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Abstract: The concept of radio labeling motivated by the channel assignment problem is generalised herein to include various other
types of radio labelings. Let M be a subset of non-negative integers and (M, ?) be a monoid with the identity e. We

define a radio ?-labeling of graph G(V,E) as a mapping f : V → M such that |f(u)− f(v)| ? d(u, v) ≥ diam(G) + 1− e,

for all u, v ∈ V . The radio ?-number rn?(f) of a radio ?-labeling f of G is the maximum label assigned to a vertex of
G. The radio ?-number of G denoted by rn?(G) is min{rn?(f)} taken over all radio ?-labeling f of G. In this paper we

completely determine rn×(G) of some transformation graphs of path and cycle.
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1. Introduction

All the graphs considered here are finite, simple, nontrivial, connected, and undirected. Let G(V,E) be a graph on n

vertices. The distance between any two vertices u, v ∈ V in the graph G, denoted by dG(u, v) or simply d(u, v), is the

length of a shortest path between u and v. The eccentricity of a vertex v ∈ V , denoted by e(v), is defined as e(v) =

max{dG(v, u) : u ∈ V }. The radius and diameter of G are defined respectively as rad(G) = min{e(v) : v ∈ V } and

diam(G) = max{e(v) : v ∈ V }. For the terms not defined here we refer to [4, 6]. The main purpose of this paper is to

introduce Radio ?-number and compute a particular type this new invariant for some classes of transformation graphs.

Let M be a subset of the set of non-negative integers and (M, ?) be a monoid with the identity e. We define a radio ?-labeling

of G as a mapping f : V → M/{0} such that |f(u)−f(v)|? d(u, v) ≥ diam(G)+1−e, for all u, v ∈ V . The radio ?-number of

a radio ?-labeling f , denoted by rn?(f), is the maximum label assigned to a vertex of G. The radio ?-number of G denoted

by rn?(G) is min{rn?(f)} taken over all radio ?-labeling f of G for all possible monoids M under the binary operation ?.

It is easy to see that when the binary operation ? is the usual addition, then the radio ?-labeling coincides with the radio

labeling introduced by W. K. Hale et.al in [7], and studied by others in [1–3, 8–10, 12–15, 18]. For the similar work we refer

to [11] and for entire survey work on radio labeling we refer [5]. The term radio graceful was introduced by Sooryanarayana

and Raghunath in [14]. A graph is said to be radio graceful if it has a radio labeling with radionumber of G, rn(G) = |V |.

Sooryanarayana and Ramya in [16, 17], characterized radio graceful graphs interms of its order and diameter. Throughout

this chapter, we consider the binary operation ? as usual multiplication × and call radio ×-labeling as radio multiplicative

∗ E-mail: ramya357@gmail.com

127

http://ijmaa.in/


Radio Multiplicative Number of Certain Classes of Transformation Graphs

labeling or in short rm-labeling. A graph G is said to be radio multiplicative graceful or in short rm-graceful if it has a radio

multiplicative labeling with rn×(G) = |V |. It is easy to see that the span of an rm-labeling f of a graph G is minimum

if the label starts with the integer 1, that is 1 ∈ M and f(v) = 1 for some v ∈ V . Further for any rm-labeling f of G if

two vertices u and v are adjacent in a graph G, then |f(u) − f(v)| ≥ diam(G), also |f(u) − f(v)| = 1 only if u and v are

diametrically opposite vertices. As a consequence of this, we have the following theorems:

Theorem 1.1. For any graph G, if diam(G) = 1, then rn×(G) = rn+(G) = rn(G).

Proof. When diam(G) = 1, the graph is a complete graph. For the complete graph, d(u, v) = 1 for every pair u, v ∈ V ,

so |f(u)− f(v)|+ d(u, v) ≥ diam(G) + 1⇔ |f(u)− f(v)| ≥ diam(G)⇔ |f(u)− f(v)| × d(u, v) ≥ diam(G).

From the above theorem, for any positive integer n, we get rn×(Kn) = n.

Remark 1.2. From the definition of an rm-labeling it is clear that every rm-labeling is one-one and hence for every

rm-labeling f of a graph G it follows that rn×(G) ≥ |V |.

2. Transformation Graphs and Radio Multiplicative Number

For each triplet abc, where a, b, c ∈ {+,−} and a graph G, the transformation graph of G, denoted by Gabc, is the graph on

V ∪ E such that two vertices u, v are adjacent in Gabc if and only if one of the following hold:

(1) a = + and, u and v are adjacent vertices in G.

(2) b = + and, u and v are adjacent edges in G.

(3) c = + and, u and v are incident pair in G.

(4) a = − and, u and v are non adjacent vertices in G.

(5) b = − and, u and v are non adjacent edges in G.

(6) c = − and, u and v are non incident pair in G.

Observation 2.1. For any positive integer n,

(1) diam(P+−+
n ) =

 n− 1, if n ∈ {2, 3}

3, if n ≥ 4

(2) diam(P−++
n ) =

 2, if 2 ≤ n ≤ 4

3, if n ≥ 5

(3) diam(P+−−
n ) =

 4, if n = 3

2, if n ≥ 4

(4) diam(P++−
n ) = diam(P−−+

n ) = 2

(5) diam(P−+−
n ) = diam(P−−−n ) =

 3, if n = 4

2, if n ≥ 5

(6) diam(C+−+
n ) = diam(C−++

n ) =

 2, if n = 3, 4, 5

3, if n ≥ 6
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(7) diam(C++−
n ) = diam(C−−−n ) = 2

(8) diam(C+−−
n ) = diam(C−−+

n ) = diam(C−+−
n ) =

 3, if n = 3

2, if n ≥ 4

In the next sections of this paper, we prove the following theorems which computes the actual minimum span of an rm-

labeling for each transformation graphs of a path and a cycle. In all the following theorems, the stated are the only possible

values of n ∈ Z+ and the graph is disconnected or trivial otherwise.

Theorem 2.2. rn×(P+−+
n ) =



3n− 3, if n ∈ {2, 3}

3n, if n ∈ {4, 5}

3n− 1, if n = 6

3n− 2, if n ≥ 7

Theorem 2.3. rn×(P−++
n ) =



4, if n = 2

2n− 1, if n ∈ {3, 4}

3n+ 1, if n ∈ {5, 6}

3n, if n = 7

3n− 1, if n ≥ 8

Theorem 2.4. rn×(P++−
n ) = 2n− 1 if n ≥ 3.

Theorem 2.5. rn×(P+−−
n ) =

 9, if n = 3

2n− 1, if n ≥ 4

Theorem 2.6. rn×(P−−+
n ) =

 4, if n = 2

2n− 1, if n ≥ 3

Theorem 2.7. rn×(P−+−
n ) =

 12, if n = 4

2n− 1, if n ≥ 5

Theorem 2.8. rn×(P−−−n ) =

 12, if n = 4

2n− 1, if n ≥ 5

Theorem 2.9. rn×(C+−+
n ) = rn×(C−++

n ) =



7, if n = 3

2n, if n ∈ {4, 5}

3n+ 2, if n = 6

3n+ 3, if n = 7

3n, if n ≥ 8

Theorem 2.10. rn×(C++−
n ) = 2n if n ≥ 3.

Theorem 2.11. rn×(C+−−
n ) = rn×(C−+−

n ) =

 10, if n = 3

2n, if n ≥ 4

Theorem 2.12. rn×(C−−+
n ) =

 8, if n = 3

2n, if n ≥ 4

Theorem 2.13. rn×(C−−−n ) = 2n if n ≥ 4.
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The proof of these theorems follows by the results in next four sections. First two sections prove results of transformation

graphs of path and next two sections prove results of transformation graphs of cycle.

