim}{\preceq} & \psi^2(\tilde{\mathcal{B}}(x_{n-2}, \tilde{x}_{n-1}^{n-1}, \tilde{x}_{n-1}^{n-1})) \\ & \stackrel{\sim}{\preceq} & \cdots \cdots \\ & \stackrel{\sim}{\preceq} & \psi^n(\tilde{\mathcal{B}}(\tilde{x}_0^0, \tilde{x}_1^1, \tilde{x}_1^1)). \end{split}$$

Since $\{\psi^n(\mathbb{B}(\tilde{x}_0^0, \tilde{x}_1^1, \tilde{x}_1^1))\}_{n \in \mathbb{N}}$ is non-increasing, it must converge to some $\tilde{\eta}, \ \tilde{\eta} \succeq \tilde{\theta}$. We claim that $\tilde{\eta} = \tilde{\theta}$. On the contrary, assume that $\tilde{\eta} \gg \tilde{\theta}$. Then by the definition of the ψ -function, there exists $\delta \gg \tilde{\theta}$ such that for $\tilde{x}_0^0, \tilde{x}_1^1 \in X$ with $\tilde{\eta} \preceq \tilde{\mathcal{B}}(\tilde{x}_0^0, \tilde{x}_1^1, \tilde{x}_1^1) \ll \delta + \tilde{\eta}$, there exists $n_0 \in \mathbb{N}$ such that $\psi^{n_0}(\tilde{\mathcal{B}}(f\tilde{x}_0^0, f\tilde{x}_1^1, f\tilde{x}_1^1)) \ll \tilde{\eta}$. Since $\lim_{n \to \infty} \psi^n(\tilde{\mathcal{B}}(\tilde{x}_0^0, \tilde{x}_1^1, \tilde{x}_1^1)) = \tilde{\eta}$, there exists $m_0 \in \mathbb{N}$ such that

$$\tilde{\eta} \preceq \psi^m \tilde{\mathcal{B}}(\tilde{x}_0^0, \tilde{x}_1^1, \tilde{x}_1^1) \tilde{\ll} \delta + \tilde{\eta},$$

for all $m \ge m_0$. Thus, we get

 $\psi^{m_0+n_0}(\tilde{\mathcal{B}}(\tilde{x}_0^0, \tilde{x}_1^1, \tilde{x}_1^1)) \tilde{\ll} \tilde{\eta},$

and we get a contradiction. So

 $\lim_{n \to \infty} \psi^n(\tilde{\mathcal{B}}(\tilde{x}_0^0, \tilde{x}_1^1, \tilde{x}_1^1)) = \tilde{\theta},$

and so we have $\lim_{n\to\infty} \tilde{\mathcal{B}}(\tilde{x}_n^n, \tilde{x}_{n+1}^{n+1}, \tilde{x}_{n+1}^{n+1}) = \tilde{\theta}$. For $m, n \in \mathbb{N}$ with $m > n > \kappa_0$, we claim that the following result holds:

$$\tilde{\mathcal{B}}(\tilde{x}_n^n, \tilde{x}_m^m, \tilde{x}_m^m) \prec \tilde{\epsilon} \text{ for all } m > n > \kappa_0.$$
(5)

Let $\tilde{\epsilon} \in \tilde{E}$ with $\tilde{\epsilon} \gg 0$ be given. Since $\lim_{n \to \infty} \varphi^n(\tilde{\mathcal{B}}(\tilde{x}_0^0, \tilde{x}_1^1, \tilde{x}_1^1)) = \tilde{\theta}$ and $\psi(\tilde{\epsilon}) \in \tilde{\epsilon}$, there exists $\kappa_0 \in \mathbb{N}$ such that

$$\psi^n(\tilde{\mathcal{B}}(\tilde{x}_0^0, \tilde{x}_1^1, \tilde{x}_1^1)) \tilde{\ll} \tilde{\epsilon} - \psi(\tilde{\epsilon}) \text{ for all } n \ge \kappa_0,$$

that is,

$$\tilde{\mathcal{B}}(\tilde{x}_n^n, \tilde{x}_{n+1}^{n+1}, \tilde{x}_{n+1}^{n+1}) \tilde{\ll} \tilde{\epsilon} - \psi(\tilde{\epsilon}) \text{ for all } n \ge .$$
(6)

We prove (5) by induction on m. Assume that the inequality (5) holds for m = k. Then by (6), we have that for m = k + 1,

Thus, we conclude that $\tilde{\mathcal{B}}(\tilde{x}_n^n, x_m, x_m) \in \tilde{\epsilon}$ for all $m > n > \kappa_0$. So $\{\tilde{x}_n^n\}$ is a Cauchy sequence in \tilde{X} . Since $(\tilde{X}, \tilde{\mathcal{B}})$ is a complete soft cone ball -metric space, there exists $\tilde{\mu} \in \tilde{X}$ such that $\lim_{n \to \infty} \tilde{x}_n^n = \tilde{\mu}$, that is, $\tilde{\mathcal{B}}(\tilde{x}_n^n, \tilde{x}_n^n, \tilde{\mu}) \to \tilde{\theta}$. For $n \in \mathbb{N}$, we have

