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1. Introduction and preliminaries

In this section we gives some basic definitions and previous known results which are used to prove our main results.

Definition 1.1. Let X be an initial universe set and E be a set of parameters. A pair (F, E) is called a soft set over X if
and only if F is a mapping from E into the set of all subsets of the set X, i.e., F': E — P(X) where P(X) is the power set
of X.

Definition 1.2. The intersection of two soft sets (F, A) and (G, B) over X is the soft set (H,C), where C = AN B and
Ve € C, H(e) = F(e) N G(e). This is denoted by (F, A)N(G, B) = (H,C).

Definition 1.3. The union of two soft sets (F, A) and (G, B) over X is the soft set, where C = AU B and Ve € C,
F(e), if ec A—B
H(e) =% G(e), if eec B—A
F(e)UG(e), if e€e ANB
This relationship is denoted by (F, A)U(G, B) = (H,C).
Definition 1.4. A soft set (F, A) over X is said to be a null soft set denoted by ¢, if for all e € A, F(e) = ¢, (null set).
Definition 1.5. A soft set (F, A) over X is said to be an absolute soft set denoted by X ifforallee A, Fle)=X.

Definition 1.6. The difference (H, E) of two soft sets (F, E) and (G, E) over X, denoted by (F,E)\ (G, E), is defined as
H(e) = F(e)\ G(e) foralle € E.
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Definition 1.7. The complement of a soft set (F,A) is denoted by (F,A)° and is defined by (F,A)° = (F¢, A), where

F°: A— P(X) is a mapping given by F°(e) = X — F(e), for all e € A.

Definition 1.8. Let R be the set of real numbers and B(R) be the collection of all non-empty bounded subsets of R and E
be taken as a set of parameters. Then a mapping F' : E — B(R) is called a soft real set. If a real soft set is a singleton
soft set, it will be called a soft real number and denoted by VisionRes. , §, t etc. 0 and 1 are the soft real numbers where

0(e) =0, 1(e) = 1 for all e € E respectively.
Definition 1.9. Let VisionRes. , § be two soft real numbers. Then the following statements hold:

(i). VisionRes. < § if VisionRes. (e) < §(e) for alle € E,

V3

(ii). VisionRes. > 5 if VisionRes. (e) > §(e) for alle € E,
(i1). VisionRes. < § if VisionRes. (e) < §(e) for alle € E,
(). VisionRes. > § if VisionRes. (e) > §(e) for alle € E.

Definition 1.10. A soft set (F, E) over X is said to be a soft point, denoted by Ze, if for the element e € E, F(e) = {x}
and F(é) = ¢ , for allé € E\ {e}.

Definition 1.11. Two soft points Z,y. are said to be equal if e = € and x = y. Thus Te # Fe or e # €.

Proposition 1.12. Every soft set can be expressed as a union of all soft points belonging to it as (F, E) = Uz _c(p,E)Te.

Conversely, any set of soft points can be considered as a soft set.

Definition 1.13. Let 7 be a collection of soft sets over X. Then T is said to be a soft topology on X if
(1). #, X belong to .

(2). The union of any number of soft sets in T belongs to T.

(3). The intersection of any two soft sets in T belongs to T.

The triplet (X, 7, E) is called a soft topological space over X .

Definition 1.14. Let (X, 7,E) be a soft topological space over X. Then soft interior of (F,E), denoted by (F,E)° , is

defined as the union of all soft open sets contained in (F, E).

Definition 1.15. Let (X, T, E) be a soft topological space over X. Then soft closure of (F, E), denoted by (F, E), is defined

as the intersection of all soft closed super sets of (F, E).

Definition 1.16. Let (X, T, E) be a soft topological space over X. Then soft boundary of soft set (F, E) over X ,denoted by

O(F,E), is defined as O(F, E) = (F, E)N(F, E)°.

Definition 1.17. Let (X, 7, E) and (Y, 7', E) be two soft topological spaces, f : (X,7,E) — (Y,7', E) be a mapping. For each
soft neighborhood (H,E) of (f(" &), E) , if there exists a soft neighborhood (F,E) of (Ze, E) such that f((F,E)) C (H,E),
then f is said to be soft continuous mapping at (Ze, E). If f is soft continuous mapping for all (Z., E), then f is called soft

continuous mapping. Let SP(X) be the collection of all soft points of X and R(E)* denote the set of all non-negative soft

real numbers.

Definition 1.18. A mapping d : SP(X) X SP(X) — R(E)* is said to be a soft metric on the soft set X if d satisfies the
following conditions:
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(M1) d(ie,y;/)éﬁ for all Ze,yuEX,

(M2) d(%e,yjer)20 if and only if Fe =y,

(M3) d(iec,yer) = d(yor, Ze) for all &e,yu€X,

(M4) For all &e,yu,zen€X, d(Ze, zon) <d(Ze, yur ) + d(vjur, z0).

The soft set X with a soft metric d on X is called a soft metric space and denoted by (X,J, E).

