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Abstract: Let f : G→ K be a function between finite groups. When the function f is a anti-homomorphism it may preserve group
structure. In this paper, we consider measures of how nearly the group structure is preserved by an arbitrary function.

We first define anti-distributor which is a new way to build anti-homomorphism from arbitrary function. we demonstrate

the applicability of this theory by constructing anti-homomorphism to prove Schur-Zassenhaus theorem.
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1. Introduction

Commutativity is one of the important properties in the study of finite group theory. As a measure of commutativity, the

commutator and commutator group have been defined in group theory. Let G be a group, a, b ∈ G, write [a, b] := a−1b−1ab.

It is called the commutator of a and b. Also write G′ := 〈[a, b]|a, b ∈ G〉 is the commutator subgroup of G. In order to

study the p-commutativity, C.Hobby [1] have defined the concept of p-commutator, let p be a prime number, a, b ∈ G,

write [a, b; p] := a−pb−p(ab)p. It is called the p-commutator of a and b. In [2], I.Hawthorn and Y.Guo have generalized

the concept of p-commutator to the general situation. Let G and K be groups, f : G → K be function, x, y ∈ G, write

[x, y; f ] := f(y)−1f(x)−1f(xy). It is called the f -distributor of x and y. They have studied the finite groups function

and f -distributor on influencing the group structure, and obtained some important results. In this paper, We first define

anti-distributor which is a new way to build anti-homomorphism from arbitrary function. As an application, we present a

new proof of the Schur-Zassenhaus theorem by constructing anti-homomorphism and group inverse action.

2. Preliminaries

Definition 2.1. Let G and K be groups, f : G −→ K be a function, x, a ∈ G. Write fa(x) = f(a)−1f(xa), then

fa : G −→ K is also a function, fa is called the anti-conjugate of the function f under a.

Definition 2.2. Let G and K be groups, f : G → K be function, for any x, y ∈ G, f(xy) = f(y)f(x), then f is an

anti-homomorphism.
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Definition 2.3. Let ϕ be an anti-homomorphism from G to K. Then α : G/Ker(ϕ) → K with (Ker(ϕ)x 7→ ϕ(x)) is an

anti-homomorphism and injective. In particular G/Ker(ϕ) ∼= Im(ϕ).

Lemma 2.4. Let G and K be groups, f : G −→ K be a function. Then f is an anti-homomorphism if and only if fa = f,

for any a ∈ G.

Proof. If f is an anti-homomorphism, then for any x, a ∈ G, we have f(xa) = f(a)f(x). And by definition 2.1, we obtain

fa(x) = f(a)−1f(xa), hence fa(x) = f(x);

On the other hand, by Definition 2.1, we obtain fa(x) = f(a)−1f(xa), and since fa(x) = f(x), then f(a)−1f(xa) = f(x),

hence f(xa) = f(a)f(x), this f is an anti-homomorphism.

Definition 2.5. Let G and K be groups, f : G −→ K be a function, x, y ∈ G. Write [x, y; f ] := f(x)−1f(y)−1f(xy). It is

called the f anti-distributor of x and y. It follows that fy(x) = f(x)[x, y; f ].

Lemma 2.6. Let G and K be groups, f : G −→ K be a function. Let x, y, z,∈ G, then [y, z; f ]f(x) =

[x, y; f ][xy, z; f ][x, yz; f ]−1.

Proof. we expand f(xyz) in two different ways to obtain.

f(xyz) = f(yz)f(x)[x, yz; f ] = f(z)f(y)[y.z; f ]f(x)[x, yz; f ],

and

f(xyz) = f(z)f(xy)[xy, z; f ] = f(z)f(y)f(x)[x, y; f ][xy, z; f ].

So

[y, z; f ]f(x) = [x, y; f ][xy, z; f ][x, yz; f ]−1.

Lemma 2.7. Let G and K be groups, fi : G −→ K be function (1 ≤ i ≤ n). Let x, y ∈ G, write (fi · fj)(x) = fi(x)fj(x),

then [x, y; fi · fj ] = fj(x)−1fi(x)−1fj(y)−1fi(x)[x, y; fi]fj(y)fj(x)[x, y; fj ].