$$\begin{split} \tilde{\mathcal{B}}(\tilde{\mu}, \tilde{\mu}, f\tilde{\mu}) & \stackrel{\sim}{\preceq} & \tilde{\mathcal{B}}(\tilde{\mu}, \tilde{\mu}, \tilde{x}_n^n) + \tilde{\mathcal{B}}(\tilde{x}_n^n, \tilde{x}_n^n, f\tilde{\mu}) \\ & \stackrel{\sim}{\preceq} & \tilde{\mathcal{B}}(\tilde{\mu}, \tilde{\mu}, \tilde{x}_n^n) + \tilde{\mathcal{B}}(f\tilde{x}_{n-1}^{n-1}, f\tilde{x}_{n-1}^{n-1}, f\tilde{\mu}) \\ & \stackrel{\sim}{\preceq} & \tilde{\mathcal{B}}(\tilde{\mu}, \tilde{\mu}, \tilde{x}_n^n) + \psi(\mathcal{L}(\tilde{x}_{n-1}^{n-1}, \tilde{x}_{n-1}^{n-1}, \tilde{\mu})), \end{split}$$

where

$$\begin{split} \mathcal{L}(\tilde{x}_{n-1}^{n-1}, \tilde{x}_{n-1}^{n-1}, \tilde{\mu}) &= \max\{\tilde{\mathcal{B}}(\tilde{x}_{n-1}^{n-1}, \tilde{x}_{n-1}^{n-1}, \tilde{\mu}), \tilde{\mathcal{B}}(\tilde{x}_{n-1}^{n-1}, f\tilde{x}_{n-1}^{n-1}, f\tilde{x}_{n-1}^{n-1}), \\ \tilde{\mathcal{B}}(\tilde{x}_{n-1}^{n-1}, f\tilde{x}_{n-1}^{n-1}, f\tilde{x}_{n-1}^{n-1}), \tilde{\mathcal{B}}(f\tilde{x}_{n-1}^{n-1}, \tilde{x}_{n-1}^{n-1}, \tilde{\mu})\} \\ &= \max\{\tilde{\mathcal{B}}(\tilde{x}_{n-1}^{n-1}, \tilde{x}_{n-1}^{n-1}, \tilde{\mu}), \tilde{\mathcal{B}}(\tilde{x}_{n-1}^{n-1}, \tilde{x}_{n}^{n}, \tilde{x}_{n}^{n}), \\ \tilde{\mathcal{B}}(\tilde{x}_{n-1}^{n-1}, \tilde{x}_{n}^{n}, \tilde{x}_{n}^{n}), \tilde{\mathcal{B}}(\tilde{x}_{n}^{n}, \tilde{x}_{n-1}^{n-1}, \tilde{\mu})\}. \end{split}$$

(I) If

 $\mathcal{L}(\tilde{x}_{n-1}^{n-1}, \tilde{x}_{n-1}^{n-1}, \tilde{\mu}) = \tilde{\mathcal{B}}(\tilde{x}_{n-1}^{n-1}, \tilde{x}_{n-1}^{n-1}, \tilde{\mu}),$

then

 $\tilde{\mathcal{B}}(\tilde{\mu},\tilde{\mu},f\tilde{\mu})\tilde{\ll}\tilde{\mathcal{B}}(\tilde{\mu},\tilde{\mu},\tilde{x}_{n}^{n})+\tilde{\mathcal{B}}(\tilde{x}_{n-1}^{n-1},\tilde{x}_{n-1}^{n-1},\tilde{\mu}).$

Letting $n \to \infty$, we conclude that $\tilde{\mathcal{B}}(\tilde{\mu}, \tilde{\mu}, f\tilde{\mu}) = \tilde{\theta}$, and so $\tilde{\mu} = f\tilde{\mu}$. (II) If

 $\mathcal{L}(\tilde{x}_{n-1}^{n-1}, \tilde{x}_{n-1}^{n-1}, \tilde{\mu}) = \tilde{\mathcal{B}}(\tilde{x}_{n-1}^{n-1}, \tilde{x}_n^n, \tilde{x}_n^n),$

then

$$\tilde{\mathcal{B}}(\tilde{\mu},\tilde{\mu},f\tilde{\mu})\tilde{\ll}\tilde{\mathcal{B}}(\tilde{\mu},\tilde{\mu},\tilde{x}_{n}^{n})+\tilde{\mathcal{B}}(\tilde{x}_{n-1}^{n-1},\tilde{x}_{n}^{n},\tilde{x}_{n}^{n}).$$

Letting $n \to \infty$, we conclude that $\tilde{\mathcal{B}}(\tilde{\mu}, \tilde{\mu}, f\tilde{\mu}) = \tilde{\theta}$, and so $\tilde{\mu} = f\tilde{\mu}$. (III) If

$$\mathcal{L}(\tilde{x}_{n-1}^{n-1}, \tilde{x}_{n-1}^{n-1}, \tilde{\mu}) = \tilde{\mathcal{B}}(\tilde{x}_n^n, \tilde{x}_{n-1}^{n-1}, \tilde{\mu}) \tilde{\preceq} \tilde{\mathcal{B}}(\tilde{x}_n^n, \tilde{x}_{n-1}^{n-1}, \tilde{x}_{n-1}^{n-1}) + \tilde{\mathcal{B}}(\tilde{x}_{n-1}^{n-1}, \tilde{x}_{n-1}^{n-1}, \tilde{\mu}),$$

then

$$\tilde{\mathcal{B}}(\tilde{\mu},\tilde{\mu},T\tilde{\mu})\tilde{\ll}\tilde{\mathcal{B}}(\tilde{\mu},\tilde{\mu},\tilde{x}_{n}^{n})+\tilde{\mathcal{B}}(\tilde{x}_{n}^{n},\tilde{x}_{n-1}^{n-1},\tilde{x}_{n-1}^{n-1})+\tilde{\mathcal{B}}(\tilde{x}_{n-1}^{n-1},\tilde{x}_{n-1}^{n-1},\tilde{\mu}).$$

