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Abstract: Let f: G — K be a function between finite groups. When the function f is a anti-homomorphism it may preserve group
structure. In this paper, we consider measures of how nearly the group structure is preserved by an arbitrary function.
We first define anti-distributor which is a new way to build anti-homomorphism from arbitrary function. we demonstrate
the applicability of this theory by constructing anti-homomorphism to prove Schur-Zassenhaus theorem.
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1. Introduction

Commutativity is one of the important properties in the study of finite group theory. As a measure of commutativity, the
commutator and commutator group have been defined in group theory. Let G be a group, a,b € G, write [a,b] := a~'b™ ' ab.
It is called the commutator of a and b. Also write G’ := ([a,b]|a,b € G) is the commutator subgroup of G. In order to
study the p-commutativity, C.Hobby [1] have defined the concept of p-commutator, let p be a prime number, a,b € G,
write [a,b;p] := a7Pb"P(ab)?. It is called the p-commutator of a and b. In [2], .Hawthorn and Y.Guo have generalized
the concept of p-commutator to the general situation. Let G and K be groups, f : G — K be function, x,y € G, write
[z,y; f] := f(y) ' f(z) ' f(zy). It is called the f-distributor of z and y. They have studied the finite groups function
and f-distributor on influencing the group structure, and obtained some important results. In this paper, We first define
anti-distributor which is a new way to build anti-homomorphism from arbitrary function. As an application, we present a

new proof of the Schur-Zassenhaus theorem by constructing anti-homomorphism and group inverse action.

2. Preliminaries

Definition 2.1. Let G and K be groups, f : G — K be a function, x,a € G. Write f*(z) = f(a)™'f(za), then

f*: G — K is also a function, f® is called the anti-conjugate of the function f under a.

Definition 2.2. Let G and K be groups, f : G — K be function, for any x,y € G, f(zy) = f(y)f(z), then f is an

anti-homomorphism.
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Definition 2.3. Let ¢ be an anti-homomorphism from G to K. Then a : G/Ker(p) — K with (Ker(v)z — ¢(x)) is an

anti-homomorphism and injective. In particular G/Ker(p) = Im(p).

Lemma 2.4. Let G and K be groups, f : G — K be a function. Then f is an anti-homomorphism if and only if f* = f,

for any a € G.

Proof. 1f f is an anti-homomorphism, then for any z,a € G, we have f(za) = f(a)f(x). And by definition 2.1, we obtain
f*(x) = f(a)”' f(za), hence f*(z) = f(z);
On the other hand, by Definition 2.1, we obtain f®(z) = f(a) ' f(za), and since f*(x) = f(z), then f(a) ' f(za) = f(z),

hence f(za) = f(a)f(x), this f is an anti-homomorphism. O

Definition 2.5. Let G and K be groups, f : G — K be a function, z,y € G. Write [x,y; f] := f(a) " fly) ' f(zy). It is

called the f anti-distributor of x and y. It follows that f¥(x) = f(z)[z,y; f].

Lemma 2.6. Let G and K be groups, f : G — K be a function. Let xz,y,z,€ G, then [y,z;f]ﬂz) =

[z, y; fllzy, 2 fllz, yz: f17

Proof. we expand f(xyz) in two different ways to obtain.

flayz) = fy2) f(0)[w, vz [l = [(2)f W)ly-z f1f (@), y2; £,

and
flzyz) = f(2) f(xy)[zy, 2; [l = F(2) F @) f(@)[2, y; fllzy, 25 £
So

[y, 2 f17) = [z, y; fllwy, 2 flle, yz; £ -

Lemma 2.7. Let G and K be groups, fi : G — K be function (1 <i<n). Let z,y € G, write (fi - f;)(z) = fi(x)f;(z),
then [z, y; fi - fi] = fi(@) ™" fi(x) ™ fi(y) " fi(@) v fil £ () i () [, s i)

Proof. For any x,y € G, by Definition 2.5, we have
[w,y; fi- £ = fi- fi(@) 7 i Fi) 7 fi - filmy) = £(@) 7 ful@) T i (9) T fily) T filwy) fi ()
By Definition 2.5, we observed that f;(zy) = fi(y)fi(z)[z,y; fi] and f;(zy) = f;(y) f; (z)[z,y; f;], then
[w,y; i £5] = £i(@) 7 fule) @) T AW TR W) F @),y L1 W) (@) s £

therefore we obtain

[,y fi - £5] = fi(@) " file) " i) T fi(@) [ s £l i () i (@) [, 5 £ -

Lemma 2.8. Let G and K be groups, fi : G — K be function (1 <i < n). and K is an abelian group. Let x,y € G, then

function F(z) = ﬁfl(x) is a product function from G to K, and [z,y; F] = ﬁ [, y; fi].
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Proof.  Firstly, if n = 1, it is obvious that [z,y; F] = [z, y; fi]. For case n = 2, we get F(z) = fi(z) f2(x), by Lemma 2.7,

then

[,y F] = [o,y; f1 - fo] = fa(@) " fu(@) " f2(y) ™ Fa(@)le, y; il fo() fo(@) [, 5 fo).