Throughout first two sections, we label the vertices of P xyz
n as υ0, υ1, . . . , υi, . . . , υn−1 for those in V (Pn) in order and

e0, e1, e2, . . . , en−2 for those are the edges of the corresponding path such that ej = υjυj+1 for each j, 0 ≤ j ≤ n− 2.

3. Lower Bounds of P xyz
n

In this section, let us first obtain a lower-bound for spanf , for any rm-labeling f . Throughout this section, let G = P xyz
n , f

be an rm-labeling of G and ω1, ω2, . . . , ω2n−1 be an rearrangement of the elements in V (G) such that f(ωi) < f(ωi+1) for

each i, 1 ≤ i ≤ 2n− 2 with f(ω1) = 1.

3.1. For xyz = +−+

Remark 3.1. dG(α, α
′
) = 3, for any α, α

′
∈ V (P+−+

n ) if, and only if,

(1) α, α
′
∈ V (Pn).

(2) dPn(α, α
′
) ≥ 3.

Lemma 3.2. For any positive integer n > 1,

rn×(P+−+
n ) ≥



3n− 3, if n ∈ {2, 3}

3n, if n ∈ {4, 5}

3n− 1, if n = 6

3n− 2, if n ≥ 7

Proof. Let G = P+−+
n . We now prove the lemma in different possibilities as follows.

Case 1: n = 2

In this case, G ∼= K3 and hence rn×(G) = rn(K3) = 3 = 3n− 3 (by Theorem 1.1).

Case 2: n = 3

In this case, the vertex υ1 of Pn is adjacent to every other vertex α in G and hence |f(α) − f(υ1)| ≥ 2 for all α ∈ G.

Therefore, f should leave at least one integer before or after labeling υ1 and hence rn×(G) ≥ |V (G)|+ 1 = 6 = 3n− 3.

Case 3: n = 4, 5, 6

Let SL = {υi : 0 ≤ i ≤ n − 4} and SR = {υj : 3 ≤ j ≤ n − 1}. Then dG(x, y) ≤ 2 < diam(G), for all x, y ∈ SL as

well as in SR and hence, by Remark 3.1, each diametric path of G contains one end in SL and other in SR. Thus, for the

Case n = 4, we have |SL| = |SR| = 1 and hence f(ωi+1) − f(ωi) > 1 for every i except possible for at most one i. Hence

rn×(G) = f(ω7) =
5∑

i=0

[f(ω7−i)− f(ω7−i−1)] + f(ω1) ≥ [5(2) + 1(1)] + 1 = 12 = 3n.

For the case n = 5, if possible, let f(ωi) = a, f(ωi+1) = a + 1, and f(ωi+2) = a + 2 for some i ∈ Nn−2. Then, by the

way of construction of the sets SL and SR, the set {ωi, ωi+2} is exactly one of the sets SL and SR, and ωi+1 is not in

this set. Without loosing the generality, we take {ωi, ωi+2} = SL. But then, |f(ωi) − f(ωi+2)| = 2 and dG(ωi, ωi+2) = 1.

Hence |f(ωi) − f(ωi+2)| × dG(ωi, ωi+2) = 2 6≥ 3 = diam(G), a contradiction. Thus, when n = 5, f(ωi+1) − f(ωi) > 1 for

every i except possible for at most one i and one j with |j − i| ≥ 2 (since |SL| = |SR| = 2). Hence rn×(G) = f(ω9) =
7∑

i=0

[f(ω9−i)− f(ω9−i−1)] + f(ω1) ≥ [6(2) + 2(1)] + 1 = 15 = 3n.

We now consider the Case n = 6. Suppose that f(ωi+j) = a + j, for some i ∈ N7 and every j ∈ N4. Then, by Remark 3.1

and the construction of the sets SL and SR, the only possibility is i = 1 (or symmetrically i+ 4 = 6), so SL = {ω1, ω3, ω5}

130



Ramya and B. Sooryanarayana

(or symmetrically SR = {ω2, ω4, ω6}). But then, |f(ω1)− f(ω3)| × dG(ω1, ω3) ≥ 3⇒ 2× dG(ω1, ω3) ≥ 3⇒ dG(ω1, ω3) ≥ 2.

Similarly, dG(ω3, ω5) ≥ 2, a contradiction, since SL contains only one non-adjacent pair namely υ0, υ2. Thus, every rm-

labeling f of G can assign at most 4 consecutive integers for four (3 pairs of) vertices (2 in SL and 2 in SR) of G and

two consecutive integers for the remaining two vertices (1 pair) one each in SL and SR. Hence rn×(G) = f(ω11) =
9∑

i=0

[f(ω11−i)− f(ω11−i−1)] + f(ω1) ≥ [6(2) + (3 + 1)(1)] + 1 = 17 = 3n− 1.

Case 4: n ≥ 7

To label these n vertices of G that corresponds to n vertices of Pn, f requires at least n integers. To label an edge of Pn in G

after or before label a vertex or an edge of Pn in G, f should leave at least one integer (since dG(ei, ej) ≤ 2 and dG(ei, υj) ≤ 2,

for all i, j and diam(G) = 3 > 2). Thus, all together f requires n integers for n elements in V (Pn) in G and 2(n−1) integers

for (n − 1) elements in E(Pn) in G. Hence, span f ≥ n + 2(n − 1) = 3n − 2 ⇒ rn×(G) = min{rn×(f)} ≥ 3n − 2. Hence

the lemma.

3.2. For xyz = −++

Remark 3.3. dG(α, α
′
) = 3 for any α, α

′
∈ V (P−++

n ) if, and only if,

(1). dL(Pn)(α, α
′
) ≥ 3, where L(Pn) is the line graph of Pn.

(2). α, α
′
∈ E(Pn)

Lemma 3.4. For any positive integer n > 1,

rn×(P−++
n ) ≥



4, if n = 2

2n− 1, if n ∈ {3, 4}

3n+ 1, if n ∈ {5, 6}

3n, if n = 7

3n− 1, if n ≥ 8

Proof. Proof in various cases is as below.

Case 1: 2 ≤ n ≤ 4

In this case, when n = 2, e0α ∈ E(G) for every α ∈ V (G) and α 6= e0. Hence, f should leave atleast one integer before or

after labeling e0. Hence rn?(G) ≥ |V |+ 1 = 4. For n = 3, 4, rn×(G) = rn(G) ≥ |V (G)| = 2n− 1 (by Remark 1.2).

Case 2: n = 5, 6, 7

Let SL = {ei : 0 ≤ i ≤ n− 5} and SR = {ej : 3 ≤ j ≤ n− 2}. Then dG(ei, ej) ≤ 2 < diam(G), whenever ei, ej ∈ SL as well

as in SR and hence, by Remark 3.3, each diametric path contains one end in SL and other in SR. Now, akin to the Case 3

of Lemma 3.2, with n − 1 edges instead of n vertices of Pn, we see that for n = 5, f(ωi+1) − f(ωi) > 1 for every i except

possible for at most one i. Hence rn×(G) = f(ω9) =
7∑

i=0

[f(ω9−i) − f(ω9−i−1)] + f(ω1) ≥ [7(2) + 1(1)] + 1 = 16 = 3n + 1.

For the Case n = 6, f(ωi+1) − f(ωi) > 1 for every i except possible for at most one i and one j with |j − i| ≥ 3. Hence

rn×(G) = f(ω11) =
9∑

i=0

[f(ω11−i)− f(ω11−i−1)] + f(ω1) ≥ [8(2) + 2(1)] + 1 = 19 = 3n+ 1.

