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1. Introduction

The concept of frames was introduced by Duffin and Schaefer [9] to address some deep questions in non-harmonic Fourier

series. They were interested in Fourier type series for functions in L2[−π, π] involving functions fk : t 7−→ eiλkt, for

frequencies λk ∈ R, which might not be integers. Today frame theory has applications in a variety of areas of mathematics,

physics and engineering such as signal and image processing , wireless communications [14] and many other fields. Signal

processing has become very important in todays life, for example, in mobile telephony, xDSL and digital television. By a

signal, we mean a complex-valued function f : X −→ C, where X is a Banach or Hilbert space and C denotes the field of

complex numbers. The choice of the time domain X determines different types of signals. For instance, X = R describes a

time-continuous signal, X = Z or X = N describes a discrete signal in time, X = [a, b] describes a signal that is time-limited.

Signals may be distinguished into the following classes: τ -periodic if f(t) = f(t+ τ) where τ > 0, finite-energy if f ∈ L2(R)

or f ∈ `2(Z), bounded if f ∈ L∞(R) or f ∈ `∞(Z) and integrable or summable if f ∈ L1(R) or f ∈ `1(Z).

From a practical point of view, the use of orthonormal bases for signal expansion is non-redundant in the sense that the

expansion coefficients equals the dimension of the Hilbert space and corruption or loss of expansion coefficients can result

in significant reconstruction errors. Second, the reconstruction process is very rigid. Frames are usually preferred because

of their redundancy, yet providing stable decompositions, resilience or robustness to additive noise and erasure (see [5, 7]),

resilience to quantization (see [10]), their numerical stability of reconstruction (see [7]), and greater freedom to capture

signal characteristics (see [2, 3, 5]). A special type of frames, the equal-norm Parseval tight frames has found applications

in the design of multiple-antenna codes (see [11]).
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2. Preliminaries and Notations

Definition 2.1 ([5], Definition 1.7). A singular value decomposition (SVD) of an M × N matrix A is a factorization

A = UΣV ∗, where Σ = diag(σ1, σ2, ..., σp, 0..., 0) is an M ×N real matrix, p = min{M,N} and σ1 ≥ σ2 ≥ ... ≥ σp ≥ 0 are

the singular values of A, U = [u1, u2, ..., uM ] is an M ×M real unitary matrix, V = [v1, v2, ..., vn] is an N ×N real unitary

matrix.

Theorem 2.2 (Singular Value Decomposition, SVD). Let A be an M × N real matrix with M ≥ N . Then there exists a

real unitary M ×M matrix U , a real unitary N ×N matrix V and a diagonal M ×N real matrix Σ = diag(σ1, σ2, ..., σN )

with σ1 ≥ σ2 ≥ ... ≥ σN ≥ 0 such that A = UΣV ∗ holds. Moreover, the column vectors of V are the eigenvectors of A∗A

associated with the eigenvalues σ2
i , i = 1, 2, ..., N . The columns of u are the eigenvectors of the matrix AA∗.

Proof. The existence claim is trivial. We prove the second claim. First note that A∗A = (UΣV ∗)(UΣV ∗)∗ = V DV ∗,

where D = Σ∗Σ = diag(σ2
1 , σ

2
2 , ..., σ

2
N ) is N ×N . Thus A∗AV = V D. This shows that σ2

i is an eigenvalue of A∗A. Similarly,

AA∗ = UΣV ∗(UΣV ∗)∗ = UΣΣ∗U∗, where ΣΣ∗ = diag(σ2
1 , σ

2
2 , ..., σ

2
N , 0, ..., 0) is M ×M . Clearly if UΣV ∗ is a singular value

decomposition, then V Σ∗U∗ is a singular value decomposition of A∗. The non-zero singular values of A are the square roots

of the non-zero eigenvalues of A∗A or AA∗.

Definition 2.3. A Moore-Penrose pseudo-inverse of an M × N matrix A is an N ×M matrix A† that satisfies the four

Penrose conditions:

AA†A = A; A†AA† = A†; (AA†)∗ = AA†; (A†A)∗ = A†A.

Theorem 2.4 ([5], Theorem 1.2). If A an M × N matrix has SVD A = UΣV ∗, then its pseudo-inverse is A† = V Σ†U∗,

where Σ† = diag( 1
σ1
, 1
σ2
, ..., 1

σp
, 0, ..., 0) is N ×M .

The notion of pseudo-inverse can be extended to any bounded linear operators. Let A ∈ B(H,K). If AA∗ is invertible, then

B = A∗(AA∗)−1 is the pseudo-inverse of A. Equivalently, if A∗A is invertible, then B = (A∗A)−1A∗ is the pseudo-inverse

of A. From this definition, it is succinctly clear that the pseudo-inverse of a bounded linear operator need not be unique.

