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1. Introduction and preliminaries

In this section we gives some basic definitions and previous known results which are used to prove our main results.

Definition 1.1. Let X be an initial universe set and E be a set of parameters. A pair (F,E) is called a soft set over X if

and only if F is a mapping from E into the set of all subsets of the set X, i.e., F : E → P (X) where P (X) is the power set

of X.

Definition 1.2. The intersection of two soft sets (F,A) and (G,B) over X is the soft set (H,C), where C = A ∩ B and

∀e ∈ C, H(e) = F (e) ∩G(e). This is denoted by (F,A)∩̃(G,B) = (H,C).

Definition 1.3. The union of two soft sets (F,A) and (G,B) over X is the soft set, where C = A ∪B and ∀e ∈ C,

H(e) =


F (e), if e ∈ A−B

G(e), if e ∈ B −A

F (e) ∪G(e), if e ∈ A ∩B

This relationship is denoted by (F,A)∪̃(G,B) = (H,C).

Definition 1.4. A soft set (F,A) over X is said to be a null soft set denoted by φ, if for all e ∈ A,F (e) = φ, (null set).

Definition 1.5. A soft set (F,A) over X is said to be an absolute soft set denoted by X̃ if for all e ∈ A, F (e) = X.

Definition 1.6. The difference (H,E) of two soft sets (F,E) and (G,E) over X, denoted by (F,E) \ (G,E), is defined as

H(e) = F (e) \G(e) for all e ∈ E.

∗ E-mail: kanchanbarman07@gmail.com
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Definition 1.7. The complement of a soft set (F,A) is denoted by (F,A)c and is defined by (F,A)c = (F c, A), where

F c : A→ P (X) is a mapping given by F c(e) = X − F (e), for all e ∈ A.

Definition 1.8. Let R be the set of real numbers and B(R) be the collection of all non-empty bounded subsets of R and E

be taken as a set of parameters. Then a mapping F : E → B(R) is called a soft real set. If a real soft set is a singleton

soft set, it will be called a soft real number and denoted by V isionRes. , s̃, t̃ etc. 0̃ and 1̃ are the soft real numbers where

0̃(e) = 0, 1̃(e) = 1 for all e ∈ E respectively.

Definition 1.9. Let V isionRes. , s̃ be two soft real numbers. Then the following statements hold:

(i). V isionRes. ≤ s̃ if V isionRes. (e) ≤ s̃(e) for all e ∈ E,

(ii). V isionRes. ≥ s̃ if V isionRes. (e) ≥ s̃(e) for all e ∈ E,

(iii). V isionRes. < s̃ if V isionRes. (e) < s̃(e) for all e ∈ E,

(iv). V isionRes. > s̃ if V isionRes. (e) > s̃(e) for all e ∈ E.

Definition 1.10. A soft set (F,E) over X is said to be a soft point, denoted by x̃e, if for the element e ∈ E, F (e) = {x}

and F (ẽ) = φ , for all ẽ ∈ E \ {e}.

Definition 1.11. Two soft points x̃e, ỹe are said to be equal if e = ẽ and x = y. Thus x̃e 6= ỹe or e 6= ẽ.

Proposition 1.12. Every soft set can be expressed as a union of all soft points belonging to it as (F,E) = ∪x̃e∈(F,E)x̃e.

Conversely, any set of soft points can be considered as a soft set.

Definition 1.13. Let τ be a collection of soft sets over X. Then τ is said to be a soft topology on X if

(1). φ, X̃ belong to τ.

(2). The union of any number of soft sets in τ belongs to τ .

(3). The intersection of any two soft sets in τ belongs to τ .

The triplet (X, τ,E) is called a soft topological space over X.

Definition 1.14. Let (X, τ,E) be a soft topological space over X. Then soft interior of (F,E), denoted by (F,E)◦ , is

defined as the union of all soft open sets contained in (F,E).

Definition 1.15. Let (X, τ,E) be a soft topological space over X. Then soft closure of (F,E), denoted by (F,E), is defined

as the intersection of all soft closed super sets of (F,E).

Definition 1.16. Let (X, τ,E) be a soft topological space over X. Then soft boundary of soft set (F,E) over X ,denoted by

∂(F,E), is defined as ∂(F,E) = (F,E)∩̃(F,E)c.

Definition 1.17. Let (X, τ,E) and (Y, τ ′, E) be two soft topological spaces, f : (X, τ,E)→ (Y, τ ′, E) be a mapping. For each

soft neighborhood (H,E) of ( ˜f(˜e)x,E) , if there exists a soft neighborhood (F,E) of (x̃e, E) such that f((F,E)) ⊂ (H,E),

then f is said to be soft continuous mapping at (x̃e, E). If f is soft continuous mapping for all (x̃e, E), then f is called soft

continuous mapping. Let SP (X̃) be the collection of all soft points of X and R(E)∗ denote the set of all non-negative soft

real numbers.

Definition 1.18. A mapping d̃ : SP (X̃) × SP (X̃) → R(E)∗ is said to be a soft metric on the soft set X̃ if d̃ satisfies the

following conditions:
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(M1) d̃(x̃e, ỹe′)≥̃0̃ for all x̃e, ỹe′ ∈̃X̃,

(M2) d̃(x̃e, ỹe′)≥̃0̃ if and only if x̃e = ỹe′ ,

(M3) d̃(x̃e, ỹe′) = d̃(ỹe′ , x̃e) for all x̃e, ỹe′ ∈̃X̃,

(M4) For all x̃e, ỹe′ , ˜ze′′ ∈̃X̃, d̃(x̃e, ˜ze′′)≤̃d̃(x̃e, ỹe′) + d̃(ỹe′ , ˜ze′′).

The soft set X̃ with a soft metric d̃ on X̃ is called a soft metric space and denoted by (X̃, d̃, E).

Definition 1.19. Let (X̃, B̃, E) be a soft metric space and ε be a non-negative soft real number.

B(x̃e, ε̃) = {ỹε′ ∈ X̃ : d̃(x̃e, ỹe′)<̃ε̃} ⊂ SP (X̃)

is called the soft open ball with center x̃e and radius ε̃.

B(x̃e, ε̃) = {ỹε′ ∈ X̃ : d̃(x̃e, ỹe′)≤̃ε̃} ⊆ SP (X̃)

is called the soft closed ball with center x̃e and radius ε̃.

Definition 1.20. Let (X̃, d̃, E) be a soft metric space and (F,E) be a non-null soft subset of X̃ in (X̃, d̃, E). Then (F,E)

is said to be a soft open set in X̃ with respect to d̃ if and only if all soft points of (F,E) is soft interior points of (F,E).

Definition 1.21. Let { ˜xnen} be a sequence of soft points in a soft metric space (X̃, d̃, E). Then the sequence { ˜xnen} is said

to be convergent in (X̃, d̃, E) if there is a soft point x̃0e0 ∈̃X̃ such that d̃( ˜xnen , x̃
0
e0)→ 0̃ as n→∞.

This means for every ε̃>̃0̃, chosen arbitrarily, there is a natural number N = N(ε̃) such that 0̃<̃d̃( ˜xnen , x̃
0
e0)≤̃ε̃ whenever

n > N .

Definition 1.22. Limit of a sequence in a soft metric space, if exist, is unique.

Definition 1.23 (Cauchy Sequence). The sequence { ˜xnen} of soft points in (X̃, B̃, E) is called a Cauchy sequence in X̃ if

corresponding to every ε̃>̃0̃, there is a m ∈ N such that d̃(x̃iei , x̃
j
ej )≤̃ε̃ for all i, j ≥ m i.e. d̃(x̃iei , x̃

j
ej )→ 0̃ as i, j →∞.

Definition 1.24 (Complete Metric Space). The soft metric space (X̃, B̃, E) is called complete if every Cauchy Sequence in

X̃ converges to some point of X̃ . The soft metric space (X̃, d̃, E) is called incomplete if it is not complete.