Lastly when n = 7, every rm- labeling f of G can assign at most 4 consecutive integers for four (3 pairs of) vertices (2 in

SL and 2 in SR) of G and two consecutive integers for the remaining two vertices (1 pair) one each in SL and SR. Hence

rn×(G) = f(ω13) =
11∑
i=0

[f(ω13−i)− f(ω13−i−1)] + f(ω1) ≥ [8(2) + (3 + 1)(1)] + 1 = 21 = 3n.

Case 3: n ≥ 8

Since there are n− 1 vertices in G corresponding to n− 1 edges of Pn, to label these (n− 1) edges of G, f requires atleast

(n − 1) integers. To label an vertex of Pn in G after or before label an edge or a vertex of Pn in G, f should leave atleast
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one integer (since dG(υi, υj) ≤ 2 and dG(ei, υj) ≤ 2, for all i, j and diam(G) = 3 > 2). Thus, all together f requires (n− 1)

integers for (n−1) elements of E(Pn) in G and 2n integers for n elements of V (Pn) in G. Hence, spanf ≥ (n−1)+2n = 3n−1

⇒ rn×(G) = min{rn×(f)} ≥ 3n− 1. Hence the lemma.

3.3. For xyz = ++−

Lemma 3.5. For any positive integer n > 2, rn×(P++−
n ) ≥ 2n− 1.

Proof. Follows immediately by Remark 1.2.

3.4. For xyz = +−−

Lemma 3.6. For any positive integer n > 2,

rn×(P+−−
n ) ≥

 9, if n = 3

2n− 1, if n ≥ 4

Proof. We first consider the case n = 3, In this case G ∼= P5, so G has exactly one diametric path and hence f(ωi+1) −

f(ωi) = 1 possible only for at most one i. This yields, rn×(f) = f(ω5) =
4∑

i=1

[f(ωi+1) − f(ωi)] ≥ [1 + 2(3)] + 1 = 8. We

now show that the strict inequality holds. If possible, suppose f(ω5) = 8 for some f . Then certainly
4∑

i=1

[f(ωi+1)− f(ωi)] ≥
4∑

i=1

diam(G)
dG(ωi,ωi+1)

⇒ f(ω5) − f(ω1) ≥ diam(G)

(
4∑

i=1

1
dG(ωi,ωi+1)

)
⇒ 8 − 1 ≥ 4(

4∑
i=1

1
dG(ωi,ωi+1)

) ⇒
4∑

i=1

1
dG(ωi,ωi+1)

≤ 7
4

and

f(ωi+1)− f(ωi) = 1 for exactly one i. But then,

Case 1: i = 1.

In this case, ordering of the arrangement (ω1, ω2, ω3, ω4, ω5) is isomorphic to one of the four possibilities (υ0, υ4, υ1, υ3, υ2)

or (υ0, υ4, υ1, υ2, υ3) or (υ0, υ4, υ2, υ3, υ1) or (υ0, υ4, υ3, υ1, υ2). In all the above possibilities it is easy to see that
4∑

i=1

1
dG(ωi,ωi+1)

> 7
4
, a contradiction.

Case 2: i = 2.

In this case, arrangement (ω1, ω2, ω3, ω4, ω5) is isomorphic to (υ2, υ0, υ4, υ1, υ3) or (υ2, υ0, υ4, υ3, υ1) or

(υ1, υ0, υ4, υ2, υ3) or (υ1, υ0, υ4, υ3, υ2) or (υ3, υ0, υ4, υ2, υ1) or (υ3, υ0, υ4, υ1, υ2). Out of all these pat-

tern except the first, we again get
4∑

i=1

1
dG(ωi,ωi+1)

> 7
4
, a contradiction and for the first f(ω1) = 1, f(ω3) − f(ω2) = 1,

f(ω4)− f(ω3) = 1, f(ω5)− f(ω4) = 1 and, f(ω5) = 8 ⇒ f(ω4) = 6, f(ω3) = 4, f(ω2) = 3. So f(ω4)− f(ω2)× dG(ω4, ω2) =

(6− 3)× dG(υ1, υ2) = (6− 3)× 1 = 3 < diam(G), a contradiction (∵ f is an rm-labeling).

Similarly the cases i = 3, 4 follow by symmetry. Thus we conclude rn×(f) ≥ 9. Finally for n ≥ 4, the result follows

immediately by Remark 1.2.

3.5. For xyz = −−+

Lemma 3.7. For any positive integer n > 1,

rn×(P−−+
n ) ≥

 4, if n = 2

2n− 1, if n ≥ 3

Proof. For n ≥ 3, result follows immediately by Remark 1.2. When n = 2, the vertex e0 is adjacent to every α ∈ V (G)

and hence |f(α) − f(e0)| ≥ 2. Therefore, we should leave at least one integer before or after labeling e0 then, rn×(G) ≥

|V (G)|+ 1 = 4.
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3.6. For xyz = −+−

Lemma 3.8. For any positive integer n > 3,

rn×(P−+−
n ) ≥

 12, if n = 4

2n− 1, otherwise

Proof. For n ≥ 5, result follows immediately by Remark 1.2. Now when n = 4, only υ1 and υ2 are diametrically

opposite. So for at most one i, dG(ωi, ωi+1) = diam(G), and hence f(ωi+1) − f(ωi) ≥ 2 except for one i, 1 < i < 6. So,

rn×(G) = f(ω7) =
5∑

i=0

[f(ω7−i)− f(ω7−i−1)] + f(ω1) ≥ [5(2) + 1(1)] + 1 = 12. Hence the lemma.

3.7. For xyz = −−−

Lemma 3.9. For any positive integer n > 3,

rn×(P−−−n ) ≥

 12, if n = 4

2n− 1, otherwise

Proof. Similar to that of Lemma 3.8.

4. Upper Bound and an Optimal rm-labeling of P xyz
n

Here, we actually show the lower limit, established in the earlier sections for each of the transformation graphs G = P xyz
n ,

is tight by executing a minimal rm-labeling.

4.1. For xyz = +−+

Lemma 4.1. For any positive integer n > 1,

rn×(P+−+
n ) ≤



3n− 3, if n ∈ {2, 3}

3n, if n ∈ {4, 5}

3n− 1, if n = 6

3n− 2, if n ≥ 7

Proof. The result follows by the rm-labeling shown in Figure 1 for each n ≤ 7. When n ≥ 8, for l, k ∈ Z+; 0 ≤ l ≤ 2,
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Figure 1. A rm-labeling of P+−+
n for n = 2 to 7.
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0 ≤ k ≤ dn
3
e − 1, define f : V → Z+ as;

f(υ3k+l) =

 k + dn
3
el if l = 2 and n ≡ 1 (mod 3)

k + dn
3
el + 1 otherwise

f(ei) = (n+ 2) + 2i, for i = 0, 1, . . . , n− 2.

Since diam(G) = 3, to show f is an rm-labeling it is enough to take the elements in V (P+−+
n ) that are atmost distance two

apart.

Let α and α
′

be any two vertices at a distance 2 apart in G.

Case 1: α ∈ V (Pn) and α
′
∈ V (Pn).

Let α = υi and α
′

= υj . where i < j and i, j ∈ Zn.

Subcase 1: i = 3k, j = 3k + 1

In this case, f(α) = f(υ3k) = k + 1 and f(α
′
) = f(υ3k+1) = k + dn

3
e+ 1.

∴ |f(α)− f(α
′
)| × dG(α, α

′
) = dn

3
e × 1 ≥ 3.

Subcase 2: i = 3k + 1, j = 3k + 2

In this case, f(α) = k + dn
3
e+ 1 and f(α

′
) =

 k + 2dn
3
e if n ≡ 1 (mod 3)

k + 2dn
3
e+ 1 otherwise

∴ |f(α)− f(α
′
)| × dG(α, α

′
) =

 d
n
3
e − 1 ≥ 3 if n ≡ 1 (mod 3)

dn
3
e ≥ 3 otherwise

Subcase 3: i = 3k + 2, j = 3k + 3 = 3(k + 1)

In this case, f(α) =

 k + 2dn
3
e if n ≡ 1 (mod 3)

k + 2dn
3
e+ 1 otherwise

and f(α
′
) = (k + 1) + 1.