Definition 1.19. Let ()~(, B, E) be a soft metric space and € be a non-negative soft real number.
B(Ze,é) = {yor € X : d(&e,yu)<é} C SP(X)

is called the soft open ball with center . and radius €.

B(&e,d) = { € X : d(e, )28} € SP(X)

s called the soft closed ball with center T. and radius €.

Definition 1.20. Let (X,J, E) be a soft metric space and (F, E) be a non-null soft subset of X in (Xﬂci E). Then (F,E)

is said to be a soft open set in X with respect to d if and only if all soft points of (F, E) is soft interior points of (F, E).

Definition 1.21. Let {7 } be a sequence of soft points in a soft metric space (X, d,E). Then the sequence {z2 } is said
to be convergent in (X, d, E) if there is a soft point xéo €X such that J(x?n,xéo) — 0 as n — co.

This means for every €50, chosen arbitrarily, there is a natural number N = N (&) such that ﬁid(xﬁn,w20)§€ whenever

n > N.
Definition 1.22. Limit of a sequence in a soft metric space, if exist, is unique.

Definition 1.23 (Cauchy Sequence). The sequence {z2 } of soft points in (X, B, E) is called a Cauchy sequence in X if

corresponding to every €30, there is a m € N such that J(xil,:ri])ié foralli,j > m i.e. ci(:c?gl, xéj) —0 asi,j — .

Definition 1.24 (Complete Metric Space). The soft metric space ()Z', B, E) is called complete if every Cauchy Sequence in

X converges to some point ofX' . The soft metric space (X', CZ, E) is called incomplete if it is not complete.

Definition 1.25. Let (E, ||.|, A) (here we denote A be parametric set) be a soft real Banach space and (P, A) € S(E) be a
soft subset of E. Then (P, A) is called a soft cone if and only if

(1). (P, A) is closed, (P,A) # ¢ and (P, A) # S5(6),
(2). a,b € R(A) &,§e(P, A) implies ai + jje(P, A),
(8). TE(P, A) and —T€(P, A) impliesi = 6.

Given a soft cone (P,A)ES(E), we define a soft partial ordering =< with respect to (P, A) by £=§ if and only if § — Z&(P, A).
We write & < § to indicate that £=7§ but & # §j, while & < § will stand for §j — 2EInt(P, A), Int(P, A) denotes the interior
of (P, A).

Definition 1.26. The soft cone (P, A) in soft real Banach space E is called
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(a). normal, if there is a soft real number &3>0 such that for all %, §EE, 0=&=y implies |Z|| =&l 7|, where & is called soft

constant of (P, A).
(b). minihedral, if sup(Z,7) ewists for all &, GEE.
(c). strongly minihedral, if every soft set in E which is bounded from above has a supremum.
(d). solid, if Int(P, A) # ¢.

(e). regular, if every increasing sequence of soft elements in E which is bounded from above is convergent. That is, if {Zn}

is a sequence of soft elements in E such that $1=%2= ... <Fn=...

for some soft elements in E then there is ZEE such that |&, — Z|| — 0 as n — oco. Equivalently, the soft cone (P, A) is

reqular if and only if every decreasing sequence of soft elements in E which is bounded from below is convergent.

Example 1.27. Let R(A) be all soft real number, where A is a finite set of parameters. Let R™(A) = R(A)xR(A)x---xR(A).
Then, R™(A) is a soft Banach space. Let E = R™(A) with (P, A) = SS{(&1,%2,...,&n) : #:=0, ¥ i=1,2,...,n}. Then

the soft cone (P, A) is normal, minihedral, strongly minihedral and solid.
In fact Chen and Tsai [3] introduced the following notion of the cone ball-metric B.

Definition 1.28. Let X be a non-empty set and X be absolute soft set. Then the mapping B : SE(X) x SE(X)x SE(X) —

SE(X) is soft cone ball-metric on X if B satisfy the following properties:

(1). B(,§,%) =0 if and only if & = § = 3;

(2). B(&,&,§) = 0, for all & # i;

(3). B(z,%,9)=B(%,§, %), for all &,§,3EX;

(4). B(&,§,%) = B(z,%,§) = B(3,3,%) = - - (symmetric in all three variables);
(5). B(z,§,2)=B(&,w,0) + B(w,§, 2), for all #,7,%,wEX;

(6). B(&,,%)=B(F, @, %) + B(§, &, ®) + B(Z,@, @), for all &7, %, DEX.

1

Definition 1.29. Let (X,d) be a soft cone metric space, B : SE(X) x SE(X) x SE(X) — SE(X), #,7,%2 € X and we
denote

§(B) = sup{d(a,b) : a,b € B},
and

where B = N{FCX|F is a soft closed ball and {&,§, 2}CF}. Then we call B a ball-metric with respect to the cone metric d,

and (X',[;’) a soft cone ball-metric space. It is clear that B(j}, Z,9) = J(i,g).
Definition 1.30. Let (X, B) be a soft cone ball-metric space and {Z} be a sequence in X. We say that {Z,} is

(1). Cauchy sequence if for every éEE with O<KE, there exists noEN such that for all n,m,l > ng, B(E}, &7, i) Ze.