That is, bounded linear operator may admit infinitely many pseudo-inverses. In fact, if an operator has more than one

pseudo-inverse, then it has infinitely many (see [12]).

3. Hilbert Space Frames and Their Associated Operators

Theorem 3.1 (Parseval Identity). Let {fk}nk=1 be an orthonormal basis for an n-dimensional Hilbert space H. Then for

any f ∈ H,
n∑
k=1

|〈f, fk〉|2 = ‖f‖2.

We note that the Parseval Identity also holds in infinite dimensional Hilbert spaces.

A subset {fk}k∈J of a Hilbert space H is said to be complete if every element f ∈ H can be represented arbitrarily well in

norm by linear combinations of the elements in {fk}k∈J . A complete set {fk}k∈J is said to be over-complete or redundant

if removal of an element fj from the set results in a complete set or system. That is, if {fk}k∈J\{j} is still complete.

Definition 3.2. A sequence of vectors {fk} in a Hilbert space H is a frame for H if there exists real numbers 0 < α ≤ β <∞

called frame bounds such that for all f ∈ H

α‖f‖2 ≤
∑
k

|〈f, fk〉|2 ≤ β‖f‖2.

76



L. Njagi, B. M. Nzimbi and S. K. Moindi

The numbers α and β are called the lower bound and upper bound of the frame, respectively. They are, respectively, the

smallest and largest eigenvalues of the frame operator. The numbers (〈f, fk〉) are called the frame coefficients. A frame is a

redundant or over-complete (i.e. not linearly independent) coordinate system for a vector space that satisfies a Parseval-type

norm inequality. A set of vectors in a finite dimensional Hilbert space is a frame if and only if it is (just) a spanning set.

Let J be an indexing set. If α = β, then the frame {fk}k∈J is called tight and if α = β = 1, the frame is called a normalized

tight frame or Parseval. If ‖fi‖ = ‖fj‖, for all i, j ∈ J , then {fk}k∈J is called an equal-norm or uniform norm frame, and

if in addition α = β = 1, we have a uniform normalized tight frame (UNTF). If a frame is equal-norm and if there exists a

c ≥ 0 such that |〈fj , fk〉| = c, for all j, k with j 6= k, then the frame is said to be equiangular. A frame {fk} that ceases to

be a frame when an arbitrary element {fj} is removed is called an exact frame. For more exposition about these classes of

frames (see [7, 8]).

Definition 3.3. Let {fk} be a frame for a Hilbert space H. The operator A : H → `2(Z) defined by Af = {〈f, fk〉}, for all

f ∈ H and k ∈ Z is called the analysis operator of the frame {fk}.

Definition 3.4. Let {fk} be a frame for a Hilbert space H with analysis operator A. The Hilbert space adjoint of the analysis

operator A∗ : `2(Z)→ H defined by A∗({〈f, fk〉}) =
∑
k〈f, fk〉fk is called the synthesis operator of the frame {fk}.

Remark 3.5. The analysis and synthesis operators of a frame play a central role in the analysis, reconstruction and

recovery of any function or signal f ∈ H. The analysis operator analyzes a signal in terms of the frame by computing its

frame coefficients.

Definition 3.6. Given a frame {fk} in a Hilbert space H with analysis operator A, another frame {gk} with analysis

operator B is said to be a dual frame of {fk} if the following reproducing formula or frame decomposition formula holds

f =
∑
k

〈f, fk〉gk, ∀f ∈ H. (1)

We call {fk} and {gk} a pair of dual frames or a dual frame pair.

Remark 3.7. Equation (1) says that B∗A = I, where I denotes the identity operator in H. This means that a frame

{gk} with analysis operator B is dual to a frame {fk} with analysis operator A if and only if B∗A = I or equivalently

(B∗A)∗ = A∗B = I. Therefore all the duals of {fk} are left inverses B∗ to A (or equivalently, right inverses to A∗). Dual

frames are not unique. However, it has been shown that if the frame is exact, then the dual is unique (see [5]).

Definition 3.8. Let {fk} be a frame in a Hilbert space H with analysis operator A. The operators S = A∗A and G = AA∗

are called the frame operator and Grammian, respectively.

The frame operator S : H → H is positive and invertible, while the Grammian G : `2(Z) → `2(Z) need not be invertible,

since its range need not be all of `2(Z). The Grammian operator and its pseudo-inverse G† play a crucial role in the process

of recovery of f ∈ H from frame representation.

Proposition 3.9. Suppose that {fk} is a frame for the Hilbert space H with analysis operator A and Grammian G = AA∗

and frame bounds α and β.

(1). If the set {fk} is an orthonormal basis for H, then the Grammian operator G is the identity.

(2). The frame {fk} is a Parseval frame if and only if the Grammian operator G is an orthogonal projection.