∴ |f(α)− f(α
′
)| × dG(α, α

′
) =

 2dn
3
e − 2 ≥ 3 if n ≡ 1 (mod 3)

2dn
3
e − 1 ≥ 3 otherwise

Subcase 4: i = 3k, j = 3k + 2

In this case, f(α) = (k + 1) and f(α
′
) =

 k + 2dn
3
e if n ≡ 1 (mod 3)

k + 2dn
3
e+ 1 otherwise

∴ |f(α)− f(α
′
)| × dG(α, α

′
) =

 4dn
3
e − 2 ≥ 3 if n ≡ 1 (mod 3)

4dn
3
e ≥ 3 otherwise

Subcase 5: i = 3k + 1, j = 3k + 3 = 3(k + 1)

In this case, f(α) = k + dn
3
e+ 1; f(α

′
) = (k + 1) + 1.

∴ |f(α)− f(α
′
)| × dG(α, α

′
) = (dn

3
e − 1)× 2 ≥ 3.

Subcase 6: i = 3k + 2, j = 3k + 4 = 3(k + 1) + 1

In this case, f(α) =

 k + 2dn
3
e if n ≡ 1 (mod 3)

k + 2dn
3
e+ 1 otherwise

and f(α
′
) = (k + 1) + dn

3
e+ 1.

∴ |f(α)− f(α
′
)| × dG(α, α

′
) =

 (dn
3
e − 2)× 2 ≥ 3 if n ≡ 1 (mod 3)

(dn
3
e − 1)× 2 ≥ 3 otherwise
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Case 2: α ∈ E(Pn) and α
′
∈ E(Pn)

Let α = ei and α
′

= ej with i < j and i, j ∈ Zn−1. Then |f(α) − f(α
′
)| = |f(ei) − f(ej)| = 2(j − i) is equal

to 2 if dG(α, α
′
) = 2 (i.e j = i + 1) and, at least 4 if dG(α, α

′
) = 1 (i.e j > i + 1). In each of these cases

|f(α)− f(α
′
)| × dG(α, α

′
) ≥ 4 > diam(G).

Case 3: α ∈ V (Pn) and α
′
∈ E(Pn)

Let α = υ3k+l with 0 ≤ l ≤ 2, 0 ≤ k ≤ dn
3
e − 1 and α

′
= ej for i, j ∈ Zn−1, i 6= j.

Subcase 1: j = (3k + l)− 1.

In this case, dG(α, α
′
) = 1, Therefore

|f(α)− f(α
′
)| × dG(α, α

′
) = f(e(3k+l)−1)− f(υ3k+l)

=

 (n+ 2) + (6k + 2l − 2)− k − dn
3
e × l if n ≡ 1 (mod 3) and l = 2

(n+ 2) + (6k + 2l − 2)− k − dn
3
e × l − 1 otherwise

≥ n

3
+ 5k + 2 ≥ 8

3
+ 2 > 3, for all l, 0 ≤ l ≤ 2

Subcase 2: j = (3k + l)

In this case, dG(α, α
′
) = 1 and |f(α)−f(α

′
)|×dG(α, α

′
) = f(e3k+l)−f(υ3k+l) = (n+2)+2(3k+l)−f(υ3k+l) =

(n+ 2) + (6k + 2l − 2)− f(υ3k+l) + 2 = f(e(3k+l)−1)− f(υ3k+l) + 2 > 3 + 2 > 3 (by Subcase1 of Case 3)

Subcase 3: j /∈ {(3k + l)− 1, (3k + l)}.

In this case, dG(α, α
′
) = 2 and hence it suffices to show |f(α)−f(α

′
)| > 1. In fact |f(α)−f(α

′
)| = f(α

′
)−f(α) =

(n+ 2) + 2j − f(α) ≥ n+ 2 + 2j − n = 2(j + 1) > 1

Thus, from all the above subcases, f is an rm-labeling and spanf = 3n−2. Therefore rn×(P+−+
n ) ≤ 3n−2 for all n ≥ 8.

4.2. For xyz = −++

Lemma 4.2. For any positive integer n > 1,

rn×(P−++
n ) ≤



4, if n = 2

2n− 1, if n ∈ {3, 4}

3n+ 1, if n ∈ {5, 6}

3n, if n = 7

3n− 1, if n ≥ 8

Proof. Let G = P−++
n . For n ≤ 8, result follows by the rm-labeling showed in Figure 2.
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Figure 2. A rm-labeling of P−++
n with n ≤ 8.

When n ≥ 9, for each integer l, k; 0 ≤ l ≤ 2, 0 ≤ k ≤ dn−1
3
e − 1, define a function f : V → Z+ by

f(e3k+l) =

 k + dn−1
3
el if n ≡ 1 (mod 3) and l = 2

k + dn−1
3
el + 1 otherwise

f(υi) = (n+ 1) + 2i,with Zn.

Since diam(G) = 3, now to show f is an rm-labeling it is enough take the vertices α and α
′

that are at most distance two

apart.

Case 1: α ∈ V (Pn) and α
′
∈ V (Pn)

Let α = υi and α
′

= υj with i, j ∈ Zn, i < j. Then |f(α) − f(α
′
)| = |f(υi) − f(υj)| = 2(j − i) is equal to 2 if

dG(α, α
′
) = 2 (i.e j = i + 1) and, at least 4 if dG(α, α

′
) = 1 (i.e j > i + 1). In each of these cases |f(α) − f(α

′
)| ×

dG(α, α
′
) ≥ 4 > diam(G).

Case 2: α ∈ E(Pn) and α
′
∈ E(Pn).

Let α = ei and α
′

= ej , i < j and i, j ∈ Zn−1.

Subcase 1: i = 3k, j = 3k + 1.

In this case, f(α) = f(υ3k) = k + 1 and f(α
′
) = f(υ3k+1) = k + dn−1

3
e+ 1.

∴ |f(α)− f(α
′
)| × dG(α, α

′
) = dn−1

3
e × 1 ≥ 3.

Subcase 2: i = 3k + 1, j = 3k + 2.

In this case, f(α) = k + dn−1
3
e+ 1 and f(α

′
) =

 2dn−1
3
e+ k if n ≡ 2 (mod 3)

2dn−1
3
e+ k + 1 otherwise

∴ |f(α)− f(α
′
)| × dG(α, α

′
) =

 d
n−1
3
e − 1 ≥ 3 if n ≡ 2 (mod 3)

dn−1
3
e ≥ 3 otherwise

Subcase 3: i = 3k + 2, j = 3k + 3 = 3(k + 1)

In this case, f(α) =

 2dn−1
3
e+ k if n ≡ 2 (mod 3)

2dn−1
3
e+ k + 1 otherwise

and f(α
′
) = (k + 1) + 1.

∴ |f(α)− f(α
′
)| × dG(α, α

′
) =

 2dn−1
3
e − 2 ≥ 3 if n ≡ 2 (mod 3)

2dn−1
3
e − 1 ≥ 3 otherwise
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Subcase 4: i = 3k, j = 3k + 2

In this case, f(α) = k + 1 and f(α
′
) =

 2dn−1
3
e+ k if n ≡ 2 (mod 3)

2dn−1
3
e+ k + 1 otherwise

∴ |f(α)− f(α
′
)| × dG(α, α

′
) =

 4dn−1
3
e − 2 ≥ 3 if n ≡ 2 (mod 3)

4dn−1
3
e ≥ 3 otherwise

Subcase 5: i = 3k + 1, j = 3k + 3.