Definition 1.25. Let (Ẽ, ‖.‖, A) (here we denote A be parametric set) be a soft real Banach space and (P,A) ∈ S(Ẽ) be a

soft subset of Ẽ. Then (P,A) is called a soft cone if and only if

(1). (P,A) is closed, (P,A) 6= φ and (P,A) 6= SS(θ),

(2). ã, b̃ ∈ R(A) x̃, ỹε̃(P,A) implies ãx̃+ ỹỹε̃(P,A),

(3). x̃∈̃(P,A) and −x̃∈̃(P,A) impliesx̃ = θ.

Given a soft cone (P,A)∈̃S(Ẽ), we define a soft partial ordering �̃ with respect to (P,A) by x̃�̃ỹ if and only if ỹ− x̃∈̃(P,A).

We write x̃ ≺ ỹ to indicate that x̃�̃ỹ but x̃ 6= ỹ, while x̃� ỹ will stand for ỹ − x̃∈̃Int(P,A), Int(P,A) denotes the interior

of (P,A).

Definition 1.26. The soft cone (P,A) in soft real Banach space Ẽ is called
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(a). normal, if there is a soft real number α̃>̃0̃ such that for all x̃, ỹ∈̃Ẽ, θ�̃x̃�̃ỹ implies ‖x̃‖�̃α̃‖ỹ‖, where α̃ is called soft

constant of (P,A).

(b). minihedral, if sup(x̃, ỹ) exists for all x̃, ỹ∈̃Ẽ.

(c). strongly minihedral, if every soft set in Ẽ which is bounded from above has a supremum.

(d). solid, if Int(P,A) 6= φ.

(e). regular, if every increasing sequence of soft elements in Ẽ which is bounded from above is convergent. That is, if {x̃n}

is a sequence of soft elements in Ẽ such that x̃1�̃x̃2�̃ . . . �̃x̃n�̃ . . .

for some soft elements in Ẽ then there is x̃∈̃Ẽ such that ‖x̃n − x̃‖ → 0̃ as n → ∞. Equivalently, the soft cone (P,A) is

regular if and only if every decreasing sequence of soft elements in Ẽ which is bounded from below is convergent.

Example 1.27. Let R(A) be all soft real number, where A is a finite set of parameters. Let Rn(A) = R(A)×R(A)×· · ·×R(A).

Then, Rn(A) is a soft Banach space. Let Ẽ = Rn(A) with (P,A) = SS{(x̃1, x̃2, . . . , x̃n) : x̃i�̃0̃, ∀ i = 1, 2, . . . , n}. Then

the soft cone (P,A) is normal, minihedral, strongly minihedral and solid.

In fact Chen and Tsai [3] introduced the following notion of the cone ball-metric B.

Definition 1.28. Let X be a non-empty set and X̃ be absolute soft set. Then the mapping B̃ : SE(X̃)×SE(X̃)×SE(X̃)→

SE(X̃) is soft cone ball-metric on X̃ if B̃ satisfy the following properties:

(1). B̃(x̃, ỹ, z̃) = θ̃ if and only if x̃ = ỹ = z̃;

(2). B̃(x̃, x̃, ỹ) � θ̃, for all x̃ 6= ỹ;

(3). B̃(x̃, x̃, ỹ)�̃B̃(x̃, ỹ, z̃), for all x̃, ỹ, z̃∈̃X̃;

(4). B̃(x̃, ỹ, z̃) = B̃(x̃, z̃, ỹ) = B̃(z̃, ỹ, x̃) = · · · (symmetric in all three variables);

(5). B̃(x̃, ỹ, z̃)�̃B̃(x̃, w̃, w̃) + B̃(w̃, ỹ, z̃), for all x̃, ỹ, z̃, w̃∈̃X̃;

(6). B̃(x̃, ỹ, z̃)�̃B̃(x̃, w̃, w̃) + B̃(ỹ, w̃, w̃) + B̃(z̃, w̃, w̃), for all x̃, ỹ, z̃, w̃∈̃X̃.

Definition 1.29. Let (X̃, d̃) be a soft cone metric space, B̃ : SE(X̃) × SE(X̃) × SE(X̃) → SE(X̃), x̃, ỹ, z̃ ∈ X̃ and we

denote

δ(B) = sup{d̃(ã, b̃) : ã, b̃ ∈ B̃},

and

B̃(x̃, ỹ, z̃) = δ(B̃),

where B̃ = ∩̃{F ⊂̃X̃|F is a soft closed ball and {x̃, ỹ, z̃}⊂̃F}. Then we call B̃ a ball-metric with respect to the cone metric d̃,

and (X̃, B̃) a soft cone ball-metric space. It is clear that B̃(x̃, x̃, ỹ) = d̃(x̃, ỹ).

Definition 1.30. Let (X̃, B̃) be a soft cone ball-metric space and {x̃nn} be a sequence in X̃. We say that {x̃n} is

(1). Cauchy sequence if for every ε̃∈̃Ẽ with θ�̃ε̃, there exists n0∈̃N such that for all n,m, l > n0, B̃(x̃nn, x̃
m
m, x̃

l
l)�̃ε̃.

(2). Convergent sequence if for every ε̃∈̃E with θ�̃ε̃, there exists n0∩̃N such that for all n,m > n0, B̃(x̃nn, x̃
m
m, x̃)�̃ε̃ for

some x̃∈̃X̃. Here x̃ is called the limit of the sequence {x̃nn} and is denoted by limn→∞ x̃
n
n = x̃ or x̃nn → x̃ as n→∞.
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Definition 1.31. Let (X̃, B̃) be a soft cone ball-metric space. Then X̃ is said to be complete if every Cauchy sequence is

convergent in X̃.

Proposition 1.32. Let (X̃, B̃) be a soft cone ball-metric space and {x̃nn} be a sequence in X̃. Then the following are

equivalent:

(1). {x̃nn} converges to x̃;

(2). B̃(x̃nn, x̃
n
n, x̃)→ θ̃ as n→∞;

(3). B̃(x̃nn, x̃, x̃)→ θ̃ as n→∞;

(4). B̃(x̃nn, x̃
m
m, x̃)→ θ̃ as n,m→∞.

Proposition 1.33. Let (X̃, B̃) be a soft cone ball-metric space and {x̃nn} be a sequence in X̃, x̃, ỹ∈̃X̃. If x̃nn → x̃ and x̃nn → ỹ

as n→∞, then x̃ = ỹ.

Proof. Let ε̃∈̃E with θ�̃ε̃ be given. Since x̃nn → x̃ and x̃nn → ỹ as n→∞, there exists n0∈̃N such that for all m,n > n0,

B̃(x̃nn, x̃
m
m, x̃)�̃ ε̃

3
and B̃(x̃nn, x̃

m
m, y)�̃ ε̃

3
.

Therefore,

B̃(x̃, x̃, ỹ) �̃ B̃(x̃, x̃nn, x̃
n
n) + B̃(x̃nn, x̃, ỹ)

= B̃(x̃, x̃nn, x̃
n
n) + B̃(ỹ, x̃nn, x̃)

�̃ B̃(x̃, x̃nn, x̃
n
n) + B̃(ỹ, x̃mm, x̃

m
m) + B̃(x̃mm, x̃

n
n, x̃)

�̃ ε̃

3
+
ε̃

3
+
ε̃

3
= ε̃.

Hence, B̃(x̃, x̃, ỹ)�̃ ε̃
α

for all α ≥ 1, and so ε̃
α
− B̃(x̃, x̃, ỹ)∈̃P for all α ≥ 1. Since ε̃

α
→ θ as α→∞ and P is closed, we have

that −B̃(x̃, x̃, ỹ)∈̃P . This implies that B̃(x̃, x̃, ỹ) = θ̃, since B̃(x̃, x̃, ỹ)∈̃P . So x̃ = ỹ.