(2). Convergent sequence if for every éEE with 0<KE, there exists noNN such that for all n,m > no, B(Zn, T, Z)<KE for

some $EX. Here 7 is called the limit of the sequence {Zn} and is denoted by lim, o0 Tn = T or Ty, — & as n — co.
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Definition 1.31. Let (X,B) be a soft cone ball-metric space. Then X is said to be complete if every Cauchy sequence is

convergent in X.

Proposition 1.32. Let (X',B) be a soft cone ball-metric space and {Z5,} be a sequence in X. Then the following are

equivalent:

(1). {Zn} converges to &;

(2). B(E, i, &) — 6 as n — oo;
(3). B(i,&,%) — 0 as n — oo;

(4). l%(jz,iﬁ,i) — 0 as n,m — 0o.

Proposition 1.33. Let (X, B) be a soft cone ball-metric space and {Z} be a sequence in X, &, JEX. If &% — & and T — §

as n — oo, then T = g.

Proof. Let éEE with <K€ be given. Since Z): — % and I, — § as n — 00, there exists no€N such that for all m,n > no,

B(an,am, 5)& 5 and B, n) <.
Therefore,
B(#,2,9) X By, i) + B, 7,9)

- B~($7xn7$n) + é(y,l’n,ﬁﬁ')

g BN(.’,E,I,,“CC,,L) + g(gaxm7mm) + B(mm7m27m)

« Syl

373 3

Hence, B(z, ,7)<K< forall @ > 1, and so £ — B(&,&,§)EP for all a > 1. Since £ 0 as a— oo and P is closed, we have
that —B(Z, Z, §)€P. This implies that B(Z,Z,§) = 0, since B(Z, Z, §)EP. So & = §. O

Proposition 1.34. Let ()Z',B) be a soft cone ball-metric space and {Z%}, {Gm}, {21} be three sequences in X. If&! — &,

gm — i, 2t — % asn — oo, then B(i:ﬁ,gjﬁjf) — B(i,ﬂ,é) as n — 0o.

Proof. Let é€EE with <Ké be given. Since &7 — &, Jm — i, 2 — 2 as n — oo, there exists no€N such that for all

n,m,l > no,

B, &,8) <z, B, i,0)<s, B, 2 2)<s,
3 3’ 3
Therefore,
= B(in,z,%)+ B, 9.9) + B(§,2, )
= B(ay, &, %)+ B(im, 5.9) + B3, 2, 2) + B(2,2,)
. € € € =
<< §+§+§+B(x,y,z),
that is,

B(x27’g::72l) B(I,g,2)<~<€
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Similarly,
B(&,§,2) — B(@h, g, ) <KE.

Therefore, for all o > 1, we have

B(@y, gm. %) — B(2,§,2)<

I

R [m

and

B(z,§,2) — B(@n, g, 2)<K

Q| m

These imply that

< - B, 5. 7) + B(@,§.9)EP,
=+ B(@, g, &) — B(@. 5, D)EP.
Since P is closed and g — 0 as a — 0o, we have that
lim [-B(Z5,5m. ) + B(&,§,2) €D,
n,m,l—oco
n,m,l—oco
These show that
lim  B(iy, Gim, %) = B(#,§, 7).
n,m,l— oo
So we complete the proof. O

2. Main results

In the section, we first recall the notion of the Meir-Keeler type function. A function 1 : RT — R™ is said to be a Meir-Keeler
type function (see [5]), if for each n € R™, there exists § > 0 such that for t € RT with n <t < n+ 6, we have 1(t) < n.

We now define a new weaker Meir-Keeler type function in a soft cone ball-metric space ()~( , B’), as follows:

Definition 2.1. Let (X, B) be a cone ball-metric space with cone P, and let i : intPU{0} — intPU{@}. Then the function
¥ is called a weaker Meir-Keeler type function in X, if for each 7, 0~<~<ﬁ, there exists &, 64 such that for (2,7, 5)&)2’ with
N=B(&,§, 2)<K0 + 17, there exists ngEN such that ™ (B(&, 7, 2))<K7. Further, we let the function 1 : intPU{0} — intPU{A}

satisfying the following conditions:

(i) ¢ be a weaker Meir-Keeler type function;
(i) for each t € intP, we have 0 (t)<t and () = 6;
(ii3) for t, € intPO{é}, if liMy oo tn, = 7 > 6, then limn_ oo U(tn)KY;

(i) {Y"(t)}nen is non-increasing.
Then we call this mapping a Y-function.