In this case, f(α) = k + dn−1
3
e+ 1 and f(α

′
) = (k + 1) + 1.

∴ |f(α)− f(α
′
)| × dG(α, α

′
) = (dn−1

3
e − 1)× 2 ≥ 3.

Subcase 6: i = 3k + 2, j = 3k + 4.

In this case, f(α) =

 2dn−1
3
e+ k if n ≡ 2 (mod 3)

2dn−1
3
e+ k + 1 otherwise

and f(α
′
) = (k + 1) + dn−1

3
e+ 1.

∴ |f(α)− f(α
′
)| × dG(α, α

′
) =

 2dn−1
3
e − 4 ≥ 3 if n ≡ 2 (mod 3)

2dn−1
3
e − 2 ≥ 3 otherwise

Case 3: α ∈ V (Pn) and α
′
∈ E(Pn)

Let α = υi with j > i and i, j ∈ Zn and α
′

= e3k+l with 0 ≤ l ≤ 2, 0 ≤ k ≤ dn−1
3
e − 1.

Subcase 1: j = (3k + l)

In this case, dG(α, α
′
) = 1, Therefore

|f(α)− f(α
′
)| × dG(α, α

′
)

= f(υ3k+l)− f(e3k+l)

=

 (n+ 1) + (6k + 2)− k − dn−1
3
e × l if l = 2 and n ≡ 2 (mod 3)

(n+ 1) + (6k + 2l)− k − dn−1
3
e × l − 1 otherwise

≥ n

3
+ 5k ≥ 9

3
≥ 3, for all l, 0 ≤ l ≤ 2.

Subcase 2: j = (3k + l + 1)

In this case, dG(α, α
′
) = 1. Therefore, |f(α)−f(α

′
)|×dG(α, α

′
) = f(υ3k+l)−f(e(3k+l)+1) = (n+1)+(6k+2l+

2)− f(e3k+l) = (n+ 1) + 2(3k+ l)− f(e3k+l) + 2 = f(υ3k+l)− f(e3k+l) + 2 ≥ 3 + 2 > 3 (by Subcase 1 of Case 3).

Subcase 3: j /∈ {(3k + l), (3k + l) + 1}

In this case, dG(α, α
′
) = 2 and hence it required to show |f(α) − f(α

′
)| > 1. In fact |f(α) − f(α

′
)| =

f(α)− f(α
′
) = (n + 1) + 2i− f(α) ≥ (n + 1) + 2i− (n− 1) = 2(i + 1) > 1.

Thus, from all the above subcases, f is an rm-labeling and spanf = 3n− 1.

Thus, rn×(G) is at the most 3n− 1 for every n ≥ 9.

4.3. For xyz = ++−

Lemma 4.3. For any positive integer n > 2, rn×(P++−
n ) ≤ 2n− 1.

Proof. Let f : V → Z+ defined by f(υi) = 2i + 1 for i ∈ Zn, and f(ei) = 2(i+ 1) for Zn−1. Since diam(G) = 2, now to

show f is an rm-labeling it is enough to consider the vertices that are adjacent. Let dG(α, α
′
) = 1. Then
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Case 1: α ∈ V (Pn) and α
′
∈ V (Pn).

Let α = υi and α
′

= υj with i, j ∈ Zn, i < j. Then |f(α) − f(α
′
)| = |f(υi) − f(υj)| = 2(j − i) is at least 2 if

dG(α, α
′
) = 1. In this case |f(α)− f(α

′
)| × dG(α, α

′
) ≥ 2.

Case 2: α ∈ E(Pn), α
′
∈ E(Pn).

Let α = ei and α
′

= ej with i, j ∈ Zn−1, i < j. Then |f(α) − f(α
′
)| = |f(ei) − f(ej)| = 2(j − i) is at least 2 if

dG(α, α
′
) = 1. In this case |f(α)− f(α

′
)| × dG(α, α

′
) ≥ 2.

Case 3: α ∈ V (Pn), α
′
∈ E(Pn).

Let α = υi with Zn and α
′

= ej with 0 ≤ j ≤ n− 2. Then |f(α)− f(α
′
)| = |f(υi)− f(ej)| = |2(i− j)− 1| is at least

3 if dG(α, α
′
) = 1 (i.e |i− j| ≥ 2). In this case |f(α)− f(α

′
)| × dG(α, α

′
) ≥ 3.

Thus, from all the above cases, f is an rm-labeling and spanf = 2n− 1.

Therefore rn×(G) ≤ 2n− 1.

4.4. For xyz = +−−

Lemma 4.4. For any positive integer n > 2,

rn×(P+−−
n ) ≤

 9, if n = 3

2n− 1, if n ≥ 4

Proof. For n = 3, result follows by the rm-labeling shown in Figure 3. For n ≥ 4, proof is same as in Lemma 4.3.
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Figure 3. A rm-labeling of P+−−
3

4.5. For xyz = −−+

Lemma 4.5. For any positive integer n > 1,

rn×(P−−+
n ) ≤

 4, if n = 2

2n− 1, otherwise

Proof. For n = 2, result follows by the rm-labeling shown in Figure 4.
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Figure 4. A rm-labeling of P−−+
2

For n ≥ 3, define a function f : V → Z+ by f(υi) = i + 1 for each i ∈ Zn.; f(ei) = (n + 1) + i for each i ∈ Zn−1. Since

diam(G) = 2, now to show f is an rm-labeling it is enough to check the cases when dG(α, α
′
) = 1.
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Case 1: α ∈ V (Pn), α
′
∈ V (Pn).

Let α = υi and α
′

= υj with i, j ∈ Zn, i < j. Then |f(α) − f(α
′
)| = |f(υi) − f(υj)| = (j − i) is at least 2 if

dG(α, α
′
) = 1 (i.e j ≥ i+ 2). In this case |f(α)− f(α

′
)| × dG(α, α

′
) ≥ 2.

Case 2: α ∈ E(Pn), α
′
∈ E(Pn)

Let α = ei and α
′

= ej with i, j ∈ Zn−1, i < j. Then |f(α) − f(α
′
)| = |f(ei) − f(ej)| = (j − i) is at least 2 if

dG(α, α
′
) = 1 (i.e j ≥ i+ 2). In this case |f(α)− f(α

′
)| × dG(α, α

′
) ≥ 2.

Case 3: α ∈ V (Pn) and α
′
∈ E(Pn)

Let α = υi for some i ∈ Zn and α
′

= ej for some j ∈ Zn−1.

Subcase 1: i = j.

In this case |f(α)− f(α
′
)| = |f(υi)− f(ej)| = |i− j − n| is at least 3 (since n ≥ 3).

∴ |f(α)− f(α
′
)| × dG(α, α

′
) ≥ 3.

Subcase 2: i = j + 1.

In this case |f(α)− f(α
′
)| = |f(υi)− f(ej)| = |i− j − n| is at least 2 (since n ≥ 3).

∴ |f(α)− f(α
′
)| × dG(α, α

′
) ≥ 2.

Thus, from all the above cases, f is an rm-labeling and spanf = 2n− 1.

Therefore rn×(G) ≤ 2n− 1, ∀ n ≥ 3.

4.6. For xyz = −+−

Lemma 4.6. For any positive integer n > 3,

rn×(P−+−
n ) ≤

 12, if n = 4

2n− 1, otherwise

Proof. For n = 4, result follows by the rm-labeling shown in Figure 5 and for n ≥ 5, proof is similar to Lemma 4.3.

 

 

 

 

  

 

 

 

 

�   ! 