Proposition 1.34. Let (X̃, B̃) be a soft cone ball-metric space and {x̃nn}, {ỹmm}, {z̃ll} be three sequences in X̃. If x̃nn → x̃,

ỹmm → ỹ, z̃ll → z̃ as n→∞, then B̃(x̃nn, ỹ
m
m , z̃

l
l)→ B̃(x̃, ỹ, z̃) as n→∞.

Proof. Let ε̃∈̃E with θ�̃ε̃ be given. Since x̃nn → x̃, ỹmm → ỹ, z̃ll → z̃ as n → ∞, there exists n0∈̃N such that for all

n,m, l > n0,

B̃(x̃nn, x̃, x̃)�̃ ε̃

3
, B̃(ỹmm , ỹ, ỹ)�̃ ε̃

3
, B̃(z̃ll , z̃, z̃)�̃

ε̃

3
,

Therefore,

B̃(x̃nn, ỹ
m
m , z̃

l
l) �̃ B̃(x̃nn, x̃, x̃) + B̃(x̃, ỹmm , z̃

l
l)

�̃ B̃(x̃nn, x̃, x̃) + B̃(ỹmm , ỹ, ỹ) + B̃(ỹ, x̃, z̃ll)

�̃ B̃(x̃nn, x̃, x̃) + B̃(ỹmm , ỹ, ỹ) + B̃(z̃ll , z̃, z̃) + B̃(z̃, x̃, ỹ)

�̃ ε̃

3
+
ε̃

3
+
ε̃

3
+ B̃(x̃, ỹ, z̃),

that is,

B̃(x̃nn, ỹ
m
m , z̃

l
l)− B̃(x̃, ỹ, z̃)�̃ε̃.
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Similarly,

B̃(x̃, ỹ, z̃)− B̃(x̃nn, ỹ
m
m , z̃

l
l)�̃ε̃.

Therefore, for all α ≥ 1, we have

B̃(x̃nn, ỹ
m
m , z̃

l
l)− B̃(x̃, ỹ, z̃)�̃ ε̃

α
,

and

B̃(x̃, ỹ, z̃)− B̃(x̃nn, ỹ
m
m , z̃

l
l)�̃

ε̃

α
.

These imply that

ε̃

α
− B̃(x̃nn, ỹ

m
m , z̃

l
l) + B̃(x̃, ỹ, z̃)∈̃P,

ε̃

α
+ B̃(x̃nn, ỹ

m
m , z̃

l
l)− B̃(x̃, ỹ, z̃)∈̃P.

Since P is closed and ε̃
α
→ θ as α→∞, we have that

lim
n,m,l→∞

[−B̃(x̃nn, ỹ
m
m , z̃

l
l) + B̃(x̃, ỹ, z̃)]∈̃P,

lim
n,m,l→∞

[B̃(x̃nn, ỹ
m
m , z̃

l
l)− B̃(x̃, ỹ, z̃)]∈̃P.

These show that

lim
n,m,l→∞

B̃(x̃nn, ỹ
m
m , z̃

l
l) = B̃(x̃, ỹ, z̃).

So we complete the proof.

2. Main results

In the section, we first recall the notion of the Meir-Keeler type function. A function ψ : R+ → R+ is said to be a Meir-Keeler

type function (see [5]), if for each η ∈ R+, there exists δ > 0 such that for t ∈ R+ with η ≤ t < η + δ, we have ψ(t) < η.

We now define a new weaker Meir-Keeler type function in a soft cone ball-metric space (X̃, B̃), as follows:

Definition 2.1. Let (X̃, B̃) be a cone ball-metric space with cone P , and let ψ : intP ∪{θ̃} → intP ∪̃{θ̃}. Then the function

ψ is called a weaker Meir-Keeler type function in X̃, if for each η̃, θ̃�̃η̃, there exists δ̃, θ̃�̃δ̃ such that for (x̃, ỹ, z̃)∈̃X̃ with

η̃�̃B̃(x̃, ỹ, z̃)�̃δ̃+ η̃, there exists n0∈̃N such that ψn0(B̃(x̃, ỹ, z̃))�̃η̃. Further, we let the function ψ : intP ∪̃{θ̃} → intP ∪̃{θ̃}

satisfying the following conditions:

(i) ψ be a weaker Meir-Keeler type function;

(ii) for each t ∈ intP , we have θ̃�̃ψ(t)�̃t and ψ(θ̃) = θ̃;

(iii) for tn ∈ intP ∪̃{θ̃}, if limn→∞ tn = γ � θ̃, then limn→∞ ψ(tn)�̃γ̃;

(iv) {ψn(t)}n∈N is non-increasing.

Then we call this mapping a ψ-function.

We now state our main common fixed point result for the weaker Meir-Keeler type function in a soft cone ball-metric space

(X̃, B̃), as follows:
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Theorem 2.2. Let (X̃, B̃) be a complete soft cone ball-metric space, P be a regular cone in Ẽ and f, g be two self-mapplings

of X̃ such that fX̃ ⊂ gX̃. Suppose that there exists a ψ-function such that

B̃(fx̃, f ỹ, f z̃) 4 ψ(L(x̃, ỹ, z̃)), (1)

where

L(x̃, ỹ, z̃) = max{B̃(gx̃, gỹ, gz̃), B̃(gx̃, f x̃, f x̃), B̃(gỹ, f ỹ, f ỹ), B̃(gz̃, f z̃, f z̃)}.

If gX̃ is closed, then f and g have a coincidence point in X̃. Moreover, if f and g commute at their coincidence points, then

f and g have a unique common fixed point in X̃

Proof. Given x̃00∈̃X̃. Since fX̃ ⊂ gX̃, we can choose x̃11∈̃X̃ such that gx̃11 = fx̃00. Continuing this process, we define the

sequence {x̃nn} in X̃ recursively as follows:

fx̃nn = gx̃n+1
n+1 for each n ∈ N∪̃{0}.

In what follows we will suppose that fx̃n+1
n+1 6= fx̃nn for all n ∈ N, since if fx̃n+1

n+1 = fx̃nn for some n, then fx̃n+1
n+1 = gx̃n+1

n+1,

that is , f, g have a coincidence point x̃n+1
n+1, and so we complete the proof. By (1), we have

B̃(fx̃nn, f x̃
n+1
n+1, f x̃

n+1
n+1) 4 ψ(L(x̃nn, x̃

n+1
n+1, x̃

n+1
n+1)),

where

L(x̃nn, x̃
n+1
n+1, x̃

n+1
n+1) = max{B̃(gx̃nn, gx̃

n+1
n+1, gx̃

n+1
n+1), B̃(gx̃nn, f x̃

n
n, f x̃

n
n),

B̃(gx̃n+1
n+1, f x̃

n+1
n+1, f x̃

n+1
n+1), B̃(gx̃n+1

n+1, f x̃
n+1
n+1, f x̃

n+1
n+1)}

= max{B̃(fx̃n−1
n−1, f x̃

n
n, f x̃

n
n), B̃(fx̃n−1

n−1, f x̃
n
n, f x̃

n
n),

B̃(fx̃nn, f x̃
n+1
n+1, f x̃

n+1
n+1), B̃(fx̃nn, f x̃

n+1
n+1, f x̃

n+1
n+1)}

= max{B̃(fx̃n−1
n−1, f x̃

n
n, f x̃

n
n), B̃(fx̃nn, f x̃

n+1
n+1, f x̃

n+1
n+1)}.

Therefore, by the condition (ii) of ψ, we conclude that for each n ∈ N,

B̃(fx̃nn, f x̃
n+1
n+1, f x̃

n+1
n+1) �̃ B̃(fx̃n−1

n−1, f x̃
n
n, f x̃

n
n),

and

B̃(fx̃nn, f x̃
n+1
n+1, f x̃

n+1
n+1)�̃ψ(B̃(fx̃n−1

n−1, f x̃
n
n, f x̃

n
n))

�̃ · · ·

�̃ψn(B̃(fx̃00, f x̃
1
1, f x̃

1
1)).