Letting $n \to \infty$, we conclude that $\tilde{\mathcal{B}}(\tilde{\mu}, \tilde{\mu}, f\tilde{\mu}) = \tilde{\theta}$, and so $\tilde{\mu} = f\tilde{\mu}$. Follow (I), (II) and (III), we have that $\tilde{\mu}$ is a fixed point of f. Let $\tilde{\nu}$ be another fixed point of f with $\tilde{\mu} \neq \tilde{\nu}$. Then

$$\tilde{\mathcal{B}}(\tilde{\mu}, \tilde{\nu}, \tilde{\nu}) = \tilde{\mathcal{B}}(f\tilde{\mu}, f\tilde{\nu}, f\tilde{\nu}) \tilde{\preceq} \psi(\mathcal{L}(\tilde{\mu}, \tilde{\nu}, \tilde{\nu})),$$

where

$$\begin{split} \mathcal{L}(\tilde{\mu}, \tilde{\nu}, \tilde{\nu}) &= \max\{\tilde{\mathcal{B}}(\tilde{\mu}, \tilde{\nu}, \tilde{\nu}), \tilde{\mathcal{B}}(\tilde{\mu}, f\tilde{\mu}, f\tilde{\mu}), \tilde{\mathcal{B}}(\tilde{\nu}, f\tilde{\nu}, f\tilde{\nu}), \tilde{\mathcal{B}}(f\tilde{\mu}, \tilde{\nu}, \tilde{\nu})\} \\ &= \max\{\tilde{\mathcal{B}}(\tilde{\mu}, \tilde{\nu}, \tilde{\nu}), \tilde{\mathcal{B}}(\tilde{\mu}, \tilde{\mu}, \tilde{\mu}), \tilde{\mathcal{B}}(\tilde{\nu}, \tilde{\nu}, \tilde{\nu}), \tilde{\mathcal{B}}(\tilde{\mu}, \tilde{\nu}, \tilde{\nu})\} \\ &= \max\{\tilde{\mathcal{B}}(\tilde{\mu}, \tilde{\nu}, \tilde{\nu})\}, \tilde{\theta}\}. \end{split}$$

Therefore, if $\tilde{\mathcal{B}}(\tilde{\mu}, \tilde{\nu}, \tilde{\nu}) \ll \tilde{\mathcal{B}}(\tilde{\mu}, \tilde{\nu}, \tilde{\nu})$, then we get a contradiction. So $\tilde{\mu} = \tilde{\nu}$, and we show that $\tilde{\mu}$ is a unique fixed point of f. To show that f is continuous at $\tilde{\mu}$. Let $\{\tilde{y}_n^n\}$ be any sequence in X such that $\{\tilde{y}_n^n\}$ convergent to $\tilde{\mu}$. Then

$$\begin{split} \tilde{\mathcal{B}}(\tilde{\mu}, \tilde{\mu}, f \tilde{y}_n^n) &= \tilde{\mathcal{B}}(f \tilde{\mu}, f \tilde{\mu}, f \tilde{y}_n^n) \\ \\ \tilde{\preceq} & \varphi(\mathcal{L}(\tilde{\mu}, \tilde{\mu}, \tilde{y}_n^n)), \end{split}$$

where

$$\begin{aligned} \mathcal{L}(\tilde{\mu}, \tilde{\mu}, \tilde{y}_n^n) &= \max\{\tilde{\mathcal{B}}(\tilde{\mu}, \tilde{\mu}, \tilde{y}_n^n), \tilde{\mathcal{B}}(\tilde{\mu}, f\tilde{\mu}, f\tilde{\mu}), \tilde{\mathcal{B}}(\tilde{\mu}, f\tilde{\mu}, f\tilde{\mu}), \tilde{\mathcal{B}}(f\tilde{\mu}, \tilde{\mu}, \tilde{y}_n^n)\} \\ &= \max\{\tilde{\mathcal{B}}(\tilde{\mu}, \tilde{\mu}, \tilde{y}_n^n), \tilde{\theta}\}. \end{aligned}$$

Thus

$$\tilde{\mathcal{B}}(\tilde{\mu}, \tilde{\mu}, f\tilde{y}_n^n) \tilde{\ll} \tilde{\mathcal{B}}(\tilde{\mu}, \tilde{\mu}, \tilde{y}_n^n).$$

Letting $n \to \infty$. Then we deduce that $\{f\tilde{y}_n^n\}$ is convergent to $f\tilde{\mu} = \tilde{\mu}$. Hence f is continuous at $\tilde{\mu}$.

By Theorem 2.3, we immediate get the following corollary.

Corollary 2.4. Let $(\tilde{X}, \tilde{\mathcal{B}})$ be a complete cone ball-metric space, P be a regular cone in \tilde{E} and $f: X \to X$. Suppose that there exists a ψ -function such that

$$\tilde{\mathcal{B}}(f\tilde{x}, f\tilde{y}, f\tilde{z}) \preceq \psi(\tilde{\mathcal{B}}(\tilde{x}, \tilde{y}, \tilde{z})) \qquad (\tilde{x}, \tilde{y}, \tilde{z} \in \tilde{X}).$$

Then f has a unique fixed point (say $\tilde{\mu}$) in \tilde{X} and f is continuous at $\tilde{\mu}$.