Proof. (1). Since {fk} is an orthonormal basis for H, we have that A = A∗ = I. Therefore G = AA∗ = I.
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(2). Clearly {fk} is Parseval if and only if the frame operator S = A∗A = I. It is easily verified that Grammian G = AA∗

is self-adjoint and that G2 = (AA∗)(AA∗) = A(A∗A)A∗ = A(I)A∗ = AA∗ = G.

Proposition 3.10 (Frame Reconstruction/Reproducing Formula). Let {fk} be a frame in a Hilbert space H with analysis

operator A and frame operator S = A∗A. Then

f =
∑
k

〈S−1f, fk〉fk =
∑
k

〈f, S−1fk〉fk =
∑
k

〈f, fk〉S−1fk =
∑
k

〈f, S−1/2fk〉S−1/2fk, f ∈ H.

Moreover, the series converges to f unconditionally in the induced norm on H.

Proof. Let f ∈ H. By definition and self-adjointness of the frame operator S, we have

f = SS−1f =
∑
k

〈S−1f, fk〉fk =
∑
k

〈f, S−1fk〉fk.

Similarly,

f = S−1Sf = S−1
∑
k

〈f, fk〉fk =
∑
k

〈f, fk〉S−1fk =
∑
k

〈f, S−1/2fk〉S−1/2fk.

Finally, using the fact that I = S−1/2SS−1/2, we have

f = S−1/2SS−1/2f = S−1/2
∑
k

〈S−1/2f, fk〉fk =
∑
k

〈f, S−1/2fk〉S−1/2fk.

Remark 3.11. The reconstruction formula shows that all information about a given vector or signal f ∈ H is contained in

the sequence {〈f, S−1fk〉}. We note that the choice of coefficients in Proposition 3.8 is not unique, in general. If the frame

{fk} is linearly dependent(redundant or over-complete), a typical phenomenon in applications, then there exist infinitely

many choices of coefficients ck = 〈f, S−1fk〉 in the expansion of f ∈ H as f =
∑
k ckfk. This possibility ensures resilience

to erasures or noise in a signal f ∈ H. A new approach (see [4]) has emerged recently, and has received increasing attention,

namely choose the coefficient sequence to be sparse in the sense of having only few non-zero entries, thereby allowing data

compression while preserving perfect reconstruction or recoverability.

The sequence {S−1fk} is called the canonical dual of {fk}. Bijectivity of S clearly implies that the canonical dual {S−1fk}

is also a frame in H with frame bounds 1
β

and 1
α

and frame operator S−1. The sequence {S−1/2fk} is also frame(by the

bijectivity of S−1/2), called the canonical tight frame associated with the frame {fk} (see [1, 5]). By Definition 3.5, we note

that the canonical dual frame is the pseudo-inverse of A, which we write (A∗)† = (A∗A)−1A∗ = S−1A∗ (see also [1]).

Proposition 3.12. Let {fk} be a frame in a Hilbert space H with analysis operator A and frame operator S = A∗A. Then

the frame operator provides a stable reconstruction process

Sf =
∑
k

〈f, fk〉fk, f ∈ H.

Proof. Follows immediately from the definition of S and Proposition 3.8.

Remark 3.13. Notice from Proposition 3.9 that

〈Sf, f〉 = 〈A∗Af, f〉 = 〈Af,Af〉 = ‖Af‖2 =
∑
k

〈f, fk〉〈fk, f〉 =
∑
k

〈f, fk〉〈f, fk〉 =
∑
k

|〈f, fk〉|2, ∀f ∈ H.
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Therefore if α and β are the frame bounds, we have

〈αf, f〉 = α‖f‖2 ≤
∑
k

|〈f, fk〉|2 = 〈Sf, f〉 ≤ β‖f‖2 = β〈f, f〉, ∀f ∈ H.

This says that

αI ≤ S ≤ βI.

It has been shown in ([1], Theorem 2.2) that if {fk} is a frame for a Hilbert space H with frame operator S and T ∈ B(H),

then the frame operator for {Tfk} equals TST ∗. Using this result, we conclude that the canonical tight frame has frame

operator S−1/2SS−1/2 = I. This means that {S−1/2fk} is a Parseval frame.

Theorem 3.14. Let {fk} be a tight frame in a Hilbert space H. Then the canonical dual frame {S−1fk} = { 1
α
fk}. Moreover,

f = 1
α

∑
k〈f, fk〉fk and α is the tight frame bound.

Proof. Suppose that {fk} is a tight frame with frame bound α and frame operator S. Then by definition of S and the

reconstrution formula in Proposition 3.9, we have

〈Sf, f〉 =
∑
k

|〈f, fk〉| = α‖f‖ = 〈αf, f〉.

Since S is self-adjoint, this implies that S = αI. Thus S−1 is the multiplication by 1
α

operator. The rest of the proof follows

from application of Proposition 3.8 and definition of a frame.