Since {ψn(B̃(fx̃00, f x̃
1
1, f x̃

1
1))}n∈N is non-incresing, it must converge to some η̃, θ̃ 4 η̃. We claim that η̃ = θ̃. On the contrary,

assume that θ̃�̃η̃. Then by the definition of the ψ-function, there exists δ, θ̃�̃δ such that for θ̃�̃B̃(fx̃00, f x̃
1
1, f x̃

1
1) with η̃ 4
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B̃(fx̃00, f x̃
1
1, f x̃

1
1)�̃δ + η̃, there exists n0 ∈ N such that ψn0(B̃(fx̃00, f x̃

1
1, f x̃

1
1))�̃η̃. Since limn→∞ ψ

n(B̃(fx̃00, f x̃
1
1, f x̃

1
1)) = η̃,

there exists m0 ∈ N such that η̃ 4 ψmB̃(fx̃00, f x̃
1
1, f x̃

1
1)�̃δ̃ + η̃, for all m ≥ m0. Thus, we conclude that

ψm0+n0(B̃(fx̃00, f x̃
1
1, f x̃

1
1))�̃η̃.

So we get a contradiction. So limn→∞ ψ
n(B̃(fx̃00, f x̃

1
1, f x̃

1
1)) = θ̃, and so we have limn→∞ B̃(fx̃nn, f x̃

n+1
n+1, f x̃

n+1
n+1) = θ̃.

Next, we claim that the sequence {fx̃nn} is a Cauchy sequence. Suppose that {fx̃nn} is not a Cauchy sequence. Then there

exists γ̃∈̃Ẽ with θ̃�̃γ̃ such that for all k∈̃N, there are mk, nk∈̃N with mk > nk ≥ k satisfying:

(1) mk is even and nk is odd,

(2) B̃(fx̃
nk
nk , f x̃

mk
mk , f x̃

mk
mk )�̃γ̃, and

(3) mk is the smallest even number such that the conditions (1), (2) hold.

Since limn→∞ B̃(fx̃nn, f x̃
n+1
n+1, f x̃

n+1
n+1) = θ̃ and by (2), (3), we have that

γ̃ �̃ B̃(fx̃nk
nk
, f x̃mk

mk
, f x̃mk

mk
)

�̃ B̃(fx̃nk
nk
, f x̃

mk−1
mk−1, f x̃

mk−1
mk−1) + B̃(fx̃

mk−1
mk−1, f x̃

mk
mk
, f x̃mk

mk
)

�̃ B̃(fx̃nk
nk
, f x̃

mk−2
mk−2, f x̃

mk−2
mk−2) + B̃(fx̃

mk−2
mk−2, f x̃

mk−1
mk−1, f x̃

mk−1
mk−1)

+B̃(fx̃
mk−1
mk−1, f x̃

mk−1
mk−1, f x̃

mk−1
mk−1)

�̃ γ + B̃(fx̃
mk−2
mk−2, f x̃

mk−1
mk−1, f x̃

mk−1
mk−1) + B̃(fx̃

mk−1
mk−1, f x̃

mk
mk
, f x̃mk

mk
).

Taking limk→∞, we deduce

lim
k→∞

B̃(fx̃nk
nk
, f x̃mk

mk
, f x̃mk

mk
) = γ̃.

Since

B̃(fx̃
nk−1
nk−1, f x̃

mk−1
mk−1, f x̃

mk−1
mk−1) �̃ B̃(fx̃

nk−1
nk−1, f x̃

nk
nk
, f x̃nk

nk
) + B̃(fx̃nk

nk
, f x̃mk

mk
, f x̃mk

mk
)

+B̃(fx̃mk
mk
, f x̃

mk−1
mk−1, f x̃

mk−1
mk−1).

Taking limk→∞, we deduce

lim
k→∞

B̃(fx̃
nk−1
nk−1, f x̃

mk−1
mk−1, f x̃

mk−1
mk−1) 4 γ. (2)

On the other hand,

γ̃ �̃ B̃(fx̃nk
nk
, f x̃mk

mk
, f x̃mk

mk
)

�̃ B̃(fx̃nk
nk
, f x̃

nk−1
nk−1, f x̃

nk−1
nk−1) + B̃(fx̃

nk−1
nk−1, f x̃

mk
mk
, f x̃mk

mk
)

�̃ B̃(fx̃nk
nk
, f x̃

nk−1
nk−1, f x̃

nk−1
nk−1) + B̃(fx̃

nk−1
nk−1, f x̃

mk−1
mk−1, f x̃

mk−1
mk−1)

+B̃(fx̃
mk−1
mk−1, f x̃

mk
mk
, f x̃mk

mk
).

Taking limk→∞, we also deduce

γ̃�̃ lim
k→∞

B̃(fx̃
nk−1
nk−1, f x̃

mk−1
mk−1, f x̃

mk−1
mk−1). (3)
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By (2) and (3), we get

lim
k→∞

B̃(fx̃
nk−1
nk−1, f x̃

mk−1
mk−1, f x̃

mk−1
mk−1) = γ̃.

And, by (1), we have that

B̃(fx̃nk
nk
, f x̃mk

mk
, f x̃mk

mk
) 4 ψ(L(x̃nk

nk
, x̃mk
mk
, x̃mk
mk

))

where

L(x̃nk
nk
, x̃mk
mk
, x̃mk
mk

) = max{B̃(gx̃nk
nk
, gx̃mk

mk
, gx̃mk

mk
), B̃(gx̃nk

nk
, f x̃nk

nk
, f x̃nk

nk
),

B̃(gx̃mk
mk
, f x̃mk

mk
, f x̃mk

mk
), B̃(gx̃mk

mk
, f x̃mk

mk
, f x̃mk

mk
)}

= max{B̃(fx̃
nk−1
nk−1, f x̃

mk−1
mk−1, f x̃

mk−1
mk−1), B̃(fx̃

nk−1
nk−1, f x̃

nk
nk
, f x̃nk

nk
),

B̃(fx̃
mk−1
mk−1, f x̃

mk
mk
, f x̃mk

mk
), B̃(fx̃

mk−1
mk−1, f x̃

mk
mk
, f x̃mk

mk
)}.

(I) If

L(x̃nk
nk
, x̃mk
mk
, x̃mk
mk

) = B̃(fx̃
nk−1
nk−1, f x̃

mk−2
mk−2, f x̃

mk−1
mk−1),

then taking limk→∞, we deduce

lim
k→∞

B̃(fx̃
nk−1
nk−1, f x̃

mk−1
mk−1, f x̃

mk−1
mk−1) = γ̃,

and

γ̃�̃ lim
k→∞

B̃(fx̃nk
nk
, f x̃mk

mk
, f x̃mk

mk
)�̃γ̃,

a contradiction. (II) If

L(x̃nk
nk
, x̃mk
mk
, x̃mk
mk

) = B̃(fx̃
nk−1
nk−1, f x̃

nk
nk
, f x̃nk

nk
),

or

L(x̃nk
nk
, x̃mk
mk
, x̃mk
mk

) = B̃(fx̃
mk−1
mk−1, f x̃

mk
mk
, f x̃mk

mk
),

then taking limk→∞, we deduce

lim
k→∞

B̃(fx̃
nk−1
nk−1, f x̃

nk
nk
, f x̃nk

nk
) = θ̃,

lim
k→∞

B̃(fx̃
mk−1
mk−1, f x̃

mk
mk
, f x̃mk

mk
) = θ̃,

and

γ�̃ lim
k→∞

B̃(fx̃nk
nk
, f x̃mk

mk
, f x̃mk

mk
)�̃θ̃,

a contradiction. Follow (I) and (II), we get the sequence {fx̃nn} is a Cauchy sequence. Since X̃ is complete and gX̃ is closed,

there exist ν̃, µ̃∈̃X̃ such that

lim
n→∞

g(x̃nn) = lim
n→∞

f(x̃nn) = g(µ̃) = ν̃.