Proof. For any x, y ∈ G, by Definition 2.5, we have

[x, y; fi · fj ] = fi · fj(x)−1fi · fj(y)−1fi · fj(xy) = fj(x)−1fi(x)−1fj(y)−1fi(y)−1fi(xy)fj(xy)

By Definition 2.5, we observed that fi(xy) = fi(y)fi(x)[x, y; fi] and fj(xy) = fj(y)fj(x)[x, y; fj ], then

[x, y; fi · fj ] = fj(x)−1fi(x)−1fj(y)−1fi(y)−1fi(y)fi(x)[x, y; fi]fj(y)fj(x)[x, y; fj ],

therefore we obtain

[x, y; fi · fj ] = fj(x)−1fi(x)−1fj(y)−1fi(x)[x, y; fi]fj(y)fj(x)[x, y; fj ].

Lemma 2.8. Let G and K be groups, fi : G −→ K be function (1 ≤ i ≤ n). and K is an abelian group. Let x, y ∈ G, then

function F (x) =
n∏
i

fi(x) is a product function from G to K, and [x, y;F ] =
n∏
i

[x, y; fi].
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Proof. Firstly, if n = 1, it is obvious that [x, y;F ] = [x, y; f1]. For case n = 2, we get F (x) = f1(x)f2(x), by Lemma 2.7,

then

[x, y;F ] = [x, y; f1 · f2] = f2(x)−1f1(x)−1f2(y)−1f1(x)[x, y; f1]f2(y)f2(x)[x, y; f2].

Note that in the case that K is abelian group, then we obtain [x, y;F ] = [x, y; f1 · f2] = [x, y; f1][x, y; f2]. For case n ≥ 2, we

can prove it by induction. Hence [x, y;F ] =
n∏
i

[x, y; fi].

Lemma 2.9. Let G and K be groups, fi : G −→ K be function (1 ≤ i ≤ n). and K is an abelian group,write F (x) =
n∏
i

fi(x),

x, a ∈ G, then F is a function from G to K, and F a(x) =
n∏
i

fai (x);

Proof. By the Definition 2.5 and Lemma 2.8, then F a(x) = F (x)[x, a;F ] =
n∏
i

fi(x)
n∏
i

[x, a; fi], since K is an abelian

group, then F a(x) =
n∏
i

fi(x)[x, a; fi] =
n∏
i

fai (x).

Lemma 2.10. Let G and K be groups, fi : G −→ K be function (1 ≤ i ≤ n). Let x, a ∈ G, write (fi · fj)(x) = fi(x)fj(x),

then (fi · fj)a(x) = (fai (x))fj(a)faj (x).

Proof. By Definition 2.1, we get

(fi · fj)a(x) = (fi · fj)(a)−1(fi · fj)(xa)

= fj(a)−1fi(a)−1fi(xa)fj(xa)

= fj(a)−1fai (x)fj(xa)

= fj(a)−1fai (x)fj(a)fj(a)−1fj(xa)

= (fai (x))fj(a)faj (x).

3. Proof of Theorem

Theorem 3.1 (Theorem of Schur-Zassenhaus). Let H be an Abelian normal subgroup of G such that (|H|, |G/H|) = 1.

(1). Then H has a complement in G.

(2). Suppose that K0 and K1 are two complements of H in G . Then K0 and K1 are conjugate in G.

Proof. For convenience, we use the following notations: Ḡ = G/H, Ω={f |f : Ḡ −→ G be function, π ◦f = idḠ, f(1) = 1},

where π is a natural anti-homomorphism from G to Ḡ with π(g) = gH, for any g ∈ G. We shall confirm the assertion by

proving the following eight claims.

Claim 1. The group Ḡ inverse action on the set Ω of functions by conjugation.

Let f ∈ Ω, and ā ∈ Ḡ. By the Definition 2.1, f ā is a function from Ḡ to G, and f ā(1) = 1. For any ā ∈ Ḡ, we have

π ◦ f ā(x̄) = π(f ā(x̄)) = π(f(ā)−1f(x̄ā)) = π(f(x̄ā))π(f(ā)−1) = π ◦ f(x̄ā)π ◦ f(ā)−1 = x̄āā−1 = x̄,

it follows that f ā ∈ Ω, therefore the group Ḡ inverse action on the set Ω of functions by conjugation.

Claim 2. Let |H| = n, |Ḡ| = m and a ∈ H, then there exists positive integers k with akm = a.

Since (|H|, |G/H|) = 1, it follows that (m,n) = 1. Thus there exists some positive integers k and t such that km− tn = 1,

so we obtain akm = a1+tn = aatn = a.