In the sequel, we introduce the stronger Meir-Keeler cone-type function $\phi : intP \cup \{\tilde{\theta}\} \to [0, 1)$ in cone ball-metric spaces, and prove the fixed point theorem for this type of function.

Definition 2.5. Let $(\tilde{X}, \tilde{\mathcal{B}})$ be a cone ball-metric space with cone P, and let

$$\phi : int P \tilde{\cup} \{ \tilde{\theta} \} \to [0, 1).$$

Then the function ϕ is called a stronger Meir-Keeler type function, if for each $\tilde{\eta} \in P$ with $\tilde{\eta} \gg \tilde{\theta}$, there exists $\delta \gg \tilde{\theta}$ such that for $\tilde{x}, \tilde{y}, \tilde{z} \in \tilde{X}$ with $\tilde{\eta} \preceq \tilde{\mathcal{B}}(\tilde{x}, \tilde{y}, \tilde{z}) \ll \delta + \tilde{\eta}$, there exists $\tilde{\gamma}_{\tilde{\eta}} \in [0, 1)$ such that $\phi(\tilde{\mathcal{B}}(\tilde{x}, \tilde{y}, \tilde{z})) < \tilde{\gamma}_{\tilde{\eta}}$.

Theorem 2.6. Let $(\tilde{X}, \tilde{\mathcal{B}})$ be a complete cone ball-metric space, P be a regular cone in E and $f : X \to X$. Suppose that there exists a stronger Meir-Keeler type function $\phi : int P\tilde{\cup}\{0\} \to [0,1)$ such that

$$\tilde{\mathcal{B}}(f\tilde{x}, f\tilde{y}, f\tilde{z}) \stackrel{\sim}{\preceq} \phi(\mathcal{L}(\tilde{x}, \tilde{y}, \tilde{z})) \cdot \mathcal{L}(\tilde{x}, \tilde{y}, \tilde{z}) \text{ for all } \tilde{x}, \tilde{y}, \tilde{z} \in X,$$

$$\tag{7}$$

where

$$\mathcal{L}(\tilde{x}, \tilde{y}, \tilde{z}) = \max\{\tilde{\mathcal{B}}(\tilde{x}, \tilde{y}, \tilde{z}), \tilde{\mathcal{B}}(\tilde{x}, f\tilde{x}, f\tilde{x}), \tilde{\mathcal{B}}(\tilde{y}, f\tilde{y}, f\tilde{y}), \tilde{\mathcal{B}}(f\tilde{x}, \tilde{y}, \tilde{z})\}$$

Then f has a unique fixed point (say $\tilde{\mu}$) in \tilde{X} and f is continuous at $\tilde{\mu}$.

Proof. Given $\tilde{x}_0^0 \in \tilde{X}$. Define the sequence $\{\tilde{x}_n^n\}$ in X recursively as follows:

$$f\tilde{x}_{n-1}^{n-1} = \tilde{x}_n^n$$
 for each $n \in \mathbb{N}$.

In what follows, we will suppose that $\tilde{x}_{n+1}^{n+1} \neq \tilde{x}_n^n$ for all $n \in \mathbb{N}$, since if $\tilde{x}_{n+1}^{n+1} = \tilde{x}_n^n$ for some *n*, then $\tilde{x}_{n+1}^{n+1} = f \tilde{x}_n^n = \tilde{x}_n^n$, and so we complete the proof. By (7), we deduce

$$\begin{split} \tilde{\mathcal{B}}(\tilde{x}_{n}^{n}, \tilde{x}_{n+1}^{n+1}, \tilde{x}_{n+1}^{n+1}) &= \tilde{\mathcal{B}}(f\tilde{x}_{n-1}^{n-1}, f\tilde{x}_{n}^{n}, f\tilde{x}_{n}^{n}) \\ & \quad \tilde{\preceq} \quad \phi(\mathcal{L}(\tilde{x}_{n-1}^{n-1}, \tilde{x}_{n}^{n}, \tilde{x}_{n}^{n})) \cdot \mathcal{L}(\tilde{x}_{n-1}^{n-1}, \tilde{x}_{n}^{n}, \tilde{x}_{n}^{n}) \\ & \quad \tilde{\ll} \quad \gamma_{\tilde{\eta}} \cdot \mathcal{L}(\tilde{x}_{n-1}^{n-1}, \tilde{x}_{n}^{n}, \tilde{x}_{n}^{n}), \end{split}$$

where

$$\begin{split} \mathcal{L}(\tilde{x}_{n-1}^{n-1}, \tilde{x}_n^n, \tilde{x}_n^n) &= \max\{\tilde{\mathcal{B}}(\tilde{x}_{n-1}^{n-1}, \tilde{x}_n^n, \tilde{x}_n^n), \tilde{\mathcal{B}}(\tilde{x}_{n-1}^{n-1}, f\tilde{x}_{n-1}^{n-1}, f\tilde{x}_{n-1}^{n-1}), \\ & \tilde{\mathcal{B}}(\tilde{x}_n^n, f\tilde{x}_n^n, f\tilde{x}_n^n), \tilde{\mathcal{B}}(f\tilde{x}_{n-1}^{n-1}, \tilde{x}_n^n, \tilde{x}_n^n)\} \\ &= \max\{\tilde{\mathcal{B}}(\tilde{x}_{n-1}^{n-1}, \tilde{x}_n^n, \tilde{x}_n^n), \tilde{\mathcal{B}}(\tilde{x}_{n-1}^{n-1}, \tilde{x}_n^n, \tilde{x}_n^n), \\ & \tilde{\mathcal{B}}(\tilde{x}_n^n, \tilde{x}_{n+1}^{n+1}, \tilde{x}_{n+1}^{n+1}), \tilde{\mathcal{B}}(\tilde{x}_n^n, \tilde{x}_n^n, \tilde{x}_n^n)\} \\ &= \max\{\tilde{\mathcal{B}}(\tilde{x}_{n-1}^{n-1}, \tilde{x}_n^n, \tilde{x}_n^n), \tilde{\mathcal{B}}(\tilde{x}_n^n, \tilde{x}_{n+1}^n, \tilde{x}_{n+1}^{n+1})\}. \end{split}$$