Frames having Gabor structure or wavelet structure involve translations and modulations of a fixed function g ∈ L2(R),called

the window function. A Gabor frame is a sequence for L2(R) of the form {MmbTnag}n,m∈Z, where MmbTnag(x) =

e2πimbxg(x − na), a, b > 0, Ta,Mb : L2(R) −→ L2(R) are the translation by a and modulation by b operators defined

by (Taf)(x) = f(x − a) and (Mbf)(x) = e2πbxf(x), respectively, where x ∈ R and f ∈ L2(R). Gabor frames are over-

complete frames for L2(R). A wavelet system takes the form {2j/2ψ(2jx − k)}j,k∈Z, where D is the dilation operator

D : L2(R) −→ L2(R) defined by (Df)(x) = 2j/2f(2x), which are orthonormal bases for L2(R). Wavelet frames are used to

obtain Fourier expansion for f ∈ L2(R). It is known (see [2, 5, 13]) that most Gabor frames are overcomplete and that if

ab > 1, then any Gabor system is incomplete, if ab = 1, then a Gabor frame is a Riesz basis, and if ab < 1, then a Gabor

frame is overcomplete.

Over-complete Gabor frames and wavelet frames have been used in signal detection, image representation, object recognition,

noise reduction, sampling theory, wireless communications, filter banks and quantum computing (see [6]).

4. The Singular Value Decomposition, Pseudo-inverses and Dual
Frames

When designing frames with prescribed properties, it is important to check the behavior of the canonical dual frame

{S−1/2fk}. In some cases, especially in high dimensional settings, however, the complicated structure of the frame operator

and its inverse make this a difficult task. For instance, if {fk} is a frame in the Hilbert space L2(R) consisting of functions

with exponential decay, there is no guarantee that the functions in the canonical dual frame {S−1fk} have exponential decay.

Some frames have advantages over others. For tight frames, by Proposition 3.8, Proposition 3.9 and Proposition 3.10, the

canonical dual frame automatically has the same structure as the frame itself. If the frame has a wavelet structure or a

Gabor structure, the same is the case for the canonical dual frame. In contrast, there are non-tight wavelet frames which

lack this special property. We use the singular value decomposition to avoid inverting the frame operator S.
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Proposition 4.1. Let {fk} be a frame in a Hilbert space H and suppose that {gk} is its dual frame. Then

f =
∑
k

〈f, gk〉fk =
∑
k

〈f, fk〉gk, ∀f ∈ H.

It is clear that if {gk} is a dual frame for {fk}, then {fk} is also a dual of {gk} (see [5]). If the frame {fk}Mk=1 for a Hilbert

space of dimension N and M > N(that is the frame contains more vectors than is needed for the spanning property-that

is, it is over-complete or redundant), there exists infinitely many dual frames(no rigidity as is the case of bases or when

M = N) (see [1]).

We find the SV D(A) as A = UΣV ∗, where A is any M × N matrix of real numbers with rank k, U is a matrix whose

columns are the M orthonormal eigenvectors associated with the non-zero eigenvalues of the self-adjoint matrix G = AA∗.

On the other hand, matrix V is formed with the orthonormal eigenvectors associated with the non-zero eigenvalues of the

self-adjoint operators S = A∗A. In a frame, S is invertible, and hence has no zero eigenvalues (see [12]).

Remark 4.2. For computational purposes, it is important to notice that the pseudo-inverse of an operator T can be found

by the singular value decomposition of T . We will explore the use of MAPLE software to find the duals of frames and avoid

finding the inverse of the frame operator S.

We will explore the use of MAPLE software to find the duals of frames and avoid finding the inverse of the frame operator

S.

Example 4.3. For the frame {fk} =


 1

0

 ,

 0

1

 ,

 1

1


 for H = R2,

G = (〈fm, fn〉)1≤m,n≤3 =


〈f1, f1〉 〈f1, f2〉 〈f1, f3〉

〈f2, f1〉 〈f2, f2〉 〈f2, f3〉

〈f3, f1〉 〈f3, f2〉 〈f3, f3〉

 =


1 0 1

0 1 1

1 1 2

 .

A simple calculation shows that G is not invertible. A simple computation shows that S =

 2 1

1 2

, and S is invertible. It

is easy to show that σ(G) = {0, 1, 3} and σ(S) = {1, 3}.

Theorem 4.4. Let {fn} be a frame for a Hilbert space H with analysis operator A and frame operator S and Grammian

G. Let the associated canonical dual frame be {f̃n}, where f̃n = S−1fn with an associated analysis operator Ã. Then

Ã = (G|Ran(A))
−1A.