Claim 3. Let x̄, ā ∈ Ḡ, f ∈ Ω, where the integer k is the same as Claim 2, then
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(1). [x̄, ā; f ] ∈ H;

(2). F (x̄) =
∏
ā∈Ḡ

[x̄, ā; f ]k is a function from Ḡ to H;

(3). f̂ = f · F ∈ Ω.

Since

π[x̄, ā; f ] = π(f(x̄)−1f(ā)−1f(x̄ā)) = π(f(x̄ā))π(f(ā)−1)π(f(x̄)−1) = π ◦ f(x̄ā)π ◦ f(ā)−1π ◦ f(x̄)−1 = x̄āā−1x̄−1 = 1,

then [x̄, ā; f ] ∈ Ker(π) = H. Note that H is an Abelian group, we obtain
∏
ā∈Ḡ

[x̄, ā; f ]k ∈ H and it follows that F is a

function from Ḡ to H. By [1, ā; f ] = f(1)−1f(ā)−1f(ā) = 1, it implies that F (1) = 1 and f̂(1) = f(1)F (1) = 1. Since

π ◦ f̂(x̄) = π(f̂(x̄)) = π(f(x̄)F (x̄)) = π(f(x̄)
∏
ā∈Ḡ

[x̄, ā; f ]k) = π ◦
∏
ā∈Ḡ

[x̄, ā; f ]kπ ◦ f(x̄) = 1 · π ◦ f(x̄) = x̄.

Hence f̂ ∈ Ω.

Claim 4. With the notation above, then f̂ is a anti-homomorphism from Ḡ to G.

Let ā, b̄, x̄ ∈ Ḡ, By Lemma 2.10, we have equation

f̂ b̄(x̄) = (f · F )b̄(x̄) = f b̄(x̄)F (b̄)F b̄(x̄) = F (b̄)−1f b̄(x̄)F (x̄b̄). (1)

By Lemma 2.6, we get [x̄b̄, ā; f ]k = [x̄, b̄; f ]−k([b̄, ā; f ]k)f(x̄)[x̄, b̄ā; f ]k. Note that H is abelian, then

∏
ā∈Ḡ

[x̄b̄, ā; f ]k =
∏
ā∈Ḡ

[x̄, b̄; f ]−k
∏
ā∈Ḡ

([b̄, ā; f ]k)f(x̄)
∏
ā∈Ḡ

[x̄, b̄ā; f ]k. (2)

By Claim 2, it follows that
∏
ā∈Ḡ

[x̄, b̄; f ]−k = [x̄, b̄; f ]−km = [x̄, b̄; f ]−1. Thus the equation (2) becomes equation

F (x̄b̄) = [x̄, b̄; f ]−1f(x̄)−1F (b̄)f(x̄)F (x̄). (3)

From (1) and (3), we get

f̂ b̄(x̄) = F (b̄)−1f b̄(x̄)[x̄, b̄; f ]−1f(x̄)−1F (b̄)f(x̄)F (x̄) = f(x̄)F (x̄) = f̂(x̄).

By Lemma 2.4, f̂ is a anti-homomorphism from Ḡ to G.

Claim 5. With the notation above, then Im(f̂) is complement to H in G.

Let x ∈ G. Since π(x) = xH = x̄ ∈ Ḡ, then f̂(π(x)) = f̂(x̄) = a ∈ Im(f̂). We also have xH = x̄ = π(f̂(x̄)) = π(a) = aH,

thus there exists h ∈ H such that x = ah, which implies that G ⊆ Im(f̂)H, Hence Im(f̂)H = G.

Next we need to show that Im(f̂)
⋂
H = 1. For any x ∈ Im(f̂)

⋂
H, since x ∈ Im(f̂), then there exists ā ∈ Ḡ such that

f̂(ā) = x, and we have π(x) = xH = H, so ā = π(f̂(ā)) = π(x) = H. Note that f̂ ∈ Ω is a anti-homomorphism, which

implies x = f̂(ā) = f̂(H) = 1. Therefore Im(f̂) is a complement to H in G.

Claim 6. Let f1, f2 ∈ Ω, and x̄, ā ∈ Ḡ. Write h(x̄) = f1(x̄)−1f2(x̄), L(x̄) =
∏
ā∈Ḡ

[x̄, ā;h]k, h̄ = h · L, where the integer k is

the same as Claim 2, then h̄ is trivial anti-homomorphism from Ḡ to H.