We now state our main common fixed point result for the weaker Meir-Keeler type function in a soft cone ball-metric space

(X, B), as follows:
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Theorem 2.2. Let (X'J’;’) be a complete soft cone ball-metric space, P be a regular cone in E and f, g be two self-mapplings

of X such that fX C gX. Suppose that there exists a ¥-function such that

B(f%, £, f2) < ¥(L(Z, 7, %)), (1)

where

L(z,9,2) = max{B(gi, gy, 92), B(9, i, fT),B(g¥, [7, [7), B(gZ, fZ, [2)}.

Ing' is closed, then f and g have a coincidence point in X. Moreover, if f and g commute at their coincidence points, then

f and g have a unique common fized point in X

Proof. Given #9€X. Since fX C gX, we can choose 1 €X such that g#1 = fZ3. Continuing this process, we define the

sequence {Z, } in X recursively as follows:

fin = ginty for each n € NO{0}.

In what follows we will suppose that facZﬁ #+ fzy for all n € N, since if fgan = fzr for some n, then fx”ﬂ = gi’ﬁﬂ,

that is , f, g have a coincidence point iZE, and so we complete the proof. By (1), we have

B(fay, faniy, finiy) < o(L(@n, #ni1, i),
where

n ~n+1 ~n+1
L(xna n+17 n+1)

= max{B(gay, gin i1, gini1), Blgan, fin, fin),
B(giniy, finty, fanil), Blginiy, finiy, fanii)}

= max{B(fi, 1, fin, f&n), B(fin 1, fEn, fEn),
B(fiz,fazzii,fizii) (fxmfxzii,f:zzib}

Therefore, by the condition (ii) of ¢, we conclude that for each n € N,

(fxnvfxnﬁ»lvfoi%) << B(fxn lvfxnvfxn)

and

B(fin, finty, fanin) 2 (B(fin 1, fan, fan))
...
=™ (B(f70, fi1, f71)).

Since {y" (B(fa%g, fZ1, 1)) }nen is non-incresing, it must converge to some 7, 6 < 7. We claim that 7 = 6. On the contrary,

assume that 7. Then by the definition of the i-function, there exists §, 68 such that for 0K B(fz], fi1, fil) with 7 <
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B(fzl, fit, f#1)<Kd + 7, there exists no € N such that "0 (B(fz9, fZ1, f&1))<i. Since lim, o0 " (B(fZS, fZ1, f21)) = 7

there exists mo € N such that 7 < Y™ B(f&5, f#1, fi1)<Zé + 17, for all m > mg. Thus, we conclude that

1/}"7104"’7'0 (B(fx07f:rl7 f"i%))<

So we get a contradiction. So limy, e 9" (@(fﬁﬁg, fa, fa) = 6, and so we have limy, oo (fxn, foi}, fmZﬁ)
Next, we claim that the sequence {fZn} is a Cauchy sequence. Suppose that {fZy} is not a Cauchy sequence. Then there

exists 7EE with 67 such that for all k€N, there are my, nxEN with my > ny > k satisfying:
(1) ms is even and ny is odd,
(2) B(fznk, famy, fimk) =7, and
(3) my is the smallest even number such that the conditions (1), (2) hold.

Since limy, o B(fZ7, fant fant) = 6 and by (2), (3), we have that

§ = B(fapk, famk, famk)

= ~ ~ 1 ~ 1 ~ —1 ~ ~
= B(fERS, fEme Ty, fEmi1) + B(fEme 1, fEme, fEme)

= > ~n ~ -2 ~ -2 ~ -2 ~ —1 ~ 1
= B(fwni,fwﬁﬁfzyf 22 2)+B(f 22 2> 2271, Z’; 1)
~m 1 ~7n —1 ~m -1
(f m: 1 mZ 1» mifl)
» m 2 ~m 1 ~mp—1 ~m —1 ~ ~
=y B E kDo fEr 1, fE ) + BUfEq i, fEme, fEne).
Taking lim_, o0, we deduce
hm B(fznkyfxmkv ~$§) = ’7
Since
n 1 my — m 1 =
(fxn:—l7fxm:—}7fxm: 1) — (fmnk—lrfxnkvfx )+B(fxnk7fxmk7fxmk)

+B(fEm fEmy 1, FEn ).
Taking limy_, oo, we deduce
Jim B(fany Ty, fane Ty fan ) < - (2)
On the other hand,
¥ =2 B(fang, famy, famy)

o on» ~np—1 ~np—1 ~np—1 ~ ~
j B(fxnk7 nk717 22—1)—’_6(.]6 nk—l?fxzia le;)

3 l,;,(fmnk7 ~nk71 ~nk71)+8(f~nk:}7f~mk 1 ~'m;C 1)

nk 1 nk—l my— 17 mk 1

+AB(fERETL, fEm, fEmE).
Taking limg_, o, we also deduce

¥ dim B(FEns7y, fane Ty, fane ). (3)

mkfl
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By (2) and (3), we get

lim B(fank 1, fami Ty, fime 1) =4.