We shall show that µ̃ is a coincidence point of f and g, that is, we claim that

B̃(gµ̃, fµ̃, f µ̃) = θ̃.
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If not, assume that B̃(gµ̃, fµ̃, f µ̃) 6= θ̃, then by (1), we have

B̃(gµ̃, fµ̃, f µ̃) �̃ B̃(gµ̃, f x̃nn, f x̃
n
n) + B̃(fx̃nn, f µ̃, f µ̃)

�̃ B̃(gµ̃, f x̃nn, f x̃
n
n) + ψ(L(x̃nn, µ̃, µ̃)),

where

L(x̃nn, µ̃, µ̃) ∈ {B̃(gx̃nn, gµ̃, gµ̃), B̃(gx̃nn, f x̃
n
n, f x̃

n
n), B̃(gµ̃, fµ̃, f µ̃), B̃(gµ̃, fµ̃, f µ̃)}.

(III) If

L(x̃nn, µ̃, µ̃) = B̃(gx̃nn, gµ̃, gµ̃),

then taking limn→∞, we deduce

lim
n→∞

B̃(gx̃nn, gµ̃, gµ̃) = B̃(gµ̃, gµ̃, gµ̃) = θ̃,

and

B̃(gµ̃, fµ̃, f µ̃) = lim
n→∞

B̃(gµ̃, f x̃nn, f x̃
n
n) + lim

n→∞
ψ(B̃(gx̃nn, gµ̃, gµ̃))

�̃ θ̃,

a contradiction. (IV) If

L(x̃nn, µ̃, µ̃) = B̃(gx̃nn, f x̃
n
n, f x̃

n
n),

then taking limn→∞, we deduce

lim
n→∞

B̃(gx̃nn, f x̃
n
n, f x̃

n
n) = B̃(gµ̃, gµ̃, gµ̃) = θ̃,

and

B̃(gµ̃, fµ̃, f µ̃) = lim
n→∞

B̃(gµ̃, f x̃nn, f x̃
n
n) + lim

n→∞
ψ(B̃(gx̃nn, f x̃

n
n, f x̃

n
n)�̃θ̃,

a contradiction. (V) If

L(x̃nn, µ̃, µ̃) = B̃(gµ̃, fµ̃, f µ̃),

then

B̃(gµ̃, fµ̃, f µ̃) = ψ(B̃(gµ̃, fµ̃, f µ̃))�̃B̃(gµ̃, fµ̃, f µ̃),

a contradiction. Follow (III)-(V), we obtain that B̃(gµ̃, fµ̃, f µ̃) = θ̃, that is, gµ̃ = fµ̃ = ν̃, and so µ̃ is a coincidence point of

f and g. Suppose that f and g commute at µ̃. Then

fν̃ = fgµ̃ = gfµ̃ = gν̃.

Later, we claim that B̃(fµ̃, f ν̃, f ν̃) = θ̃. By (1), we have

B̃(fµ̃, f ν̃, f ν̃)�̃ψ(L(µ̃, ν̃, ν̃)),
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where

L(x̃, ỹ, z̃) = max{B̃(gµ̃, gν̃, gν̃), B̃(gµ̃, fµ̃, f µ̃), B̃(gν̃, f ν̃, f ν̃), B̃(gν̃, f ν̃, f ν̃)}

= max{B̃(fµ̃, f ν̃, f ν̃), B̃(fµ̃, fµ̃, f µ̃), B̃(fν̃, f ν̃, f ν̃), B̃(fν̃, f ν̃, f ν̃)}

= max{B̃(fµ̃, f ν̃, f ν̃), θ̃}.

Therefore, if

B̃(fµ̃, f ν̃, f ν̃)�̃ψ(B̃(fµ̃, f ν̃, f ν̃))�̃B̃(fµ̃, f ν̃, f ν̃),

then we get a contradition, which implies that B̃(fµ̃, f ν̃, f ν̃) = θ̃, B̃(ν̃, f ν̃, f ν̃) = θ̃, that is, ν̃ = fν̃ = gν̃. So ν̃ is a common

fixed point of f and g. Let ν̃ be another common fixed point of f and g. By (1),

B̃(ν̃, ν̃, ν̃) = B̃(fν̃, f ν̃, f ν̃)�̃ψ(L(ν̃, ν̃, ν̃)),

where

L(x̃, ỹ, z̃) = max{B̃(gν̃, gν̃, gν̃), B̃(gν̃, f ν̃, f ν̃), B̃(gν̃, f ν̃, f ν̃), B̃(gν̃, f ν̃, f ν̃)}

= max{B̃(fν̃, f ν̃, f ν̃), B̃(fν̃, f ν̃, f ν̃), B̃(fν̃, f ν̃, f ν̃), B̃(fν̃, f ν̃, f ν̃)}

= max{B̃(fν̃, f ν̃, f ν̃), θ̃}

= {B̃(ν̃, ν̃, ν̃), θ̃}.

Therefore, we also conclude that B̃(ν̃, ν̃, ν̃) = θ̃, that is ν̃ = ν̃. So we show that ν̃ is the unique common fixed point of g and

f .

Next, we state the following fixed point results for the weaker Meir-Keeler type functions in ball-metric spaces.

Theorem 2.3. Let (X, B̃) be a complete soft cone ball -metric space, P be a regular cone in E and f : X → X. Suppose

that there exists a ψ-function such that

B̃(fx̃, f ỹ, f z̃)�̃ψ(L(x̃, ỹ, z̃)) for all x̃, ỹ, z̃∈̃X̃, (4)

where

L(x̃, ỹ, z̃) = max{B̃(x̃, ỹ, z̃), B̃(x̃, f x̃, f x̃), B̃(ỹ, f ỹ, f ỹ), B̃(fx̃, ỹ, z̃)}

Then f has a unique fixed point (say µ̃) in X̃ and f is continuous at µ̃.

Proof. Given x̃00 ∈ X. Define the sequence {x̃nn} in X recursively as follows:

fx̃n−1
n−1 = x̃nn for each n ∈ N.

In what follows we will suppose that x̃n+1
n+1 6= x̃nn for all n ∈ N, since if x̃n+1

n+1 = x̃nn for some n, then x̃n+1
n+1 = fx̃nn = x̃nn, and so

we complete the proof. By (4), we deduce

B̃(x̃nn, x̃
n+1
n+1, x̃

n+1
n+1) = B̃(fx̃n−1

n−1, f x̃
n
n, f x̃

n
n)
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�̃ ψ(L(x̃n−1
n−1, x̃

n
n, x̃

n
n)),

where

L(x̃n−1
n−1, x̃

n
n, x̃

n
n) = max{B̃(x̃n−1

n−1, x̃
n
n, x̃

n
n), B̃(x̃n−1

n−1, f x̃
n−1
n−1, f x̃

n−1
n−1),

B̃(x̃nn, f x̃
n
n, f x̃

n
n), B̃(fx̃n−1

n−1, x̃
n
n, x̃

n
n)}

= max{B̃(x̃n−1
n−1, x̃

n
n, x̃

n
n), B̃(x̃n−1

n−1, x̃
n
n, x̃

n
n),

B̃(x̃nn, x̃
n+1
n+1, x̃

n+1
n+1), B̃(x̃nn, x̃

n
n, x̃

n
n)}

= max{B̃(x̃n−1
n−1, x̃

n
n, x̃

n
n), B̃(x̃nn, x̃

n+1
n+1, x̃

n+1
n+1)}.