Note that in the case that K is abelian group, then we obtain [z, y; F| = [z, y; fi - fo] = [z, y; fi][z, y; f2]. For case n > 2, we

can prove it by induction. Hence [z,y; F| =[] [z, y; fi]- O

3

Lemma 2.9. Let G and K be groups, f; : G — K be function (1 <i <n). and K is an abelian group,write F(x) =[] fi(x),

i

z,a € G, then F is a function from G to K, and F*(z) =[] fi(z);

n n

Proof. By the Definition 2.5 and Lemma 2.8, then F*(z) = F(z)[z,a; F| = [] fi(z) [][z, a; fi], since K is an abelian

7 k3

group, then F*(x) = ﬁ fi(z)[z, a; fi] = ﬁ fi(x). O
Lemma 2.10. Let G and K be groups, fi : G — K be function (1 <t <n). Let x,a € G, write (f; - f;)(z) = fi(x)f;(z),
then (fi- f3)" (w) = (F(2)) 7 f} ().

Proof. By Definition 2.1, we get

(fi £)" (@) = (fi- f)(@) " (fi - £5)(wa)
= fila)™" fila) " fi(za) fi(za)
= f;(a) " £ (2) £ (wa)
= fi(@) 7 i (2) fi(a) fi(a) " fi(za)
= (ff @) £} ().

3. Proof of Theorem

Theorem 3.1 (Theorem of Schur-Zassenhaus). Let H be an Abelian normal subgroup of G such that (|H|,|G/H|) = 1.
(1). Then H has a complement in G.
(2). Suppose that Ko and K1 are two complements of H in G . Then Ko and K1 are conjugate in G.

Proof.  For convenience, we use the following notations: G = G/H, Q={f|f : G — G be function, o f = idg, f(1) = 1},
where 7 is a natural anti-homomorphism from G to G with 7(g) = gH, for any g € G. We shall confirm the assertion by
proving the following eight claims.

Claim 1. The group G inverse action on the set Q of functions by conjugation.

Let f € Q, and @ € G. By the Definition 2.1, f* is a function from G to G, and f%(1) = 1. For any a € G, we have
mo f4(z) = x(f*(2) = n(f(@)” f(za)) = x(f(za))n(f(@)"") = 7o f(a)ro f(a)~' =zaa ' =z,

it follows that f* € Q, therefore the group G inverse action on the set Q of functions by conjugation.
Claim 2. Let |H| =n, |G| = m and a € H, then there exists positive integers k with "™ = a.
Since (|H|,|G/H]|) = 1, it follows that (m,n) = 1. Thus there exists some positive integers k and ¢ such that km —tn =1,

km — a1+tn tn

so we obtain a =aa" = a.

Claim 3. Let Z,a € G, f € Q, where the integer k is the same as Claim 2, then
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(1). [z,a; f] € H;
(2). F(z) = [] [#,a; f]* is a function from G to H;
ae@

(3). f=f-Feq.

Since
Tz, @ f] = 7(f(@) " f(@) " f(za) = 7(f(za)n(f@) Hn(f(@) ") = 7o f(za)mo f(a) 'wo f(z) ' =zaa 'z ' =1,

then [Z,a; f] € Ker(r) = H. Note that H is an Abelian group, we obtain [] [%,a; f]* € H and it follows that F is a
G

€
function from G to H. By [1,a; f] = f(1)"'f(a)~'f(a) = 1, it implies that F(1) =1 and f(1) = f(1)F(1) = 1. Since

mo f(@) =n(f(2) = n(f(@)F(@) =n(f@) [[ 7.0 f1*) =70 [] [7,8 /' 0 f(@) =1 70 f(7) = 7.

acG acG
Hence f e .

Claim 4. With the notation above, then f is a anti-homomorphism from G to G.

Let @,b,Z € G, By Lemma 2.10, we have equation

By Lemma 2.6, we get [Zb, @; f]* = [, b; f] *([b, a; f]k)ﬂi) [Z,ba; f]*. Note that H is abelian, then

[@b,a; 1" = [[ 607" ] (&a " ] = ba; 11" (2)

acG cG acG acG

l

By Claim 2, it follows that [Z,0; f]7F =
acG

Z,b; f]7F™ = [z,b; f]7'. Thus the equation (2) becomes equation

From (1) and (3), we get

) @)@ 5 ] @) T F) f(@)F () = f(@)F () = f(@).

s,
<
—~
8
N
Il
o
—~
>

By Lemma 2.4, f is a anti-homomorphism from G to G.