�   ! " 

   03 

   

Figure 5. A rm-labeling of P−+−
4

4.7. For xyz = −−−

Lemma 4.7. For any positive integer n > 3,

rn×(P−−−n ) ≤

 12, if n = 4

2n− 1, otherwise

Proof. For n = 4, result follows by the rm-labeling shown in Figure 6 and for n ≥ 5, proof is same as Lemma 4.3.
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Figure 6. A rm-labeling of P−−−4

5. Lower Bounds of Cxyz
n

Here, we find a lower-bound for the span of its rm-labeling. Throughout this section, let G = Cxyz
n , f be an rm-labeling of

the graph G and ω1, ω2, . . . , ω2n be the rearrangement of the elements of V (G) such that f(ω1) = 1, f(ωi) < f(ωi+1) for all

i ∈ Z2n. We label the elements in V (Cxyz
n ) that are in V (Cn) as υ0, υ1, υ2, . . . , υn−1; those are in E(Cn) as e0, e1, e2, . . . , en−1,

with ej = υjυj+1(modn) for each j ∈ Zn.

5.1. For xyz = +−+ or xyz = −++

Now let xyz = +−+. The graph C+−+
n

∼= C−++
n and hence the proof follows immediately for the Case xyz = −+ +.

Lemma 5.1. For any positive integer n > 2,

rn×(C+−+
n ) ≥



7, if n = 3

2n, if n ∈ {4, 5}

3n+ 2, if n = 6

3n+ 3, if n = 7

3n, if n ≥ 8

Proof. We prove in case-wise as below.

Case 1: n = 3.

In this case for at least one i with 0 ≤ i ≤ 5, dG(ωi, ωi+1) < diam(G) (because, any vertex with degree four is

adjacent all other vertices except one and it is the only option to be diametrically opposite, so that to label with

consecutive integers we have to keep them as starting or ending vertex. But In this case we have three vertices with

degree four so at least one of them should be labeled in middle )and hence f(ωi+1)− f(ωi) ≥ 2 at least for one i then,

rn×(G) ≥ |V (G)|+ 1 = 6 + 1 = 7

Case 2: n = 4, 5.

Follows immediately by Remark 1.2.

Case 3: n = 6, 7.

If possible, let f assigns three consecutive integers for the vertices υi, υj and υk of G that corresponds to any three

vertices of Cn. But then dG(υi, υk) ≥ 2 (since |f(υi)−f(υk)| = 2). But, In this case for any such f we get dG(υi, υk) ≤ 1

(since diam(G) = diam(Cn) ), a contradiction. Hence if n = 6 or n = 7, f(ωi+1)−f(ωi) ≥ 2 for every i except possible

for at most three i. Then f(ω2n) =
2n−1∑
i=1

[f(ωi+1) − f(ωi)] + f(ω1) ≥ 1 × l(pairs) + 2 × (2n − 1 − l)(pairs) + f(ω1),

where l = 3 if n = 6, 7. This yields with f(ω1) = 1 that;

rn×(Cxyz
n ) = min{f(ω2n)} ≥

 1(3) + 2(8) + 1 = 20 = 3n+ 2, if n = 6

1(3) + 2(10) + 1 = 24 = 3n+ 3, if n = 7
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Case 4: n ≥ 8.

To label these n vertices of G that corresponds to n vertices of Cn, f requires at least n integers. To label an edge of

Cn in G after or before label a vertex or an edge of Cn in G, f should leave at least one integer (since dG(ei, ej) ≤ 2

and dG(ei, υj) ≤ 2, for all i, j and diam(G) = 3 > 2). Thus, all together f requires n integers for n vertices of Cn in

G and 2n integers for n edges of Cn in G. Hence, span f ≥ n+ 2n = 3n⇒ rn×(G) = min{rn×(f)} ≥ 3n.

Hence the lemma.

5.2. For xyz = ++−

Lemma 5.2. For any positive integer n > 2, rn×(C++−
n ) ≥ 2n.

Proof. Result follows immediately by Remark 1.2.

5.3. For xyz = +−− or xyz = −+−

Now let xyz = +−−. As C+−−
n

∼= C−+−
n the proof follows immeadiately for xyz = −+−.

Lemma 5.3. For any positive integer n > 2,

rn×(C+−−
n ) ≥

 10, if n = 3

2n, if n ≥ 4

Proof. When n = 3, let us relabel the elements in V (G) as ω1, ω2, ω3, ω4, ω5, ω6 so that f(ωi) < f(ωi+1) for each

i, 1 ≤ i ≤ 5. Now for at most two i, dG(ωi, ωi+1) = diam(G) (since only three vertices e0, e1, e2 are with eccentricity equal

to diameter), and hence |f(ωi+1) − f(ωi)| ≥ 2 except for two i, i ≤ 5 also for at least one i, i ≤ 5, dG(ωi, ωi+1) = 1 (since

here three vertices of Cn are mutually adjacent and to avoid successive labeling of these an edge must be labeled in between,

But to give three consecutive numbers, edges must be labeled continuously so one pair vertices of Cn labeled successively),

so |f(ωi+1) − f(ωi)| ≥ 3. Or to choose one pair with dG(ωi, ωi+1) = 3, (so |f(ωi+1) − f(ωi)| ≥ 1) and other all pairs with

dG(ωi, ωi+1) = 2, (so |f(ωi+1)− f(ωi)| ≥ 2). This yields with f(ω1) = 1 that;

rn×(Cxyz
n ) = min{f(ω6)} =

5∑
i=1

[f(ωi+1)− f(ωi)] + f(ω1)

≥

 2(1) + 2(2) + 1(3) + 1 = 10

1(1) + 4(2) + 1 = 10

In the second Case, when n ≥ 4, the result follows immediately by Remark 1.2.

5.4. For xyz = −−+

Lemma 5.4. For any positive integer n > 2,

rn×(C−−+
n ) ≥

 8, if n = 3

2n, otherwise

Proof. For n = 3, if possible, let f assigns three consecutive integers for the vertices υi, υj and υk of G. But then

dG(υi, υk) ≥ 2 (since |f(υi)− f(υk)| = 2). In this case for any such f we get dG(υi, υk) ≤ 1, a contradiction. Hence, there
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are exactly 3 pairs of vertices can be assigned by consecutive integers. Let us relabel the elements in V (G) as ω1, ω2, ω3, . . . , ω6

so that f(ωi) < f(ωi+1), ∀i ≤ 5. Then |f(ωi+1) − f(ωi)| ≥ 2 except for three i, i ≤ 5. This yields with f(ω1) = 1 that;

rn×(C−−+
n ) = min{f(ω6)} =

5∑
i=1

[f(ωi+1)− f(ωi)] + f(ω1) ≥ 3× 1 + 2× 2 + 1 = 8. The case n ≥ 2 follows immediately by

Remark 1.2.

5.5. For xyz = −−−

Lemma 5.5. For any positive integer n > 3, rn×(C−−−n ) ≥ 2n.

Proof. Result follows immediately by Remark 1.2.

6. Upper Bound and an Optimal rm-labeling of Cxyz
n .

Here, we actually show the lower limit, established in the previously, for each of the transformation graphs G = Cxyz
n , is

tight by executing a minimal rm-labeling.

6.1. For xyz = +−+ or xyz = −++

Now let xyz = +−+. As C+−+
n

∼= C−++
n proof follows immeadiately for xyz = −+ +.

Lemma 6.1. For any positive integer n > 2,

rn×(C+−+
n ) ≤



7, if n = 3

2n, if n ∈ {4, 5}

3n+ 2, if n = 6

3n+ 3, if n = 7

3n, if n ≥ 8

Proof. For n ≤ 7, result follows by the rm-labeling shown in Figure 7.
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Figure 7. An rm-labeling of C+−+
n with n ≤ 7.