If

L(x̃n−1
n−1, x̃

n
n, x̃

n
n) = B̃(x̃nn, x̃

n+1
n+1, x̃

n+1
n+1),

then

B̃(x̃nn, x̃
n+1
n+1, x̃

n+1
n+1) �̃ ψ(L(x̃n−1

n−1, x̃
n
n, x̃

n
n))

�̃ B̃(x̃nn, x̃
n+1
n+1, x̃

n+1
n+1),

a contradiction. So we deduce that

B̃(x̃nn, x̃
n+1
n+1, x̃

n+1
n+1) �̃ ψ(L(x̃n−1

n−1, x̃
n
n, x̃

n
n))

�̃ B̃(x̃n−1
n−1, x̃

n
n, x̃

n
n),

and

B̃(x̃nn, x̃
n+1
n+1, x̃

n+1
n+1) �̃ ψ(B̃(x̃n−1

n−1, x̃
n
n, x̃

n
n))

�̃ ψ2(B̃(xn−2, x̃
n−1
n−1, x̃

n−1
n−1))

�̃ · · · · · ·

�̃ ψn(B̃(x̃00, x̃
1
1, x̃

1
1)).

Since {ψn(B(x̃00, x̃
1
1, x̃

1
1))}n∈̃N is non-incresing, it must converge to some η̃, η̃ < θ̃. We claim that η̃ = θ̃. On the con-

trary, assume that η̃ � θ̃. Then by the definition of the ψ-function, there exists δ � θ̃ such that for x̃00, x̃
1
1 ∈ X with

η̃�̃B̃(x̃00, x̃
1
1, x̃

1
1)�̃δ + η̃, there exists n0 ∈ N such that ψn0(B̃(fx̃00, f x̃

1
1, f x̃

1
1))�̃η̃. Since limn→∞ ψ

n(B̃(x̃00, x̃
1
1, x̃

1
1)) = η̃, there

exists m0 ∈ N such that

η̃�̃ψmB̃(x̃00, x̃
1
1, x̃

1
1)�̃δ + η̃,

for all m ≥ m0. Thus, we get

ψm0+n0(B̃(x̃00, x̃
1
1, x̃

1
1))�̃η̃,

and we get a contradiction. So

lim
n→∞

ψn(B̃(x̃00, x̃
1
1, x̃

1
1)) = θ̃,
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and so we have limn→∞ B̃(x̃nn, x̃
n+1
n+1, x̃

n+1
n+1) = θ̃. For m,n ∈ N with m > n > κ0, we claim that the following result holds:

B̃(x̃nn, x̃
m
m, x̃

m
m) ≺ ε̃ for all m > n > κ0. (5)

Let ε̃∈̃Ẽ with ε̃� 0 be given. Since limn→∞ ϕ
n(B̃(x̃00, x̃

1
1, x̃

1
1)) = θ̃ and ψ(ε̃)�̃ε̃, there exists κ0 ∈ N such that

ψn(B̃(x̃00, x̃
1
1, x̃

1
1))�̃ε̃− ψ(ε̃) for all n ≥ κ0,

that is,

B̃(x̃nn, x̃
n+1
n+1, x̃

n+1
n+1)�̃ε̃− ψ(ε̃) for all n ≥ . (6)

We prove (5) by induction on m. Assume that the inequality (5) holds for m = k. Then by (6), we have that for m = k+ 1,

B̃(x̃nn, x̃
nk+1
nk+1, x̃

nk+1
nk+1) �̃ B̃(x̃nn, x̃

n+1
n+1, x̃

n+1
n+1) + B̃(x̃n+1

n+1, x̃
nk+1
nk+1, x̃

nk+1
nk+1)

�̃ B̃(x̃nn, x̃
n+1
n+1, x̃

n+1
n+1) + ψ(B̃(x̃nn, x̃

nk
nk
, x̃nk
nk

)

�̃ ε̃− ψ(ε̃) + ψ(ε̃)

= ε̃.

Thus, we conclude that B̃(x̃nn, xm, xm)�̃ε̃ for all m > n > κ0. So {x̃nn} is a Cauchy sequence in X̃. Since (X̃, B̃) is a complete

soft cone ball -metric space, there exists µ̃ ∈ X̃ such that limn→∞ x̃
n
n = µ̃, that is, B̃(x̃nn, x̃

n
n, µ̃)→ θ̃. For n ∈ N, we have

B̃(µ̃, µ̃, f µ̃) �̃ B̃(µ̃, µ̃, x̃nn) + B̃(x̃nn, x̃
n
n, f µ̃)

�̃ B̃(µ̃, µ̃, x̃nn) + B̃(fx̃n−1
n−1, f x̃

n−1
n−1, f µ̃)

�̃ B̃(µ̃, µ̃, x̃nn) + ψ(L(x̃n−1
n−1, x̃

n−1
n−1, µ̃)),

where

L(x̃n−1
n−1, x̃

n−1
n−1, µ̃) = max{B̃(x̃n−1

n−1, x̃
n−1
n−1, µ̃), B̃(x̃n−1

n−1, f x̃
n−1
n−1, f x̃

n−1
n−1),

B̃(x̃n−1
n−1, f x̃

n−1
n−1, f x̃

n−1
n−1), B̃(fx̃n−1

n−1, x̃
n−1
n−1, µ̃)}

= max{B̃(x̃n−1
n−1, x̃

n−1
n−1, µ̃), B̃(x̃n−1

n−1, x̃
n
n, x̃

n
n),

B̃(x̃n−1
n−1, x̃

n
n, x̃

n
n), B̃(x̃nn, x̃

n−1
n−1, µ̃)}.

(I) If

L(x̃n−1
n−1, x̃

n−1
n−1, µ̃) = B̃(x̃n−1

n−1, x̃
n−1
n−1, µ̃),

then

B̃(µ̃, µ̃, f µ̃)�̃B̃(µ̃, µ̃, x̃nn) + B̃(x̃n−1
n−1, x̃

n−1
n−1, µ̃).

Letting n→∞, we conclude that B̃(µ̃, µ̃, f µ̃) = θ̃, and so µ̃ = fµ̃. (II) If

L(x̃n−1
n−1, x̃

n−1
n−1, µ̃) = B̃(x̃n−1

n−1, x̃
n
n, x̃

n
n),
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then

B̃(µ̃, µ̃, f µ̃)�̃B̃(µ̃, µ̃, x̃nn) + B̃(x̃n−1
n−1, x̃

n
n, x̃

n
n).

Letting n→∞, we conclude that B̃(µ̃, µ̃, f µ̃) = θ̃, and so µ̃ = fµ̃. (III) If

L(x̃n−1
n−1, x̃

n−1
n−1, µ̃) = B̃(x̃nn, x̃

n−1
n−1, µ̃)�̃B̃(x̃nn, x̃

n−1
n−1, x̃

n−1
n−1) + B̃(x̃n−1

n−1, x̃
n−1
n−1, µ̃),

then

B̃(µ̃, µ̃, T µ̃)�̃B̃(µ̃, µ̃, x̃nn) + B̃(x̃nn, x̃
n−1
n−1, x̃

n−1
n−1) + B̃(x̃n−1

n−1, x̃
n−1
n−1, µ̃).

Letting n→∞, we conclude that B̃(µ̃, µ̃, f µ̃) = θ̃, and so µ̃ = fµ̃. Follow (I), (II) and (III), we have that µ̃ is a fixed point

of f . Let ν̃ be another fixed point of f with µ̃ 6= ν̃. Then

B̃(µ̃, ν̃, ν̃) = B̃(fµ̃, f ν̃, f ν̃)�̃ψ(L(µ̃, ν̃, ν̃)),

where

L(µ̃, ν̃, ν̃) = max{B̃(µ̃, ν̃, ν̃), B̃(µ̃, f µ̃, f µ̃), B̃(ν̃, f ν̃, f ν̃), B̃(fµ̃, ν̃, ν̃)}

= max{B̃(µ̃, ν̃, ν̃), B̃(µ̃, µ̃, µ̃), B̃(ν̃, ν̃, ν̃), B̃(µ̃, ν̃, ν̃)}

= max{B̃(µ̃, ν̃, ν̃)}, θ̃}.