If

$$\mathcal{L}(\tilde{x}_{n-1}^{n-1}, \tilde{x}_{n}^{n}, \tilde{x}_{n}^{n}) = \tilde{\mathcal{B}}(\tilde{x}_{n}^{n}, \tilde{x}_{n+1}^{n+1}, \tilde{x}_{n+1}^{n+1}),$$

then

 $\tilde{\mathcal{B}}(\tilde{x}_{n}^{n}, \tilde{x}_{n+1}^{n+1}, \tilde{x}_{n+1}^{n+1}) \quad \tilde{\ll} \quad \tilde{\gamma}_{\tilde{\eta}} \cdot \tilde{\mathcal{B}}(\tilde{x}_{n}^{n}, \tilde{x}_{n+1}^{n+1}, \tilde{x}_{n+1}^{n+1}),$

a contradiction. So we deduce that

$$\begin{split} \tilde{\mathcal{B}}(\tilde{x}_n^n, \tilde{x}_{n+1}^{n+1}, \tilde{x}_{n+1}^{n+1}) & \stackrel{\sim}{\preceq} & \phi(\mathcal{L}(\tilde{x}_{n-1}^{n-1}, \tilde{x}_n^n, \tilde{x}_n^n)) \\ & \quad \tilde{\ll} & \tilde{\gamma}_{\tilde{n}} \cdot \tilde{\mathcal{B}}(\tilde{x}_{n-1}^{n-1}, \tilde{x}_n^n, \tilde{x}_n^n) \end{split}$$

Then the sequence $\{\tilde{\mathcal{B}}(\tilde{x}_n^n, \tilde{x}_{n+1}^{n+1}, \tilde{x}_{n+1}^{n+1})\}$ is decreasing and bounded below. Let

$$\lim_{n \to \infty} \tilde{\mathcal{B}}(\tilde{x}_n^n, \tilde{x}_{n+1}^{n+1}, \tilde{x}_{n+1}^{n+1}) = \tilde{\eta} \check{\succeq} \tilde{\theta}$$

Then there exists $\kappa_0 \in \mathbb{N}$ and $\delta \gg \tilde{\theta}$ such that for all $n > \kappa_0$

$$\eta \tilde{\preceq} \tilde{\mathcal{B}}(\tilde{x}_n^n, \tilde{x}_{n+1}^{n+1}, \tilde{x}_{n+1}^{n+1}) \tilde{\ll} \eta + \delta.$$

For each $n \in \mathbb{N}$, since $\phi : int P \tilde{\cup} \{ \tilde{\theta} \} \to [0, 1)$ is a stronger Meir-Keeler type function, for these η and δ we have that for $\tilde{x}_{\kappa_0+n}, \tilde{x}_{\kappa_0+n+1} \in X$ with

$$\eta \preceq \mathcal{B}(\tilde{x}_{\kappa_0+n}, \tilde{x}_{\kappa_0+n+1}, \tilde{x}_{\kappa_0+n+1}) \in \delta + \eta,$$

there exists $\gamma_{\tilde{\eta}} \in [0, 1)$ such that

$$\phi(\mathcal{B}(\tilde{x}_{\kappa_0+n}, \tilde{x}_{\kappa_0+n+1}, \tilde{x}_{\kappa_0+n+1})) < \gamma_{\tilde{\eta}}$$

Thus, by (7), we can deduce

$$\begin{split} \tilde{\mathcal{B}}(\tilde{x}_{\kappa_{0}+n}^{\kappa_{0}+n}, \tilde{x}_{\kappa_{0}+n+1}^{\kappa_{0}+n+1}, \tilde{x}_{\kappa_{0}+n+1}^{\kappa_{0}+n+1}) &= \phi(\tilde{\mathcal{B}}(\tilde{x}_{\kappa_{0}+n-1}^{\kappa_{0}+n-1}, \tilde{x}_{\kappa_{0}+n}^{\kappa_{0}+n}, \tilde{x}_{\kappa_{0}+n}^{\kappa_{0}+n})) \cdot \tilde{\mathcal{B}}(\tilde{x}_{\kappa_{0}+n-1}^{\kappa_{0}+n-1}, \tilde{x}_{\kappa_{0}+n}^{\kappa_{0}+n}, \tilde{x}_{\kappa_{0}+n}^{\kappa_{0}+n}) \\ & \quad \tilde{\ll}\gamma_{\tilde{\eta}} \cdot \tilde{\mathcal{B}}(\tilde{x}_{\kappa_{0}+n-1}^{\kappa_{0}+n-1}, \tilde{x}_{\kappa_{0}+n-1}^{\kappa_{0}+n-1}, \tilde{x}_{\kappa_{0}+n}^{\kappa_{0}+n}), \end{split}$$

and it follows that for each $n \in \mathbb{N}$,

So

$$\lim_{n \to \infty} \tilde{\mathcal{B}}(\tilde{x}_{\kappa_0+n}^{\kappa_0+n}, \tilde{x}_{\kappa_0+n+1}^{\kappa_0+n+1}, \tilde{x}_{\kappa_0+n+1}^{\kappa_0+n+1}) = \tilde{\theta}, \text{ since } \gamma_{\tilde{\eta}} < 1.$$