When n ≥ 8, for each integer l, k; 0 ≤ l ≤ 2, 0 ≤ k ≤ dn
3
e − 1, define a function f : V → Z+ by

f(υ3k+l) =


dn
3
e(l + 1) + k if n ≡ 1 (mod 3) and l = 1

dn
3
e(l − 1) + k + 1 if n ≡ 1 (mod 3) and l = 2

dn
3
el + k + 1 otherwise
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f(ei) = (n+ 2) + 2i,with Zn.

Since diam(G) = 3, now to show f is a rm-labeling it is sufficient to take α, α
′
∈ V (G) with dG(α, α

′
) ≤ 2.

Case 1: α ∈ V (Cn) and α
′
∈ V (Cn).

Let α = υi and α
′

= υj with i < j and i, j ∈ Zn.

Subcase 1: i = 3k, j = 3k + 1

In this case, f(α) = k + 1 and f(α
′
) =

 2dn
3
e+ k if n ≡ 1 (mod 3)

dn
3
e+ k + 1 otherwise

∴ |f(α)− f(α
′
)| × dG(α, α

′
) =

 2dn
3
e − 1 ≥ 3 if n ≡ 1 (mod 3)

dn
3
e ≥ 3 otherwise

Subcase 2: i = 3k + 1, j = 3k + 2

In this case, f(α) =

 2dn
3
e+ k if n ≡ 1 (mod 3)

dn
3
e+ k + 1 otherwise

and f(α
′
) =

 k + dn
3
e+ 1 if n ≡ 1 (mod 3)

k + 2dn
3
e+ 1 otherwise

∴ |f(α)− f(α
′
)| × dG(α, α

′
) =

 d
n
3
e − 1 ≥ 3 if n ≡ 1 (mod 3)

dn
3
e ≥ 3 otherwise

Subcase 3: i = 3k + 2, j = 3k + 3 = 3(k + 1).

In this case, f(α) =

 k + dn
3
e+ 1 if n ≡ 1 (mod 3)

k + 2dn
3
e+ 1 otherwise

and f(α
′
) = (k + 1) + 1.

∴ |f(α)− f(α
′
)| × dG(α, α

′
) =

 d
n
3
e − 1 ≥ 3 if n ≡ 1 (mod 3)

2dn
3
e ≥ 3 otherwise

Subcase 4: i = 3k, j = 3k + 2.

In this case, f(α) = k + 1 and f(α
′
) =

 k + dn
3
e+ 1 if n ≡ 1 (mod 3)

k + 2dn
3
e+ 1 otherwise

∴ |f(α)− f(α
′
)| × dG(α, α

′
) =

 (dn
3
e)× 2 ≥ 3 if n ≡ 1 (mod 3)

(2dn
3
e)× 2 ≥ 3 otherwise

Subcase 5: i = 3k + 1, j = 3k + 3 = 3(k + 1).

In this case, f(α) =

 k + 2dn
3
e if n ≡ 1 (mod 3)

k + dn
3
e+ 1 otherwise

and f(α
′
) = (k + 1) + 1.

∴ |f(α)− f(α
′
)| × dG(α, α

′
) =

 (2dn
3
e − 2)× 2 ≥ 3 if n ≡ 1 (mod 3)

(dn
3
e − 1)× 2 ≥ 3 otherwise

Subcase 6: i = 3k + 2, j = 3k + 4 = 3(k + 1) + 1.

In this case, f(α) =

 k + dn
3
e+ 1 ≥ 3 if n ≡ 1 (mod 3)

k + 2dn
3
e+ 1 ≥ 3 otherwise

and f(α
′
) =

 (k + 1) + 2dn
3
e if n ≡ 1 (mod 3)

(k + 1) + dn
3
e+ 1 otherwise

So, |f(α)− f(α
′
)| × dG(α, α

′
) =

 (dn
3
e)× 2 ≥ 3 if n ≡ 1 (mod 3)

(dn
3
e − 1)× 2 ≥ 3 otherwise
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Subcase 7: i = 0, j = n− 1 = 3k + l

In this case, f(α) = 1 and f(α
′
) =


k + 1 if l = 0

k + dn
3
e+ 1 if l = 1

k + 2dn
3
e+ 1 if l = 2

∴ |f(α)− f(α
′
)| × dG(α, α

′
) =


k ≥ 3 if l = 0 (n ≥ 10)

k + dn
3
e ≥ 3 if l = 1 (n ≥ 8)

k + 2dn
3
e ≥ 3 if l = 2 (n ≥ 9)

Subcase 8: i = 0, j = n− 2 = 3k + l

In this case, f(α) = 1 and f(α
′
) =


k + 1 if l = 0

k + dn
3
e+ 1 if l = 1

k + dn
3
e+ 1 if l = 2

∴ |f(α)− f(α
′
)| × dG(α, α

′
) =


(k)× 2 ≥ 3 if l = 0 (n ≥ 8)

(k + dn
3
e)× 2 ≥ 3 if l = 1 (n ≥ 9)

(k + dn
3
e)× 2 ≥ 3 if l = 2 (n ≥ 10)

Subcase 9: i = 1, j = n− 1 = 3k + l

In this case, f(α) =

 2dn
3
e if n ≡ 1 (mod 3)

dn
3
e+ 1 otherwise

and f(α
′
) =


1 + k if l = 0

dn
3
e+ k + 1 if l = 1

2dn
3
e+ k + 1 if l = 2

∴ |f(α)− f(α
′
)| × dG(α, α

′
) =


|k + 1− 2dn

3
e| × 2 ≥ 3 if l = 0 (n ≥ 10)

(k)× 2 ≥ 3 if l = 1 (n ≥ 8)

(k + dn
3
e+ 1)× 2 ≥ 3 if l = 2 (n ≥ 9)

Case 2: α, α
′
∈ E(Cn)

Let α = ei and α
′

= ej with i, j ∈ Zn−1, i < j. Then |f(α) − f(α
′
)| = |f(ei) − f(ej)| = 2(j − i) is equal to 2 if

dG(α, α
′
) = 2 (i.e j = i + 1) and, at least 4 if dG(α, α

′
) = 1 (i.e j > i + 1). In each of these cases |f(α) − f(α

′
)| ×

dG(α, α
′
) ≥ 4 > diam(G).

Case 3: α ∈ V (Cn) and α
′
∈ E(Cn).

Let α = υ3k+l with 0 ≤ l ≤ 2, 0 ≤ k ≤ dn
3
e − 1 and α

′
= ej with j > i and i, j ∈ Zn.

Subcase 1: j = (3k + l)− 1

In this case, dG(α, α
′
) = 1, Therefore

a) when l = 1 and n ≡ 1 (mod 3)

|f(α) − f(α
′
)| + dG(α, α

′
) − 1 = f(e(3k+l)−1) − f(υ3k+l) = (n + 2) + 2(3k + l − 1) − k − dn

3
e × (l + 1) ≥

n+ 2− 2dn
3
e > 3 for all n ≥ 10

b) when l = 2 and n ≡ 1 (mod 3).

|f(α)− f(α
′
)|+ dG(α, α

′
)− 1 = f(e(3k+l)−1)− f(υ3k+l = (n+ 2) + 2(3k+ l− 1)− k− dn

3
e × (l− 1)− 1 ≥

n− dn
3
e+ 3 > 3 for all n ≥ 10

c) when l 6= 1, 2 or n 6≡ 1 (mod 3).

|f(α)− f(α
′
)|+dG(α, α

′
)− 1 = f(e(3k+l)−1)− f(υ3k+l) = (n + 2) + 2(3k + l − 1) − k −dn

3
e× l − 1 ≥

n − 2dn
3
e + 3 > 3.
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Subcase 2: j = (3k + l).