Proof. We first note that Ãf = (〈f, f̃n〉) = (〈f, S−1fn〉). Thus Ran(A) = Ran(Ã), since S is invertible. Thus

A∗Ã = Ã∗A = IH,

where IH is the identity operator on H. On Ran(A), A, Ã, and hence the Gramian G for{fn} are invertible and we have

that A−1 = Ã∗ and Ã−1 = A∗. Thus the relation between the analysis operator A and its dual Ã is

Ã = (G|Ran(A))
−1GÃ = (G|Ran(A))

−1AA∗Ã = (G|Ran(A))
−1A.
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Proposition 4.5 ([5], Corollary 1.10). A frame {fn}Mn=1 for an N-dimensional Hilbert space H has a unique dual frame if

and only if M = N .

Proposition 4.6. Let {fn}Mn=1 be a frame for an N-dimensional Hilbert space H with frame bounds α and β. Let P be an

orthogonal projection of H onto a subspace M. Then {gn} = {Pfn}Mn=1 is a frame for M with frame bounds α and β. In

particular, if {fn}Mn=1 is a Parseval frame, then {Pfn}Mn=1 is a Parseval frame.

Proof. For any f ∈M, we have that f = PMf and so

α‖f‖2 = α‖Pf‖2 ≤
M∑
n=1

|〈Pf, fn〉|2 =

M∑
n=1

|〈f, Pfn〉|2 ≤ β‖Pf‖2 = β‖f‖2.

If {fn}Mn=1 is Parseval, then we have

‖f‖2 = ‖Pf‖2 =

M∑
n=1

|〈Pf, fn〉|2 =

M∑
n=1

|〈f, Pfn〉|2 =

M∑
n=1

|〈f, gn〉|2.

The canonical coefficients from the frame expansion arise naturally by considering the pseudo-inverse of the analysis operator.

The pseudo-inverse can be given by the singular value decomposition of A.

Theorem 4.7 ([1], Theorem 2.2). If {fk}nk=1 is a frame for an N-dimensional Hilbert space H with frame operator S and

T is an operator on H, then the frame operator for {Tfk}nk=1 equals TST ∗.

Proof. The proof follows from the fact that the frame operator for {Tfk}nk=1 is given by

n∑
k=1

〈f, Tfk〉Tfk = T (

n∑
k=1

〈T ∗f, fk〉fk) = TST ∗.

Alternatively, from Lemma 8.20, the frame operator of {Tfk}nk=1 is given by

B∗B = (AT ∗)∗(AT ∗) = TA∗AT ∗ = T (A∗A)T ∗ = TST ∗.

Clearly

TST ∗f = T (

n∑
k=1

〈T ∗f, fk〉fk) =

n∑
k=1

〈f, Tfk〉Tfk.

This leads to the following consequences.

Corollary 4.8. If {fk}nk=1 is a tight frame for an N-dimensional Hilbert space H with frame operator S and T is an operator

on H, then the frame operator for {Tfk}nk=1 is a scalar multiple of TT ∗. Moreover, if {fk}nk=1 is Parseval/normalized and

tight, then the frame operator for {Tfk}nk=1 is TT ∗.

The canonical tight frame {S−
1
2 fn}Mn=1 inherits properties of the original frame {fn}Mn=1.

Proposition 4.9. If {fn}Mn=1 is a frame for a Hilbert space H with frame operator S and frame bounds α and β, then

{S−
1
2 fn}Mn=1 is a tight frame with frame bound 1(i.e. it is Parseval) and f =

∑
k〈f, S

−1/2fk〉S−1/2fk for all f ∈ H.
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Proof. We need to show that {S−
1
2 fn}Mn=1 satisfies the reconstruction formula f =

∑n
k=1〈f, fk〉fk for all f ∈ H. Clearly,

the operator S−1/2 is well defined and commutes with S−1. Therefore by Proposition 3.8, every f ∈ H can be reconstructed

as

f = S−1/2SS−1/2f = S−1/2
∑
k

〈S−1/2f, fk〉fk = S−1/2
∑
k

〈f, S−1/2fk〉fk =
∑
k

〈f, S−1/2fk〉S−1/2fk.

This proves the Parseval reconstruction formula for f . Taking the inner product with f we have

‖f‖2 = 〈f, f〉 =
∑
k

〈f, S−1/2fk〉〈S−1/2fk, f〉 =
∑
k

〈f, S−1/2fk〉〈f, S−1/2fk〉 =
∑
k

|〈f, S−1/2fk〉|2.

This shows that {S−
1
2 fn}Mn=1 is a tight frame with frame bound 1. We note that the first claim can be proved easily using

Theorem 4.6 by showing that the frame operator of the canonical tight frame is Scan = S−1/2SS−1/2 = I. This is equivalent

the statement that for every f ∈ H, we have

Scanf =
∑
k

〈f, f̃k〉f̃k =
∑
k

〈f, S−1/2fk〉S−1/2fk = S−1/2
∑
k

〈S−1/2f, f̃k〉 = S−1/2SS−1/2f = f.