We next claim that $\lim_{m,n\to\infty} \tilde{\mathcal{B}}(\tilde{x}_{\kappa_0+n+1}^{\kappa_0+n+1}, \tilde{x}_{\kappa_0+m}^{\kappa_0+m}, \tilde{x}_{\kappa_0+m}^{\kappa_0+m}) = \tilde{\theta}$. For $m, n \in \mathbb{N}$ with m > n, we have

$$\begin{split} \tilde{\mathcal{B}}(\tilde{x}_{\kappa_{0}+n}^{\kappa_{0}+n}, \tilde{x}_{\kappa_{0}+m}^{\kappa_{0}+m}, \tilde{x}_{\kappa_{0}+m}^{\kappa_{0}+m}) & \stackrel{\sim}{\preceq} & \sum_{i=n}^{m-1} \tilde{\mathcal{B}}((\tilde{x}_{\kappa_{0}+i}^{\kappa_{0}+i}, (\tilde{x}_{\kappa_{0}+i+1}^{\kappa_{0}+i+1}, (\tilde{x}_{\kappa_{0}+i+1}^{\kappa_{0}+i+1}) \\ & \quad \tilde{\ll} & \frac{\gamma_{\tilde{\eta}}^{m-1}}{1-\gamma_{\tilde{\eta}}} \tilde{\mathcal{B}}(\tilde{x}_{\kappa_{0}+1}^{\kappa_{0}+1}, \tilde{x}_{\kappa_{0}+2}^{\kappa_{0}+2}, \tilde{x}_{\kappa_{0}+2}^{\kappa_{0}+2}), \end{split}$$

and hence $\tilde{\mathcal{B}}(\tilde{x}_{\kappa_0+n}^{\kappa_0+n}, \tilde{x}_{\kappa_0+m}^{\kappa_0+m}, \tilde{x}_{\kappa_0+m}^{\kappa_0+m}) \to \tilde{\theta}$ as $m, n \to \infty$, since $0 < \gamma_{\tilde{\eta}} < 1$. By the properties of the cone ball-metric, we obtain

 $\tilde{\mathcal{B}}(\tilde{x}_{\kappa_{0}+n}^{\kappa_{0}+n},\tilde{x}_{\kappa_{0}+m}^{\kappa_{0}+m},\tilde{x}_{\kappa_{0}+1}^{\kappa_{0}+1})\tilde{\preceq}\tilde{\mathcal{B}}(\tilde{x}_{\kappa_{0}+n}^{\kappa_{0}+n},\tilde{x}_{\kappa_{0}+m}^{\kappa_{0}+m},\tilde{x}_{\kappa_{0}+m}^{\kappa_{0}+m})+\tilde{\mathcal{B}}(\tilde{x}_{\kappa_{0}+m}^{\kappa_{0}+m},\tilde{x}_{\kappa_{0}+m}^{\kappa_{0}+m},\tilde{x}_{\kappa_{0}+1}^{\kappa_{0}+1})$

taking limit as $m, n, l \to \infty$, we get $\tilde{\mathcal{B}}(\tilde{x}_{\kappa_0+n}^{\kappa_0+n}, \tilde{x}_{\kappa_0+m}^{\kappa_0+n}, \tilde{x}_{\kappa_0+1}^{\kappa_0+1}) \to \tilde{\theta}$. So $\{\tilde{x}_n^n\}$ is a Cauchy sequence. Since $(X, \tilde{\mathcal{B}})$ is a complete cone ball-metric space, there exists $\tilde{\mu} \in X$ such that $\lim_{n\to\infty} \tilde{x}_n^n = \tilde{\mu}$, that is, $\tilde{\mathcal{B}}(\tilde{x}_n^n, \tilde{x}_n^n, \tilde{\mu}) \to \tilde{\theta}$. For $n \in \mathbb{N}$, we have

$$\begin{split} \tilde{\mathcal{B}}(\tilde{\mu},\tilde{\mu},f\tilde{\mu}) & \stackrel{\sim}{\preceq} & \tilde{\mathcal{B}}(\tilde{\mu},\tilde{\mu},x_n) + \tilde{\mathcal{B}}(x_n,x_n,f\tilde{\mu}) \\ & \stackrel{\sim}{\preceq} & \tilde{\mathcal{B}}(\tilde{\mu},\tilde{\mu},x_n) + \tilde{\mathcal{B}}(f\tilde{x}_{n-1}^{n-1},f\tilde{x}_{n-1}^{n-1},f\tilde{\mu}) \\ & \stackrel{\sim}{\preceq} & \tilde{\mathcal{B}}(\tilde{\mu},\tilde{\mu},x_n) + \phi(\mathcal{L}(\tilde{x}_{n-1}^{n-1},\tilde{x}_{n-1}^{n-1},\tilde{\mu})) \cdot \mathcal{L}(\tilde{x}_{n-1}^{n-1},\tilde{x}_{n-1}^{n-1},\tilde{\mu}) \\ & \stackrel{\sim}{\preceq} & \tilde{\mathcal{B}}(\tilde{\mu},\tilde{\mu},x_n) + \gamma_{\tilde{\eta}} \cdot \mathcal{L}(\tilde{x}_{n-1}^{n-1},\tilde{x}_{n-1}^{n-1},\tilde{\mu}), \end{split}$$