In this case, dG(α, α
′
) = 1 and |f(α)−f(α

′
)|×dG(α, α

′
) = f(e3k+l)−f(υ3k+l) = (n+2)+2(3k+l)−f(υ3k+l) =

(n+ 2) + 2(3k + l − 1)− f(υ3k+l) + 2 = f(e(3k+l)−1)− f(υ3k+l) + 2 > 3 + 2 > 3 (by subcase1 of Case3).

Subcase 3: j /∈ {(3k + l)− 1, (3k + l)}

In this case, dG(α, α
′
) = 2 and hence it suffices to show |f(α)−f(α

′
)| > 1. In fact|f(α)−f(α

′
)| = f(α

′
)−f(α) =

(n+ 2) + 2j − f(α) ≥ (n+ 2) + 2j − n = 2(j + 1) > 1.

Thus, from all the above subcases, f is an rm-labeling and spanf = 3n.

Therefore rn×(G) ≤ 3n for all n ≥ 8.

6.2. For xyz = ++−

Lemma 6.2. For any positive integer n > 2, rn×(C++−
n ) ≤ 2n.

Proof. Consider a function f : V → Z+ defined by f(υi) = 2i + 1, for all i ∈ Zn and f(ej) = 2(j + 1) for all j ∈ Zn.

Since diam(G) = 2, now to show f is a rm-labeling it is enough to take α, α
′
∈ V (G) with dG(α, α

′
) = 1.

Case 1: α ∈ V (Cn) and α
′
∈ V (Cn).

Let α = υi and α
′

= υj with i, j ∈ Zn, i < j. Then |f(α) − f(α
′
)| = |f(υi) − f(υj)| = 2(j − i) is at least 2 if

dG(α, α
′
) = 1. In this case |f(α)− f(α

′
)| × dG(α, α

′
) ≥ 2.

Case 2: α ∈ E(Cn) and α
′
∈ E(Cn).

Let α = ei and α
′

= ej with i, j ∈ Zn, i < j. Then |f(α) − f(α
′
)| = |f(ei) − f(ej)| = 2(j − i) is at least 2 if

dG(α, α
′
) = 1. In this case |f(α)− f(α

′
)| × dG(α, α

′
) ≥ 2.

Case 3: α ∈ V (Cn) and α
′
∈ E(Cn).

Let α = υi with Zn and α
′

= ej with 0 ≤ j ≤ n− 1. Then |f(α)− f(α
′
)| = |f(υi)− f(ej)| = |2(i− j)− 1| is at least

3 if dG(α, α
′
) = 1 (i.e |i− j| ≥ 2). In this case |f(α)− f(α

′
)| × dG(α, α

′
) ≥ 3.

Thus, from all the above cases, f is an rm-labeling and spanf = 2n.

Therefore rn×(G) ≤ 2n.

6.3. For xyz = +−− or For xyz = −+−

Now let xyz = +−−. As C−+−
n

∼= C+−−
n proof follows immediately for xyz = −+−.

Lemma 6.3. For any positive integer n > 2,

rn×(C+−−
n ) ≤

 10, if n = 3

2n, if n ≥ 4

Proof. For n = 3, result follows by the rm-labeling f for Figure 8 defined by f(v0) = 1, f(v1) = 10, f(v2) = 7, f(e0) = 3,

f(e1) = 4 and f(e2) = 5.

145



Radio Multiplicative Number of Certain Classes of Transformation Graphs

 

 

 

 

 

  

 

 

 

� 
  

! 

�   ! 

 01 05 

Figure 8. C+−−
n with n = 3

For n ≥ 4, proof is similar to that of Lemma 6.2.

6.4. For xyz = −−+

Lemma 6.4. For any positive integer n > 2,

rn×(C−−+
n ) ≤

 8, if n = 3

2n, if n ≥ 4

Proof. For n = 3, result follows by the rm-labeling shown in Figure 9.
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Figure 9. An rm-labeling of C−−+
3

For n ≥ 4, define a function f : V → Z+ by f(υi) = i+ 1 for i ∈ Zn; f(ej) = (n + 1) + j, for j ∈ Zn. Since diam(G) = 2,

now to show f is a rm-labeling it is enough to take α, α
′
∈ V (G) with dG(α, α

′
) = 1.

Case 1: α ∈ V (Cn) and α
′
∈ V (Cn).

Let α = υi and α
′

= υj with i, j ∈ Zn, i < j. Then |f(α) − f(α
′
)| = |f(υi) − f(υj)| = (j − i) is at least 2 if

dG(α, α
′
) = 1 (i.e j ≥ i+ 2). In this case |f(α)− f(α

′
)| × dG(α, α

′
) ≥ 2.

Case 2: α ∈ E(Cn) and α
′
∈ E(Cn).

Let α = ei and α
′

= ej with i, j ∈ Zn−1, i < j. Then |f(α) − f(α
′
)| = |f(ei) − f(ej)| = (j − i) is at least 2 if

dG(α, α
′
) = 1 (i.e j ≥ i+ 2). In this case |f(α)− f(α

′
)| × dG(α, α

′
) ≥ 2.

Case 3: α ∈ V (Cn) and α
′
∈ E(Cn)

Let α = υi with Zn and α
′

= ej with 0 ≤ j ≤ n− 1.

Subcase 1: i = j

In this case |f(α)− f(α
′
)| = |f(υi)− f(ej)| = |i− j − n| is at least 4 (since n ≥ 4).

∴ |f(α)− f(α
′
)| × dG(α, α

′
) ≥ 3.

Subcase 2: i = j + 1

In this case |f(α)− f(α
′
)| = |f(υi)− f(ej)| = |i− j − n| is at least 3 (since n ≥ 4).

∴ |f(α)− f(α
′
)| × dG(α, α

′
) ≥ 3.
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Subcase 3: i = 0 and j = n− 1

In this case |f(α)− f(α
′
)| = |f(υi)− f(ej)| = |0 + 1− 2n| is at least 7 (since n ≥ 4).

∴ |f(α)− f(α
′
)| × dG(α, α

′
) ≥ 3.

Thus, from all the above subcases, f is an rm-labeling and spanf = 2n.

Therefore rn×(G) ≤ 2n for all n ≥ 4.

6.5. For xyz = −−−

Lemma 6.5. For any positive integer n > 3, rn×(C−−−n ) ≤ 2n.

Proof. Proof is similar to that of Lemma 6.2.

7. Conclusion

In wireless networks, an important task is the assignment of radio frequencies to transmitters in a way that avoids interference

of their signals. The objective is to minimize range (or span) of used frequencies. Radio multiplicative labeling will serve

this objective and a tool to solve many real world problems. Further, transformation graphs are graphs which use vertices,

edges, adjacency and incidence of original graphs and recently more work is going on in such graphs. If at all we get a

relation of a property with graph and its transformation graph then this paper will be very useful as diameter is constant

unlike original graph. We completely determined rn×(G) for certain graph families derived from path and cycle. Graceful

graphs serves minimum span so such graphs is centre of attraction. Also investigating the graceful graph is an interesting

and challenging task as well. Required minimum span is obtained in many graphs discussed in this paper except a few.

We now conclude this paper with the Table 1. This table shows the cases where the transformation graphs of paths and

cycles are rm-graceful using the results of previous sections.

The graph G value of x value of y Value of z rm-graceful if

- - + n ≥ 3

+ + - n ≥ 3

Pn + - - n ≥ 4

- + - n ≥ 5

- - - n ≥ 5

+ + - n ≥ 3

+ - - n ≥ 4

Cn - + - n ≥ 4

- - + n ≥ 4

- - - n ≥ 4

Table 1. rm-gracefulness of transformation graphs of paths and cycles.

8. Open Problems

We end up with the following problems.

Open Problem 1: For any positive integer n, determine rn×(Pn).

Open Problem 2: For any positive integer n, determine rn×(Cn).
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