Since π(h(x̄)) = π(f1(x̄)−1f2(x̄)) = π ◦f2(x̄)π ◦f1(x̄)−1 = x̄x̄−1 = 1, then h(x̄) ∈ Ker(π) = H, it follows that h is a function

from Ḡ to H, which imply

π([x̄, ā;h]) = π(h(x̄)−1h(ā)−1h(x̄ā)) = π(h(x̄ā))π(h(ā)−1)π(h(x̄)−1) = x̄āā−1x̄−1 = 1,
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so [x̄, ā;h] ∈ H. Since H is an abelian group, then
∏
ā∈Ḡ

[x̄, ā;h]k ∈ H, it follows that L is a function from Ḡ to H. Next the

proof is the same as Claim 4, we deduce that h̄ = h ·L is a anti-homomorphism from Ḡ to H. By the fundamental theorem

of anti-homomorphism, this is Definition 2.3, it follows that Ḡ/Ker(h̄) ∼= Im(h̄) implies that |Im(h̄)|||Ḡ|; Furthermore, note

that Im(h̄) is the subgroup of H. we conclude that |Im(h̄)|||H|. Now (|H|, |Ḡ|) = 1 implies that |Im(h̄)| = 1. Hence h̄ is

the trivial anti-homomorphism.

Claim 7. With the notation above, then there exists µ∈ G such that f̂2(x̄) = µ−1f̂1(x̄)h̄(x̄)µ = (f̂1(x̄))µ, for any x̄ ∈ Ḡ.

Let X̄, Ā ∈ Ḡ, by Claim 6, we have f2(x̄) = f1(x̄)h(x̄), so [x̄, ā; f2] = [x̄, ā; f1h]. By Lemma 2.7, we get

[x̄, ā; f2] = (h(ā)−1)f1(x̄)h(ā)[x̄, ā; f1][x̄, ā;h],

where the integer k is the same as Claim 2, and note that H̄ is abelian , then

[x̄, ā; f2]k = (h(ā)−k)f1(x̄)h(ā)k[x̄, ā; f1]k[x̄, ā;h]k,

thus ∏
ā∈Ḡ

[x̄, ā; f2]k = f1(x̄)−1(
∏
ā∈Ḡ

h(ā)−k)f1(x̄)
∏
ā∈Ḡ

h(ā)k
∏
ā∈Ḡ

[x̄, ā; f1]k
∏
ā∈Ḡ

[x̄, ā;h]k,

Furthermore, we have
∏
ā∈Ḡ

[x̄, ā; f2]k = [f1(x̄),
∏
ā∈Ḡ

h(ā)k]
∏
ā∈Ḡ

[x̄, ā; f1]k
∏
ā∈Ḡ

[x̄, ā;h]k and write µ =
∏
ā∈Ḡ

h(ā)k implying µ ∈ G,

then F2(x̄) = [f1(x̄), µ]F1(x̄)L(x̄), thus we obtain

f̂2(x̄) = f2(x̄)F2(x̄) = f1(x̄)h(x̄)f1(x̄)−1µ−1f1(x̄)µF1(x̄)L(x̄).

Since h̄ is trivial anti-homomorphism from Ḡ to H, hence f̂2(x̄) = µ−1f̂1(x̄)h̄(x̄)µ = (f̂1(x̄))µ.

Claim 8. Let K1 and K2 are any two complements of H in G, then there exits f̂1, f̂2 ∈ Ω such that K1 = Im(f̂1) and

K2 = Im(f̂2).

In fact, G/H ∼= K1 ≤ G, i.e., Ḡ ∼= K1. Let f̂1 : Ḡ → K1 (gH 7→ k1), where g = k1h, k1 ∈ K1, h ∈ H, it is obvious that

f̂1 : Ĝ → K1 is an anti-isomorphism, it follows that f̂1(1) = 1. For any ḡ ∈ Ḡ, let ḡ = gH, then we have π(f̂1(ḡ)) =

π(f̂1(gH)) = π(k1) = k1H = k1hH = gH = ḡ, hence f̂1 ∈ Ω. Note that f̂1 is an anti-isomorphism and by Claim 5, we

obtain that Im(f̂1) = K1. Similarly, Im(f̂2) = K2. By Claim 7, then there exists µ∈ G such that f̂2(x̄) = (f̂1(x̄))µ, for any

x̄ ∈ Ḡ. So K2 = Kµ
1 . This completes the proof of Theorem 3.1.

Corollary 3.2. Let H be a normal subgroup of G such that (|H/H ′|, |G/H|) = 1, then

(1). There is a relative complement of H over H ′;

(2). Any two relative complements of H over H ′ are conjugate.
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