Therefore Scan = I.

Theorem 4.10. Let Φ = {fk} be a frame for a Hilbert space H with frame operator S and frame bounds α and β. The

canonical dual frame Φ̃ = {S−1fk} has frame operator S−1.

Proof. The synthesis operator of Φ̃ is given by B∗ = S−1A∗(see [1]), where A is the analysis operator of Φ. Thus the

frame operator for Φ̃ is given by

S̃ = B∗B = S−1A∗(AS−1) = S−1(A∗A)S−1 = S−1SS−1 = S−1.

Alternatively, by ([1], Theorem 2.2), the frame operator of {S−1fk} is

S̃ = S−1S(S−1)∗ = S−1SS−1 = S−1.

This result can also be proved as follows:

For every f ∈ H, we have

S̃f =
∑
k

〈f, f̃k〉f̃k =
∑
k

〈f, S−1fk〉S−1fk = S−1
∑
k

〈S−1f, f̃k〉 = S−1SS−1f = S−1f.

Therefore S̃ = S−1. We note the claim can be proved easily using Theorem 4.6 by showing that showing that the frame

operator of the canonical dual frame is Ŝ = S−1SS−1 = S−1. This is equivalent the statement that for every f ∈ H, we

have

S̃f =
∑
k

〈f, f̃k〉f̃k =
∑
k

〈f, S−1fk〉S−fk = S−1
∑
k

〈S−1f, f̃k〉 = S−1SS−1f = S−1f.

Therefore S̃ = S−1. Since S is the frame operator, we have that 〈αf, f〉 ≤ 〈Sf, f〉 ≤ 〈βf, f〉 for all f ∈ H. This is equivalent

to the statement that αI ≤ S ≤ βI. We conclude that 1
β
I ≤ S−1 ≤ 1

α
I.
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5. Main Results

We have seen that the problem of finding duals to a frame Φ = {fk}mk=1 with analysis operator A boils down the problem

of finding the set of matrices or operators B such that B∗A = I or A∗B = I. Equivalently, this is the set of all left-inverses

or pseudo-inverses B to A or the adjoints of all right inverses to A. Since m > N , the frame is redundant(consists of more

vectors than needed to span H), Gauss-Jordan elimination shows that there are infinitely many dual frames.

We give examples for the cases m = 3, 4 and H = R2.

Example 5.1. Consider the sequence {fk}3k=1 :=


 1

0

 ,

 0

1

 ,

 1

1


. Clearly the analysis operator is A =


1 0

0 1

1 1


and the synthesis operator A∗ =

 1 0 1

0 1 1

. A simple calculation shows that the frame operator S := A∗A =

 2 1

1 2



and the Gram matrix G := AA∗ =


1 0 1

0 1 1

1 1 2

. Clearly S−1 =

 2
3
− 1

3

− 1
3

2
3

 and hence the canonical dual frame operator

{S−1fk} =


 2

3

− 1
3

 ,

 − 1
3

2
3

 ,

 1
3

1
3


.

The pseudo inverse of A∗ computed by singular value decomposition is B = (A∗)† =

 2
3
− 1

3
1
3

− 1
3

2
3

1
3

 and its columns

give the dual frame vectors. Notice that BA∗ = I, and so the columns of B represent the alternate dual frame. Notice

that in this case the an alternate dual coincides with the canonical frame {S−1fk}. Notice also that the above result can

be obtained from B = S−1A∗. However, the frame has infinitely many duals. For instance the matrix

 2 1 −1

−1 0 1

 is

another pseudo-inverse for A. This frame has a redundancy 3
2

.

Example 5.2. The frame {fk}4k=1 :=


 1

0

 ,

 0

1

 ,

 0

1

 ,

 1

0


 is a tight frame for R2 since S = 2I and hence

S−1 = 1
2
I. The normalized frame is Ψ = { 1√

2
fk}. A simple computation shows that Ψ is a normalized tight frame for R2,

with Grammian GΨ =



1
2

0 0 1
2

0 1
2

1
2

0

0 1
2

1
2

0

1
2

0 0 1
2


, which is an orthogonal projection. More calculations show that the alternate dual

frame consists of the columns of Ã∗ =

 1
2

0 0 1
2

0 1
2

1
2

0

. Since S̃ = Ã∗Ã = 1
2
I, we conclude that the dual frame is also tight.

This frame has redundancy 2. Another computation shows that G̃ = G† = 1
4
G and G = G̃†. This says that GG̃ = GG̃ = I.

From this example, we deduce two results.

Lemma 5.3. Let Φ = {fk}mk=1 be a frame for an N-dimensional Hilbert space H. If Φ has a redundancy greater or equal to

2, then it has a tight dual frame.

Theorem 5.4. The Grammian of a frame Φ and its dual Φ̃ are pseudo-inverses. That is, Gram(Φ̃) = Gram(Φ)†.