Claim 5. With the notation above, then Im(f) is complement to H in G.

Let z € G. Since n(z) = zH =z € G, then f(n(z)) = f(Z) = a € Im(f). We also have zH = & = n(f(z)) = n(a) = aH,
thus there exists h € H such that z = ah, which implies that G C I'm(f)H, Hence Im(f)H = G.

Next we need to show that I'm(f)(VH = 1. For any = € Im(f)( H, since & € Im(f), then there exists a € G such that
f(@) = =, and we have n(z) = zH = H, so a = «(f(a)) = n(x) = H. Note that f € Q is a anti-homomorphism, which
implies = f(a) = f(H) = 1. Therefore I'm(f) is a complement to H in G.

Claim 6. Let fi,f2 € Q, and Z,a € G. Write h(Z) = f1(Z) "' f2(Z), L(Z) = 7[i,é;h]k, h = h - L, where the integer k is
the same as Claim 2, then h is trivial anti-homomorphism from G to H. e

Since w(h(Z)) = 7(f1(Z) * f2(Z)) = wo fo(T)wo f1(z) "' = ZZ~* = 1, then h(z) € Ker(r) = H, it follows that h is a function

from G to H, which imply

n([Z,a; h])) = 7(h(Z) " h(@) ' h(za)) = n(h(za))r(h@) )r(h(Z)"") = zaa 'z~ " =1,
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so [z,a;h] € H. Since H is an abelian group, then [] [z,a; h)* € H, it follows that L is a function from G to H. Next the
proof is the same as Claim 4, we deduce that h = héeLG is a anti-homomorphism from G to H. By the fundamental theorem
of anti-homomorphism, this is Definition 2.3, it follows that G/ Ker(h) = I'm(h) implies that |Im(h)|||G|; Furthermore, note
that Im(h) is the subgroup of H. we conclude that |[Im(h)|||H|. Now (|H|,|G|) = 1 implies that [Im(h)| = 1. Hence h is
the trivial anti-homomorphism.

Claim 7. With the notation above, then there exists p€ G such that fo(Z) = p~ ' f1(Z2)h(Z)p = (f1(Z))", for any 7 € G.
Let X, A € G, by Claim 6, we have f2(Z) = f1(Z)h(Z), so [T, a; f2] = [Z,a; f1h]. By Lemma 2.7, we get

[.a f2] = (h(@) ™) @)z, a; fillz, a; b,
where the integer k is the same as Claim 2, and note that H is abelian , then
[z, f2)* = (h(@) )" On(@)*[z,a; A1) [z, 3 k)",

thus
[[z @£ =n@ (] r@ 0@ [ r@" [T a0 ]] a0
acG acG acG acG acG
Furthermore, we have [] [Z,a; f2]* = [f1(Z), [T h(a)"] (%, a; f1]* [%,a; h)* and write p = [] h(a)* implying u € G,

acG acG acG acG acG
then F»(z) = [f1(Z), u]F1(Z)L(Z), thus we obtain

f2(2) = (@) Fa(2) = fi(@h(@) /1(2) " 07" fi(@)pF (2) L(2).

Since h is trivial anti-homomorphism from G to H, hence f2(z) = p~ ' f1(2)h(Z)p = (f1(2))".

Claim 8. Let K7 and K2 are any two complements of H in G, then there exits f1,f2 € Q such that K1 = Im(fl) and
K> = Im(f2).

In fact, G/H =2 K, < G, ie., G2 K. Let fi : G — K, (gH ~ k1), where g = kih, ki € K1, h € H, it is obvious that
fi : G — K, is an anti-isomorphism, it follows that fi(1) = 1. For any g € G, let § = gH, then we have 7(f1(3)) =
7r(f1 (gH)) = ©(k1) = k1H = kithH = gH = g, hence f1 € Q. Note that f, is an anti-isomorphism and by Claim 5, we
obtain that Im(f1) = K1. Similarly, Im(f2) = Ko. By Claim 7, then there exists u€ G such that fo(z) = (f1(z))*, for any

z € G. So K> = K!. This completes the proof of Theorem 3.1. O
Corollary 3.2. Let H be a normal subgroup of G such that (|H/H'|,|G/H|) =1, then
(1). There is a relative complement of H over H';

. ny two retatrve complements o over are conjugate.
2). Any two relati lements of H H ugat
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