Therefore, if B̃(µ̃, ν̃, ν̃)�̃B̃(µ̃, ν̃, ν̃), then we get a contradiction. So µ̃ = ν̃, and we show that µ̃ is a unique fixed point of f .

To show that f is continuous at µ̃. Let {ỹnn} be any sequence in X such that {ỹnn} convergent to µ̃. Then

B̃(µ̃, µ̃, f ỹnn) = B̃(fµ̃, fµ̃, f ỹnn)

�̃ ϕ(L(µ̃, µ̃, ỹnn)),

where

L(µ̃, µ̃, ỹnn) = max{B̃(µ̃, µ̃, ỹnn), B̃(µ̃, f µ̃, f µ̃), B̃(µ̃, f µ̃, f µ̃), B̃(fµ̃, µ̃, ỹnn)}

= max{B̃(µ̃, µ̃, ỹnn), θ̃}.

Thus

B̃(µ̃, µ̃, f ỹnn)�̃B̃(µ̃, µ̃, ỹnn).

Letting n→∞. Then we deduce that {fỹnn} is convergent to fµ̃ = µ̃. Hence f is continuous at µ̃.

By Theorem 2.3, we immediate get the following corollary.

Corollary 2.4. Let (X̃, B̃) be a complete cone ball-metric space, P be a regular cone in Ẽ and f : X → X. Suppose that

there exists a ψ-function such that

B̃(fx̃, f ỹ, f z̃)�̃ψ(B̃(x̃, ỹ, z̃) (x̃, ỹ, z̃∈̃X̃).

Then f has a unique fixed point (say µ̃) in X̃ and f is continuous at µ̃.
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In the sequel, we introduce the stronger Meir-Keeler cone-type function φ : intP ∪ {θ̃} → [0, 1) in cone ball-metric spaces,

and prove the fixed point theorem for this type of function.

Definition 2.5. Let (X̃, B̃) be a cone ball-metric space with cone P , and let

φ : intP ∪̃{θ̃} → [0, 1).

Then the function φ is called a stronger Meir-Keeler type function, if for each η̃∈̃P with η̃ � θ̃, there exists δ � θ̃ such that

for x̃, ỹ, z̃∈̃X̃ with η̃�̃B̃(x̃, ỹ, z̃)�̃δ + η̃, there exists γ̃η̃ ∈ [0, 1) such that φ(B̃(x̃, ỹ, z̃)) < γ̃η̃.

Theorem 2.6. Let (X̃, B̃) be a complete cone ball-metric space, P be a regular cone in E and f : X → X. Suppose that

there exists a stronger Meir-Keeler type function φ : intP ∪̃{0} → [0, 1) such that

B̃(fx̃, f ỹ, f z̃)�̃φ(L(x̃, ỹ, z̃)) · L(x̃, ỹ, z̃) for all x̃, ỹ, z̃ ∈ X, (7)

where

L(x̃, ỹ, z̃) = max{B̃(x̃, ỹ, z̃), B̃(x̃, f x̃, f x̃), B̃(ỹ, f ỹ, f ỹ), B̃(fx̃, ỹ, z̃)}

Then f has a unique fixed point (say µ̃) in X̃ and f is continuous at µ̃.

Proof. Given x̃00∈̃X̃. Define the sequence {x̃nn} in X recursively as follows:

fx̃n−1
n−1 = x̃nn for each n ∈ N.

In what follows, we will suppose that x̃n+1
n+1 6= x̃nn for all n∈̃N, since if x̃n+1

n+1 = x̃nn for some n, then x̃n+1
n+1 = fx̃nn = x̃nn, and so

we complete the proof. By (7), we deduce

B̃(x̃nn, x̃
n+1
n+1, x̃

n+1
n+1) = B̃(fx̃n−1

n−1, f x̃
n
n, f x̃

n
n)

�̃ φ(L(x̃n−1
n−1, x̃

n
n, x̃

n
n)) · L(x̃n−1

n−1, x̃
n
n, x̃

n
n)

�̃ γη̃ · L(x̃n−1
n−1, x̃

n
n, x̃

n
n),

where

L(x̃n−1
n−1, x̃

n
n, x̃

n
n) = max{B̃(x̃n−1

n−1, x̃
n
n, x̃

n
n), B̃(x̃n−1

n−1, f x̃
n−1
n−1, f x̃

n−1
n−1),

B̃(x̃nn, f x̃
n
n, f x̃

n
n), B̃(fx̃n−1

n−1, x̃
n
n, x̃

n
n)}

= max{B̃(x̃n−1
n−1, x̃

n
n, x̃

n
n), B̃(x̃n−1

n−1, x̃
n
n, x̃

n
n),

B̃(x̃nn, x̃
n+1
n+1, x̃

n+1
n+1), B̃(x̃nn, x̃

n
n, x̃

n
n)}

= max{B̃(x̃n−1
n−1, x̃

n
n, x̃

n
n), B̃(x̃nn, x̃

n+1
n+1, x̃

n+1
n+1)}.

If

L(x̃n−1
n−1, x̃

n
n, x̃

n
n) = B̃(x̃nn, x̃

n+1
n+1, x̃

n+1
n+1),

then

B̃(x̃nn, x̃
n+1
n+1, x̃

n+1
n+1) �̃ γ̃η̃ · B̃(x̃nn, x̃

n+1
n+1, x̃

n+1
n+1),
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a contradiction. So we deduce that

B̃(x̃nn, x̃
n+1
n+1, x̃

n+1
n+1) �̃ φ(L(x̃n−1

n−1, x̃
n
n, x̃

n
n))

�̃ γ̃η̃ · B̃(x̃n−1
n−1, x̃

n
n, x̃

n
n).

Then the sequence {B̃(x̃nn, x̃
n+1
n+1, x̃

n+1
n+1)} is decreasing and bounded below. Let

lim
n→∞

B̃(x̃nn, x̃
n+1
n+1, x̃

n+1
n+1) = η̃�̃θ̃.

Then there exists κ0∈̃N and δ � θ̃ such that for all n > κ0

η�̃B̃(x̃nn, x̃
n+1
n+1, x̃

n+1
n+1)�̃η + δ.

For each n ∈ N, since φ : intP ∪̃{θ̃} → [0, 1) is a stronger Meir-Keeler type function, for these η and δ we have that for

x̃κ0+n, x̃κ0+n+1 ∈ X with

η�̃B̃(x̃κ0+n, x̃κ0+n+1, x̃κ0+n+1)�̃δ + η,

there exists γη̃ ∈ [0, 1) such that

φ(B̃(x̃κ0+n, x̃κ0+n+1, x̃κ0+n+1)) < γη̃.

Thus, by (7), we can deduce

B̃(x̃κ0+n
κ0+n

, x̃κ0+n+1
κ0+n+1, x̃

κ0+n+1
κ0+n+1) = φ(B̃(x̃κ0+n−1

κ0+n−1, x̃
κ0+n
κ0+n

, x̃κ0+n
κ0+n

)) · B̃(x̃κ0+n−1
κ0+n−1, x̃

κ0+n
κ0+n

, x̃κ0+n
κ0+n

)

�̃γη̃ · B̃(x̃κ0+n−1
κ0+n−1, x̃

κ0+n−1
κ0+n−1, x̃

κ0+n
κ0+n

),

and it follows that for each n ∈ N,

B̃(x̃κ0+n
κ0+n

, x̃κ0+n+1
κ0+n+1, x̃

κ0+n+1
κ0+n+1) �̃ γη̃ · B̃(x̃κ0+n−1

κ0+n−1, x̃
κ0+n
κ0+n

, x̃κ0+n
κ0+n

)

�̃ · · ·

�̃ γnη̃ · B̃(x̃κ0
κ0
, x̃κ0+1
κ0+1, x̃

κ0+1
κ0+1).