Proposition 4.1 and Theorem 5.3 leads us to a new relation, which we call duality of finite frames. We denote this new

relation by Φ
dual∼ Ψ if and only if f =

∑n
k=1〈f, gk〉fk for all f ∈ H
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Theorem 5.5. Duality of frames Φ = {fk}nk=1 and Ψ = {gk}nk=1 for a Hilbert space H is an equivalence relation.

Proof. Recall that Φ = {fk}nk=1 and Ψ = {gk}nk=1 are a dual pair if f =
n∑
k=1

〈f, gk〉fk for all f ∈ H. Clearly Φ
dual∼ Φ,

since f =
n∑
k=1

〈f, fk〉fk. This shows that
dual∼ is reflexive. Suppose Φ

dual∼ Ψ. Then f =
n∑
k=1

〈f, gk〉fk =
n∑
k=1

〈f, fk〉gk for all

f ∈ H. This shows that Ψ
dual∼ Φ and therefore

dual∼ is symmetric. Now, suppose Ω = {hk}nk=1 be a frame for H. Suppose

that Φ
dual∼ Ψ and Ψ

dual∼ Ω. Then f =
n∑
k=1

〈f, gk〉fk =
n∑
k=1

〈f, fk〉gk and f =
n∑
k=1

〈f, gk〉hk =
n∑
k=1

〈f, hk〉gk. This implies that

f =
n∑
k=1

〈f, fk〉gk =
n∑
k=1

〈f, hk〉gk. Equating the coefficients we have that 〈f, fk〉 = 〈f, hk〉 and therefore f =
n∑
k=1

〈f, hk〉fk,

which proves that Φ
dual∼ Ω. Therefore

dual∼ is transitive. Thus
dual∼ is an equivalence relation.

Example 5.6. Consider the frame in Example 5.1. It can be shown that the frame bounds are σ1 = 1, σ2 =
√

3 and so

‖f‖2 ≤ ‖Af‖2 ≤ 3‖f‖2.

and that the dual analysis operator is B∗ =


2
3
− 1

3

− 1
3

2
3

1
3

1
3

. Notice that in this case the alternate dual coincides with the

canonical dual frame. Suppose we want to reconstruct f =

 −5

2

 in terms of the frame {fk} and int terms of the dual.

Then

B∗f =


2
3
− 1

3

− 1
3

2
3

1
3

1
3


 −5

2

 =


−4

3

−1

 .

Therefore

f =

 −5

2

 = −4f1 + 3f2 − f3.

To find the expansion of f in terms of the dual frame we compute the coefficients as

Af =


1 0

0 1

1 1


 −5

2

 =


−5

2

−3

 ,

and so

f =

 −5

2

 = −5f̃1 + 2f̃2 − 3f̃3.

To find the canonical tight frame, we compute S−1/2. To achieve this, we orthogonally diagonalize S−1/2. Let T = S−1.

We find an orthogonal matrix U such that UTU−1 = D = R2, where D is a diagonal matrix with diagonal entries the

eigenvalues of T and R is any of the four square roots of D. We ortho-normalize the eigenvectors of S−1/2 and let U be the

matrix whose columns are the normalized vectors. A simple computation gives λ1 = 1, λ2 = 1
3

as the eigenvalues of T with

corresponding eigenvectors [−1, 1]t and [1, 1]t. The vectors are already orthogonal and we only need to divide each by its

length. Thus U =

 − 1√
2

1√
2

1√
2

1√
2

. Without loss of generality we let R =

 1 0

0 1√
3

. Then

S−1/2 = T 1/2 = U∗R∗U =

 1
2

+ 1√
12
− 1

2
+ 1√

12

− 1
2

+ 1√
12

1
2

+ 1√
12

 .
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This means that

B∗ = S−1/2A∗ =

 1
2

+ 1√
12
− 1

2
+ 1√

12

2√
12

− 1
2

+ 1√
12

1
2

+ 1√
12

2√
12


is the synthesis operator for the canonical tight frame. Hence

Φcan =


 1

2
+ 1√

12

− 1
2

+ 1√
12

 ,

 − 1
2

+ 1√
12

1
2

+ 1√
12

 ,

 2√
12

2√
12




is the canonical tight frame for Φ. A simple calculation shows that

〈fk, f̂k〉 = 〈fk, f̃k〉 = ‖fcank ‖2, ∀k,

where f̂k denotes a canonical dual vector and f̃k denotes an alternate dual vector. This implies that

3∑
k=1

〈fk, f̃k〉 = 2 = dim(H).