where

$$\begin{split} \mathcal{L}(\tilde{x}_{n-1}^{n-1}, \tilde{x}_{n-1}^{n-1}, \tilde{\mu}) &= \max\{\tilde{\mathcal{B}}(\tilde{x}_{n-1}^{n-1}, \tilde{x}_{n-1}^{n-1}, \tilde{\mu}), \tilde{\mathcal{B}}(\tilde{x}_{n-1}^{n-1}, f\tilde{x}_{n-1}^{n-1}, f\tilde{x}_{n-1}^{n-1}), \\ \tilde{\mathcal{B}}(\tilde{x}_{n-1}^{n-1}, T\tilde{x}_{n-1}^{n-1}, f\tilde{x}_{n-1}^{n-1}), \tilde{\mathcal{B}}(f\tilde{x}_{n-1}^{n-1}, \tilde{x}_{n-1}^{n-1}, \tilde{\mu})\} \\ &= \max\{\tilde{\mathcal{B}}(\tilde{x}_{n-1}^{n-1}, \tilde{x}_{n-1}^{n-1}, \tilde{\mu}), \tilde{\mathcal{B}}(\tilde{x}_{n-1}^{n-1}, \tilde{x}_{n}^{n}, \tilde{x}_{n}^{n}), \\ \tilde{\mathcal{B}}(\tilde{x}_{n-1}^{n-1}, \tilde{x}_{n}^{n}, \tilde{x}_{n}^{n}), \tilde{\mathcal{B}}(\tilde{x}_{n}^{n}, \tilde{x}_{n-1}^{n-1}, \tilde{\mu})\}. \end{split}$$

(I) If

$$\mathcal{L}(\tilde{x}_{n-1}^{n-1}, \tilde{x}_{n-1}^{n-1}, \tilde{\mu}) = \tilde{\mathcal{B}}(\tilde{x}_{n-1}^{n-1}, \tilde{x}_{n-1}^{n-1}, \tilde{\mu}),$$

then

$$\tilde{\mathcal{B}}(\tilde{\mu}, \tilde{\mu}, f\tilde{\mu}) \stackrel{\sim}{\preceq} \tilde{\mathcal{B}}(\tilde{\mu}, \tilde{\mu}, x_n) + \gamma_{\tilde{\eta}} \cdot \tilde{\mathcal{B}}(\tilde{x}_{n-1}^{n-1}, \tilde{x}_{n-1}^{n-1}, \tilde{\mu}).$$

Letting $n \to \infty$, we conclude that $\tilde{\mathcal{B}}(\tilde{\mu}, \tilde{\mu}, f\tilde{\mu}) = \tilde{\theta}$, and so $\tilde{\mu} = f\tilde{\mu}$. (II) If

$$\mathcal{L}(\tilde{x}_{n-1}^{n-1}, \tilde{x}_{n-1}^{n-1}, \tilde{\mu}) = \tilde{\mathcal{B}}(\tilde{x}_{n-1}^{n-1}, \tilde{x}_n^n, \tilde{x}_n^n),$$

then

$$\tilde{\mathcal{B}}(\tilde{\mu}, \tilde{\mu}, f\tilde{\mu}) \stackrel{\sim}{\preceq} \tilde{\mathcal{B}}(\tilde{\mu}, \tilde{\mu}, \tilde{x}_n^n) + \gamma_{\tilde{\eta}} \cdot \tilde{\mathcal{B}}(\tilde{x}_{n-1}^{n-1}, \tilde{x}_n^n, \tilde{x}_n^n).$$

Letting $n \to \infty$, we conclude that $\tilde{\mathcal{B}}(\tilde{\mu}, \tilde{\mu}, T\tilde{\mu}) = \tilde{\theta}$, and so $\tilde{\mu} = f\tilde{\mu}$. (III) If

$$\mathcal{L}(\tilde{x}_{n-1}^{n-1}, \tilde{x}_{n-1}^{n-1}, \tilde{\mu}) = \tilde{\mathcal{B}}(\tilde{x}_n^n, \tilde{x}_{n-1}^{n-1}, \tilde{\mu}) \check{\preceq} \tilde{\mathcal{B}}(\tilde{x}_n^n, \tilde{x}_{n-1}^{n-1}, \tilde{x}_{n-1}^{n-1}) + \tilde{\mathcal{B}}(\tilde{x}_{n-1}^{n-1}, \tilde{x}_{n-1}^{n-1}, \tilde{\mu}),$$

then

$$\tilde{\mathcal{B}}(\tilde{\mu},\tilde{\mu},f\tilde{\mu}) \leq \tilde{\mathcal{B}}(\tilde{\mu},\tilde{\mu},x_n) + \gamma_{\tilde{\eta}} \cdot [\tilde{\mathcal{B}}(\tilde{x}_n^n,\tilde{x}_{n-1}^{n-1},\tilde{x}_{n-1}^{n-1}) + \tilde{\mathcal{B}}(\tilde{x}_{n-1}^{n-1},\tilde{x}_{n-1}^{n-1},\tilde{\mu})].$$