k—oco

And, by (1), we have that

B(fank, fEme, fEme) < O(L(ERE, Emt, Emk )

where
L(@nk, @t @t) = max{B(gns, gEmr, gimt), B(g@nk, fEnr, [Enr),
(gmmk?fxmk’fxmk) (g‘xmkv ~Z’;asz’,;)}
np—1 pamp—1 p-mp—1\ 3/ p~ngp—1 ~n
= maX{B( nkflaf mk—le :I;—l) B(fo:—17.fxnk7fxn;z)
5/ pamp—1 mpg—1 o~ -
B( ZZ 17f$mk:f$ ) (f m’ll,fﬂcmﬁ, wmﬁ)}
(D) 1f

L@t Bk, Eme) = BUfEn 2y, [t 25, fEntiTy),
then taking limy_, oo, we deduce
Jim B(faneTy, ik Ty, fan)) =7,
and

32 lim BUFEnE, FEs, fams) <3,

a contradiction. (II) If

L('%Ziﬂiz:aimz): ( ~Z];717fxnk7 ‘%Z:)
or
L(@nk, @k, amk) = B(famk "1, fame, famk),

then taking limy—, o, we deduce

Jim B(fany "y, fing, fing) =0,

Jim B(fans Ty, fane, fing) =0,

mp—12

and

= hm B(fa:nk,fat?mk7 Epr) =0,

a contradiction. Follow (I) and (II), we get the sequence {fZ2} is a Cauchy sequence. Since X is complete and gX is closed,
there exist U, ﬂéX such that
lim g(&2) = lim f(7}) = g() = 7.

n—oo n—o00

We shall show that fi is a coincidence point of f and g, that is, we claim that

B(gji, ffi, fii) = 0.
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If not, assume that l’;’(gﬂ, fi, fi) # 6, then by (1), we have

At

Blgji, fii, fir) = Blgf, fan, fn) + B(fin, fi, fii)

= Blgfi, fin, fan) +v(L(@n, i, i),

At

where
L(z3, fi, ) € {B(gir, 9fi, git), Blgin, fan, fin), B(gi, i, fii), B(gi, fii, fi)}.
(II1) If
L(n, i, i) = B(gin, git, gt),
then taking lim,,_, ., we deduce
lim B(gin, gfi, giv) = B9, 9t giv) = 6,
and
Blgi, fiu. fi) = lim B(gii, f&7, f&5) + lim &(B(gir, 9ii, 9ii))

0,

[ A

a contradiction. (IV) If
L(z3, i, i) = Blg, f20, f20),
then taking lim,,— ., we deduce
lim B(gin, fan, f23) = B(gp, 9t gi) = 0,
and
Blgfi, fii. fi) = lim B(gfi, fZ5, f33) + lim o (B(g@n, f2r, f23)=0,
a contradiction. (V) If
L(&5, i i) = Blgfi, [ [12),
then

B(gi, fia, fir) = v(B(gi, fii, f1))LB(gia, fia, fi2),

a contradiction. Follow (IIT)-(V), we obtain that B(gji, ffi, fii) = 0, that is, gfi = ffi = 7, and so /i is a coincidence point of

f and g. Suppose that f and g commute at ji. Then
fo=fgpn=gfi=gv.
Later, we claim that B’(fﬂ, fo, fo) = 6. By (1), we have

B(fh, o, f7)=¢(L(f, 7, 7)),
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where

L(%,3,2) = max{B(gfi, g7, 99), B(gi, ffi, fir), B(gw, {0, f©), B(g0, [, f)}
= max{B(f, fo, ), B(ffi, fii, fi), B(f, fi, f), B(f, f7, f)}
= max{B(fi, fi, fD),0}.

Therefore, if
B(fi, 17, f2) =G (B(f i1, f7, f7)) KB(f i, [, [7),

then we get a contradition, which implies that é(fﬂ, fo, fo) = 6, B, fo, fo) = 6, that is, o = f = gio. So U is a common

fixed point of f and g. Let 7 be another common fixed point of f and g. By (1),

B(@,0,0) = B(fD, fir, f0)2p(L(D,0,7)),
where

L(%,5,2) = max{l’g’(gﬁ,gﬂ,gﬂ) (gl/ o, o), (gu fo, fo), (gu o, fo)}
= max{B(f7, 7, f0), B(f7, [7, [7), B(fD, f7, f7),B(f7, {7, [7)}
= max{B(f7, 7, f7),0}

= {B(@,v,7),0}.

N

Therefore, we also conclude that 5(5, U, 0) = 6, that is 7 = 0. So we show that 7 is the unique common fixed point of g and

f.

Next, we state the following fixed point results for the weaker Meir-Keeler type functions in ball-metric spaces.

Theorem 2.3. Let (X, B~) be a complete soft cone ball -metric space, P be a reqular cone in E and f : X — X. Suppose

that there exists a 1-function such that

B(f&, 17, }2)2$(L(&,§,2)) for all &7, 2EX, (4)
where
L(&,§,2) = max{B(%,7,2), B(&, /%, f7), B(§, £, £7), B(fZ. 5, %)}
Then f has a unique fized point (say fi) in X and f is continuous at ji.