So

lim
n→∞

B̃(x̃κ0+n
κ0+n

, x̃κ0+n+1
κ0+n+1, x̃

κ0+n+1
κ0+n+1) = θ̃, since γη̃ < 1.

We next claim that limm,n→∞ B̃(x̃κ0+n+1
κ0+n+1, x̃

κ0+m
κ0+m

, x̃κ0+m
κ0+m

) = θ̃. For m,n ∈ N with m > n, we have

B̃(x̃κ0+n
κ0+n

, x̃κ0+m
κ0+m

, x̃κ0+m
κ0+m

) �̃
m−1∑
i=n

B̃((x̃κ0+i
κ0+i

, (x̃κ0+i+1
κ0+i+1, (x̃

κ0+i+1
κ0+i+1)

�̃
γm−1
η̃

1− γη̃
B̃(x̃κ0+1

κ0+1, x̃
κ0+2
κ0+2, x̃

κ0+2
κ0+2),

and hence B̃(x̃κ0+n
κ0+n

, x̃κ0+m
κ0+m

, x̃κ0+mκ0+m
) → θ̃ as m,n → ∞, since 0 < γη̃ < 1. By the properties of the cone ball-metric, we

obtain

B̃(x̃κ0+n
κ0+n

, x̃κ0+m
κ0+m

, x̃κ0+1
κ0+1)�̃B̃(x̃κ0+n

κ0+n
, x̃κ0+m
κ0+m

, x̃κ0+m
κ0+m

) + B̃(x̃κ0+m
κ0+m

, x̃κ0+m
κ0+m

, x̃κ0+1
κ0+1)
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taking limit as m,n, l→∞, we get B̃(x̃κ0+n
κ0+n

, x̃κ0+m
κ0+m

, x̃κ0+1
κ0+1)→ θ̃. So {x̃nn} is a Cauchy sequence.

Since (X, B̃) is a complete cone ball-metric space, there exists µ̃ ∈ X such that limn→∞ x̃
n
n = µ̃, that is, B̃(x̃nn, x̃

n
n, µ̃) → θ̃.

For n ∈ N, we have

B̃(µ̃, µ̃, f µ̃) �̃ B̃(µ̃, µ̃, xn) + B̃(xn, xn, f µ̃)

�̃ B̃(µ̃, µ̃, xn) + B̃(fx̃n−1
n−1, f x̃

n−1
n−1, f µ̃)

�̃ B̃(µ̃, µ̃, xn) + φ(L(x̃n−1
n−1, x̃

n−1
n−1, µ̃)) · L(x̃n−1

n−1, x̃
n−1
n−1, µ̃)

�̃ B̃(µ̃, µ̃, xn) + γη̃ · L(x̃n−1
n−1, x̃

n−1
n−1, µ̃),

where

L(x̃n−1
n−1, x̃

n−1
n−1, µ̃) = max{B̃(x̃n−1

n−1, x̃
n−1
n−1, µ̃), B̃(x̃n−1

n−1, f x̃
n−1
n−1, f x̃

n−1
n−1),

B̃(x̃n−1
n−1, T x̃

n−1
n−1, f x̃

n−1
n−1), B̃(fx̃n−1

n−1, x̃
n−1
n−1, µ̃)}

= max{B̃(x̃n−1
n−1, x̃

n−1
n−1, µ̃), B̃(x̃n−1

n−1, x̃
n
n, x̃

n
n),

B̃(x̃n−1
n−1, x̃

n
n, x̃

n
n), B̃(x̃nn, x̃

n−1
n−1, µ̃)}.

(I) If

L(x̃n−1
n−1, x̃

n−1
n−1, µ̃) = B̃(x̃n−1

n−1, x̃
n−1
n−1, µ̃),

then

B̃(µ̃, µ̃, f µ̃) �̃ B̃(µ̃, µ̃, xn) + γη̃ · B̃(x̃n−1
n−1, x̃

n−1
n−1, µ̃).

Letting n→∞, we conclude that B̃(µ̃, µ̃, f µ̃) = θ̃, and so µ̃ = fµ̃. (II) If

L(x̃n−1
n−1, x̃

n−1
n−1, µ̃) = B̃(x̃n−1

n−1, x̃
n
n, x̃

n
n),

then

B̃(µ̃, µ̃, f µ̃) �̃ B̃(µ̃, µ̃, x̃nn) + γη̃ · B̃(x̃n−1
n−1, x̃

n
n, x̃

n
n).

Letting n→∞, we conclude that B̃(µ̃, µ̃, T µ̃) = θ̃, and so µ̃ = fµ̃. (III) If

L(x̃n−1
n−1, x̃

n−1
n−1, µ̃) = B̃(x̃nn, x̃

n−1
n−1, µ̃)�̃B̃(x̃nn, x̃

n−1
n−1, x̃

n−1
n−1) + B̃(x̃n−1

n−1, x̃
n−1
n−1, µ̃),

then

B̃(µ̃, µ̃, f µ̃) ≤ B̃(µ̃, µ̃, xn) + γη̃ · [B̃(x̃nn, x̃
n−1
n−1, x̃

n−1
n−1) + B̃(x̃n−1

n−1, x̃
n−1
n−1, µ̃)].

Letting n→∞, we conclude that B̃(µ̃, µ̃, f µ̃) = θ̃, and so µ̃ = fµ̃. Follow (I), (II) and (III), we have that µ̃ is a fixed point

of f . Let ν̃ be another fixed point of f with µ̃ 6= ν̃. Then

B̃(µ̃, ν̃, ν̃) = B̃(fµ̃, f ν̃, f ν̃)
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�̃ ψ(L(µ̃, ν̃, ν̃)) · L(µ̃, ν̃, ν̃)

�̃ γη̃ · L(µ̃, ν̃, ν̃),

where

L(µ̃, ν̃, ν̃) = max{B̃(µ̃, ν̃, ν̃), B̃(µ̃, f µ̃, f µ̃), B̃(ν̃, f ν̃, f ν̃), B̃(T µ̃, ν̃, ν̃)}

= max{B̃(µ̃, ν̃, ν̃), B̃(µ̃, µ̃, µ̃), B̃(ν̃, ν̃, ν̃), B̃(µ̃, ν̃, ν̃)}

= max{B̃(µ̃, ν̃, ν̃), θ̃}.

Thus if B̃(µ̃, ν̃, ν̃)�̃γη̃ · B̃(µ̃, ν̃, ν̃), then we get a contradiction. So µ̃ = ν̃, and we show that µ̃ is a unique fixed point of T .

To show that f is continuous at µ̃. Let {ỹnn} be any sequence in X such taht {ỹnn} convergent to µ̃. Then

B̃(µ̃, µ̃, f ỹnn) = B̃(fµ̃, fµ̃, f ỹnn)

�̃ ψ(L(µ̃, µ̃, ỹnn)) · L(µ̃, µ̃, ỹnn)

�̃ γη̃ · L(µ̃, µ̃, ỹnn),

where

L(µ̃, µ̃, ỹnn) = max{B̃(µ̃, µ̃, ỹnn), B̃(µ̃, T µ̃, T µ̃), B̃(µ̃, f µ̃, f µ̃), B̃(fµ̃, µ̃, ỹnn)}.

Thus

B̃(µ̃, µ̃, T ỹnn)�̃γη̃ · B̃(µ̃, µ̃, ỹnn).

Letting n→∞. Then we deduce that {fỹnn} is convergent to fµ̃ = µ̃. Hence f is continuous at µ̃.
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