Letting $n \to \infty$, we conclude that $\tilde{\mathcal{B}}(\tilde{\mu}, \tilde{\mu}, f\tilde{\mu}) = \tilde{\theta}$, and so $\tilde{\mu} = f\tilde{\mu}$. Follow (I), (II) and (III), we have that $\tilde{\mu}$ is a fixed point of f. Let $\tilde{\nu}$ be another fixed point of f with $\tilde{\mu} \neq \tilde{\nu}$. Then

$$ilde{\mathcal{B}}(ilde{\mu}, ilde{
u}, ilde{
u}) \;=\; ilde{\mathcal{B}}(f ilde{\mu},f ilde{
u},f ilde{
u})$$

$$\begin{split} &\tilde{\preceq} \quad \psi(\mathcal{L}(\tilde{\mu}, \tilde{\nu}, \tilde{\nu})) \cdot \mathcal{L}(\tilde{\mu}, \tilde{\nu}, \tilde{\nu}) \\ &\tilde{\ll} \quad \gamma_{\tilde{\eta}} \cdot \mathcal{L}(\tilde{\mu}, \tilde{\nu}, \tilde{\nu}), \end{split}$$

where

$$\begin{split} \mathcal{L}(\tilde{\mu}, \tilde{\nu}, \tilde{\nu}) &= \max\{\tilde{\mathcal{B}}(\tilde{\mu}, \tilde{\nu}, \tilde{\nu}), \tilde{\mathcal{B}}(\tilde{\mu}, f\tilde{\mu}, f\tilde{\mu}), \tilde{\mathcal{B}}(\tilde{\nu}, f\tilde{\nu}, f\tilde{\nu}), \tilde{\mathcal{B}}(T\tilde{\mu}, \tilde{\nu}, \tilde{\nu})\} \\ &= \max\{\tilde{\mathcal{B}}(\tilde{\mu}, \tilde{\nu}, \tilde{\nu}), \tilde{\mathcal{B}}(\tilde{\mu}, \tilde{\mu}, \tilde{\mu}), \tilde{\mathcal{B}}(\tilde{\nu}, \tilde{\nu}, \tilde{\nu}), \tilde{\mathcal{B}}(\tilde{\mu}, \tilde{\nu}, \tilde{\nu})\} \\ &= \max\{\tilde{\mathcal{B}}(\tilde{\mu}, \tilde{\nu}, \tilde{\nu}), \tilde{\theta}\}. \end{split}$$

Thus if $\tilde{\mathcal{B}}(\tilde{\mu}, \tilde{\nu}, \tilde{\nu}) \ll \gamma_{\tilde{\eta}} \cdot \tilde{\mathcal{B}}(\tilde{\mu}, \tilde{\nu}, \tilde{\nu})$, then we get a contradiction. So $\tilde{\mu} = \tilde{\nu}$, and we show that $\tilde{\mu}$ is a unique fixed point of T. To show that f is continuous at $\tilde{\mu}$. Let $\{\tilde{y}_n^n\}$ be any sequence in X such that $\{\tilde{y}_n^n\}$ convergent to $\tilde{\mu}$. Then

$$\begin{split} \tilde{\mathcal{B}}(\tilde{\mu}, \tilde{\mu}, f\tilde{y}_n^n) &= \tilde{\mathcal{B}}(f\tilde{\mu}, f\tilde{\mu}, f\tilde{y}_n^n) \\ & \quad \tilde{\preceq} \quad \psi(\mathcal{L}(\tilde{\mu}, \tilde{\mu}, \tilde{y}_n^n)) \cdot \mathcal{L}(\tilde{\mu}, \tilde{\mu}, \tilde{y}_n^n) \\ & \quad \tilde{\ll} \quad \gamma_{\tilde{\eta}} \cdot \mathcal{L}(\tilde{\mu}, \tilde{\mu}, \tilde{y}_n^n), \end{split}$$

where

$$\mathcal{L}(\tilde{\mu}, \tilde{\mu}, \tilde{y}_n^n) = \max\{\tilde{\mathcal{B}}(\tilde{\mu}, \tilde{\mu}, \tilde{y}_n^n), \tilde{\mathcal{B}}(\tilde{\mu}, T\tilde{\mu}, T\tilde{\mu}), \tilde{\mathcal{B}}(\tilde{\mu}, f\tilde{\mu}, f\tilde{\mu}), \tilde{\mathcal{B}}(f\tilde{\mu}, \tilde{\mu}, \tilde{y}_n^n)\}.$$

Thus

$$\tilde{\mathcal{B}}(\tilde{\mu}, \tilde{\mu}, T\tilde{y}_n^n) \tilde{\ll} \gamma_{\tilde{\eta}} \cdot \tilde{\mathcal{B}}(\tilde{\mu}, \tilde{\mu}, \tilde{y}_n^n).$$

Letting $n \to \infty$. Then we deduce that $\{f\tilde{y}_n^n\}$ is convergent to $f\tilde{\mu} = \tilde{\mu}$. Hence f is continuous at $\tilde{\mu}$.

Acknowledgement

The author is very grateful to the reviewers for their reading the manuscript and valuable comments.

References

- C. D. Aliprantis and R. Tourky, Cones and Duality, in: Graduate studies in Mathematics, Amer. Math. Soc., 84(2007), 215-240.
- [2] I. Beg, M. Abbas and T. Nazir, Generalized cone metric spaces, J. Nonlinear Sci. Appl., 3(1)(2010), 23-31.
- [3] C. Chen and P. Tsai, Fixed point and common fixed point theorems for the Meir-Keeler type functions in cone ball-metric spaces, Ann. Funct. Anal., 3(2)(2012), 155-169.
- [4] L. G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 322(2007), 1468-1476.
- [5] A. Meir and E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl., 28(1969), 326-329.
- [6] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear and Convex Anal., 7(2)(2006), 289-297.