Proof.  Given & € X. Define the sequence {#7} in X recursively as follows:

n—1
Zn_1 =i, for each n € N.

In what follows we will suppose that xZﬁ # &y for all n € N, since if 1] = @), for some n, then 7] = f&) = Z., and so

we complete the proof. By (4), we deduce

B(an, anty,@nt1) = B(fan_1, fan, fin)

9
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where
L(En=1,@n,2n) = max{B(E, 1,2, &), B, 1, fin_1, fin 1),
~(mn,fxmfxn) ( n %7j'27‘%2)}
= ma’X{B( Lo — 17xn7jn)76~(:i‘2:}7i’::75:z)7
B(&y, #ni1, @nii), B(En, 3, @)}
= ma'X{B( Lp— 17‘rnaxn) B~(£n7~:ii]i7~::i%)}
If
L(Zn"1, @0, &) = B(@n, &ni1.@01h),
then

Gam ~n+l ~ntly = “n—1 ~n =~
B(xZaxZithil) j w(ﬁ(‘rZ—laIZaIZ»
= ~n+4l ~nt1
< B@Zﬂﬁil@ﬁil)
a contradiction. So we deduce that

S/~n ~n+1 ~n-+1
B(mnvmn+15xn+l)

I A2
<
—~
)
—~
2N
33
Ll
S
33
S
33
N>,
=

and

B(@n, inty, @nf1) =X $(B(@n_1, @, i)
g wZ(BN(xn*%In %7i‘2 %))
X
= ¢"(B(i0,31,71))

Since {"(B(&),%1,#1))}nen is non-incresing, it must converge to some 7, 7 = 6. We claim that 7 = 6. On the con-
trary, assume that 7 > §. Then by the definition of the t-function, there exists § > 6 such that for 3,7} € X with
A=B(&9, &1, #1)<KJ + 7}, there exists no € N such that "0 (B(fz9, fz1, fi1))<id. Since lim, oo " (B(29, 21, 21)) = 7, there
exists mo € N such that

77_<¢ ($0,$1,I1)<<5+7],

for all m > mg. Thus, we get

and we get a contradiction. So
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and so we have lim, B(xﬁ, ~Zﬁ, :EZE) = 0. For m,n € N with m > n > ko, we claim that the following result holds:
B(zy, @m, &m) < € for all m > n > ko. (5)
Let é€E with € > 0 be given. Since limp— o0 ¢ (B(mg, #1,%1)) = 6 and (€)K€, there exists ko € N such that
P" (l’;’(mo,xl,x%)) <e—(€) for all n > ko,
that is,
B(iy, #r i, 301 1)KéE—(é) for all n>. (6)

We prove (5) by induction on m. Assume that the inequality (5) holds for m = k. Then by (6), we have that for m = k+1,

~n+1l ~np+l ~np+1

>~ ~ 1 ~ 1 ~ ~ ~
B(an, a1y, @nk ) =X B(an, anin, intn) + B(Eniy, a0 0y, ankt))

o Ty 15 T 1

PN

& B(@n, 31, 30 ) + (B, &0k, &%)

& 9O + (@)

Thus, we conclude that B(i’z, Tom, T ) KE for all m > n > ko. So {Z} is a Cauchy sequence in X. Since (X, l§) is a complete

soft cone ball -metric space, there exists i € X such that lim, e 7 = i, that is, E’(fiﬁ, Ty 1) — 6. For n € N, we have

B(ji, i, #y) + B(in, ., fii)

N
:‘;z
‘:;z
~
=
| At

PN

B(ju, i, #) + B(fin_1, fin_1, i)

= B, i, @p) +(L(En =1, En21, 1)),

where
L(@p~1,%071,0) = max{B(@n_1,in1,04), B@n_1, fan_1, fEn"1),
Bz, —1, fan_1, fin 1), B(fa,_1, 20 -1, i)}
= max{B(@n_1,in_1,[i), B@n_1,n,an),

Bz "1, i, @n), B(@n, in 1, 4)}-

1) If
L(Zn_1,@n_1,0) = B(@n_1, %01, i),

then

B(ja, fi, f)<B(fi, i1, i) + B(@n 1,351, ).

Letting n — oo, we conclude that l’;’(ﬂ,ﬂ, fi) =0, and so i = fi. (II) If
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then

B(ji, i, fit)<B(fi, fi, #7) + B(@n_1, i, ).

Letting n — oo, we conclude that B(i, i, fii) = 0, and so ji = fi. (IIT) If
L2000, ) = Blan, 421, i) 2B, #4071, 30 01) + B -1, 1, /),
then
B(fis fi, T KB, i #3) + B(E3, 4071, 87 21) + BEL 21, 801, )

Letting n — oo, we conclude that B(ﬂ, i, fi) = 6, and so i = ffi. Follow (I), (II) and (III), we have that j is a fixed point
of f. Let ¥ be another fixed point of f with fi # ©. Then

B(ji, 0,0) = B(fi, f7, f0) =< (L (i, 7, D)),
where

L, 0,9) = max{B(i, #,9), B(ji, fit, f1v), B(@, 7, f7), B(ffi, 7, 7)}
= max{B(@, 7, ), B(ji, fi, 1), B(#, 7, 9), B(ji, 7, 7)}

= max{B(ji, 7,)},0}.

Therefore, if B(ji, 7, 17)<~<l’5’(;17 U, ), then we get a contradiction. So i = 7, and we show that f is a unique fixed point of f.

To show that f is continuous at fi. Let {g,} be any sequence in X such that {g, } convergent to . Then

B(ji, v, fgn) = B(fii, fii, fin)

PN

(L, 1y )

where
L, i) = max{B(i, i, 5), B fii, £12), B, fii, £12), BOF s i )}
= max{B(@, i, §r), 0}.
Thus
B(fi, i, ) KB (fis 1, Ir)-
Letting n — co. Then we deduce that {fgn} is convergent to fii = fi. Hence f is continuous at fi. O

By Theorem 2.3, we immediate get the following corollary.

Corollary 2.4. Let (X',B) be a complete cone ball-metric space, P be a reqular cone in E and f: X — X. Suppose that

there exists a Y-function such that

B(f&, [, f2)=¢(B(&,9,2)  (%,§,7€X).

Then f has a unique fized point (say fi) in X and f is continuous at ji.
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In the sequel, we introduce the stronger Meir-Keeler cone-type function ¢ : intP U {é} — [0,1) in cone ball-metric spaces,

and prove the fixed point theorem for this type of function.

Definition 2.5. Let (X, B) be a cone ball-metric space with cone P, and let

¢ - intPO{A} — [0,1).
Then the function ¢ is called a stronger Meir-Keeler type function, if for each €P with 7 > 0, there ezists > 0 such that
for &,7, 26X with =B(&,§, 2)<Kd + 7, there exists 75 € [0,1) such that ¢(B(Z,7,2)) < 3.

Theorem 2.6. Let ()27[;’) be a complete cone ball-metric space, P be a reqular cone in E and f : X — X. Suppose that

there exists a stronger Meir-Keeler type function ¢ : intPU{0} — [0,1) such that

B(f&, i, f2)2¢(L(E,§,2)) - L(&,§,2) for all &,§,% € X, (7)

where
L(z,7,2) = max{B(,7, 2), B(Z, 1, f7), B, £, f9), B(£Z, 5 £)}
Then f has a unique fixed point (say i) in X and f is continuous at fi.

Proof. Given ZJ€X. Define the sequence {Z} in X recursively as follows:

fan_ 1—ZEn for each n € N.

In what follows, we will suppose that 1} # &y for all n€N, since if 1] = Zj for some n, then 1] = fZ; = Z, and so

we complete the proof. By (7), we deduce

S~ ~n+1l ~n+41
B(xnv'rn+17xn+1)

B(fzp_1, fan, fan)

PN

n ~n ~n

<~< ’777 £( nilaxnvmn)v

where

5@23@2752) = maX{B( Lp— 17$n7$n)7l§(xn lafi‘z iafi‘z i)

B(@y, fin, fan), B(fan_1, %0, in)}
= max{B(#,_1, &5, &), B@n_1, &, ),
Bz, anit,inty), B(@y, an,in)}

= max{B(&, 1, &, 75), B(@n, 511, #011)}

If
L(&71,%n,&0) = B(En, 211, 2010),

then

n ~n+l ~n+1 = ~ o[~ ~n+1 ~n+1
B(xny n+17 n+1) < fYﬁ'B(xnz n+17 n+1)
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a contradiction. So we deduce that
B(an, i1, nl1) 2 (L(En 1, an, )
<< ’YTI B( n— %7xn7$n)'

~n+1 ~n+1

Z, 11, %,11)} is decreasing and bounded below. Let

Then the sequence {B’(ocn7
lim B(an, @iy, @) = 26,

Then there exists kKo€N and & > 6 such that for all n > Ko

T]<B($n, ~Zil7 ~n+1)<<n + 6

intPU{6} — [0,1) is a stronger Meir-Keeler type function, for these n and ¢ we have that for

For each n € N, since ¢ :

5N0+n,.f2,10+n+1 € X with
N=ZB(Ergtms Trg+ntts Trg4ni1) KO + 1,

there exists v € [0,1) such that
¢(B(i'no+m Trg+ntls jﬁ0+n+l)) < Vi

~Kko+n+1y _ p(~ko+n—1 ~ko+n ~ko+n p(~ko+n—1 ~ko+n ~Kko+n
$n0+n+l) - ¢(B($mo+n—l7mno+n7xi<0+n)) : B($m0+n717xmo+n7mng+n)
~n0+n)
Kko+n/?

Thus, by (7), we can deduce

Ko+n ~ko+n+1

B(xno+n7 xmo+n+l7
~ko+n—1

Ko+n—1
mﬁo 4+n—1>

<<’YU B( n0+n 1

FR0+N ~Ho+n)

and it follows that for each n € N
ko+n—1
ng+n 17xm0+n7xn0+n

~N0+n+1) < Y B(

S/ ~ko+n ~ko+n+1
B(xn0+n:xno+n+1:$no+n+1
<
= n ~ ~ko+1 ~kro+1
< 7'7] B(xn07xn0+l,xm0+l)'
So
n0+n ~ko+n+1l ~ko+n+ly _ A5 . 5
71131;103( ot T i1, To i nyy) = 0, since 5 < 1.
. . ~ 1 ~ -~ ~ .
We next claim that limu, n 0o B(ZR0 1071, ngiz, Zroim) = 6. For m,n € N with m > n, we have
m—
S/ ~Kot+n ~ko+m ~ko+m = NO‘F’L ~ko+i+l /~Kro+it+l
B(xno+n7mno+m7 H0+m) = E Trog+i (1’~0+i+17 (mn0+i+1)
=
,_ym—l
~ 7 A ~ko+1l ~ko+2 ~ko+2
< 1— Vi B(‘Tmo+l>'rng+27mmo+2)7

Ko+tn ~Kkot+m sKkot+m
xn0+m?xno+m

and hence B(Z T tns

) = 6 as m,n — oo, since 0 < 53 < 1. By the properties of the cone ball-metric, we

obtain
Ko+n ~ko+m ~ko+1\ D pRrmko+n ~ko+mM ~r@0+m )10+m ~Kko+m ~ko+1
)jB( n0+n7mm)+m7 ng+m)+8( n0+m7xno+m7 n0+1)

B($m0+n7 xﬁ0+m7 rko+1
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taking limit as m, n,l — oo, we get B(Z :812@:312, ~zgﬁ) — 6. So {Z"} is a Cauchy sequence.

Since (X, B) is a complete cone ball-metric space, there exists ji € X such that lim, e ¥ = /i, that is, B(Z7, &%, i) — 6.

For n € N, we have

A
o

(ﬁ?ﬂaxn)+8~(x”vx"’fﬂ)

B(ji, fi, xn) + $(L(Fn "1, 801, 1)) - L(En "1, % 1, [i)

B(ja, fi, fii)

PN

= B, fiywn) + v - LE 1, En 1
where

L(Ep 1, %0 1,0) = max{B(@n_1,in 1, [4), B@n_1, fan_1, fan_1),
Bz, —1, Tan "y, fin 1), B(f&h 1,01, )}
= max{B(#,_1,%n_1, /1), B@n_1, 0, o),

Bz, —1, @0, dn), B(@n, in_1, i)}

L(Zn 1,801, 0) = B(@n "1, %01, /i),
then
B(ji, i, fii) = B(fi, fi, zn) + i - B@n_ 1,301, ).

Letting n — oo, we conclude that B(f, fi, fji) = 6, and so i = fj. (II) If

then
B(ji, i, fi2) = B(ji, i, #0) + i - B(@n_1, &, &).
Letting n — oo, we conclude that 3(/1,;1, Th) = 6, and so ji = fj. (111) If
L(@n=y, @1, i) = B(@y, &n_1, i) 2B(Fn, #n_1, 1) + BE, 1,30 1, 1),
then
Bji, fi, f2) < B(fi, i, wn) + va - [B(@n, 8521, &n_1) + B(@n_1, @51, fi))-

Letting n — oo, we conclude that E([L, i, fi) = 6, and so i = ffi. Follow (I), (II) and (III), we have that f is a fixed point

of f. Let ¥ be another fixed point of f with fi # ©. Then

B, v,0) = B(fii, fo, f7)



Meir Keeler Type Contraction in Soft Cone Ball Metric Space

PN
=
&
=
'Tr
=
&
=
<
<

where

I
=
o
b

—~
oy
—
:‘;z
X
!
—
joN
—
:f;z
:t;z
=
-
o
—~
Xt
X
!
—
o
—
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—
=
X
A
b
>
—

Thus if B(ji, 7, ) <L~s - B(ji, 7, 7), then we get a contradiction. So i = 7, and we show that f is a unique fixed point of 7.

To show that f is continuous at fi. Let {§,} be any sequence in X such taht {g;;} convergent to fi. Then

B, i, fgn) = B(fi, fii, fin)

[ A
=
5
3:1
Fr
5
5
zgr
E:r
<)
3/3

<L v Ly o G

where
L(f, i gr) = max{B(ji. i1, 4r), B, Thi, Ti), B, i 1), B(Ffis f1, 51) }-
Thus
B, i, ) Ky - B, i G,)-
Letting n — co. Then we deduce that {fg, } is convergent to fii = fi. Hence f is continuous at fi. O
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