MAPLE 18 software reveals that B∗BB∗ = B∗, which proves that B∗ is a partial isometry. This agrees with an earlier

remark. Further computation using MAPE 18 approximates

Scan =

 1 −1.899× 10−16

−1.899× 10−16 1

 ≈
 1 0

0 1

 = I

and

Gram(Φcan) =


0.3333 −7.269× 10−17 0.4714

−7.269× 10−17 1 −1.813× 10−16

0.4714 −1.813× 10−16 0.6666

 ≈


0.3333 0 0.4714

0 1 0

0.4714 0 0.6666

 .

Since Scan = I, we conclude that the canonical tight frame {S−1/2fk} is a Parseval frame, which agrees with Proposition

4.5.

Theorem 5.7. If Φ = {fk}nk=1 is a normalized tight frame for a Hilbert space H and T : H −→ H is an invertible operator,

then the frames {T ∗fk} and {T−1fk} are dual to each other.

Proof. Since Φ = {fk}nk=1 is a normalized tight frame, its frame operator S = I. Using this fact together with Proposition

3.9, we have that {fk}nk=1 is normalized tight frame if and only if f =
∑
k〈f, fk〉fk, for all f ∈ H. Let {gk} = {T ∗fk} and

{hk} = {T−1fk}. We need to show that f =
∑
k〈f, gk〉hk =

∑
k〈f, hk〉gk. Using the definition, we have

f =
∑
k

〈f, fk〉fk =
∑
k

〈f, TT−1fk〉fk

=
∑
k

〈T ∗f, T−1fk〉fk

= T ∗
∑
k

〈f, T−1fk〉fk

=
∑
k

〈f, T−1fk〉T ∗fk

=
∑
k

〈f, hk〉gk.
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Similarly,

f =
∑
k

〈f, fk〉fk =
∑
k

〈f, (T ∗)−1T ∗fk〉fk

=
∑
k

〈f, (T−1)∗T ∗fk〉fk

=
∑
k

〈T−1f, T ∗fk〉fk

= T−1
∑
k

〈f, T ∗fk〉fk

=
∑
k

〈f, T ∗fk〉T−1fk

=
∑
k

〈f, gk〉hk.

This proves the claim.

Theorem 5.8. If Φ = {fk}nk=1 is a frame for a Hilbert space H and Q : H −→ H is an invertible operator, then the frames

Ψ = {Qfk} is a frame for H, and Ψcan = UΦcan, where U is a unitary operator.

Proof. The claim that Ψ = {Qfk} is a frame for H follows easily from the fact that Q is invertible. To prove the second

claim, we let

gk = Qfk = QS1/2S−1/2fk = (QS1/2)S−1/2fk = TS−1/2fk = Tfcank = TΦcan,

where T = QS1/2 is invertible. Thus the synthesis operator for Ψ is T [fcank ]. But any canonical tight frame is Parseval by

Proposition 4.8. Thus Ψ = {Tfcank } is Parseval if and only if and only if its frame operator ScanΨ = I. That is if and only

if ScanΨ = T [fcank ](T [fcank ])∗ = T [fcank ][fcank ]∗T ∗ = TT ∗ = I. This means that T is an co-isometry. Since T is invertible, it

must be a unitary operator. So we let T = U , where U is unitary. Therefore Ψcan = UΦcan.

Remark 5.9. Let Φ = {fk}nk=1 be a finite frame for a Hilbert space H with analysis operator A and frame operator S. The

Grammian of the canonical tight frame is an orthogonal projection, by ([? ], Theorem 2.2), we have P = Gram(Φcan) =

AS−1A∗ : `2(Z) −→ `2(Z) which gives the coefficients ck with f =
∑
k ckfk of minimal `2-norm. This means that the

canonical tight frame gives a more precise and better reconstruction than the alternate dual frame. This means that the

canonical tight frame {S−1/2fk} inherits many of the properties of the original frame {fk}. The only problem is that it is

not easy to find {S−1/2fk} and that some nice properties of {fk} may not be necessarily inherited.

Lemma 5.10. If {fk}nk=1 is a frame for an finite dimensional Hilbert space H with analysis operator A and frame operator

S and T is an operator on H, then the analysis operator for {Tfk}nk=1 equals AT ∗.

Proof. Let B be the analysis operator of {Tfk}nk=1. Then

Bf =

n∑
k=1

〈f, Tfk〉fk =

n∑
k=1

〈T ∗f, fk〉fk = AT ∗f, ∀f ∈ H.

That is, B = AT ∗.
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Appendix

Maple 18 Code for Example 5.1

>with(MTM):

>A:=matrix([[1,0],[0,1],[1,1]]); Enters matrix A

>svd:=svd(A); Gives the singular values of A

>U,S,V:=svd(A); Gives the full svd(A) and returns matrices U,S,V in that order

>PseudoInv:=MatrixInverse(A,method=pseudo); Returns the Pseudo-inverse of A

The output is

A :=


1 0

0 1

1 1



svd :=


0

√
3

1



U,S,V :=


0.4082 -0.7071 -0.5774

0.4082 0.7071 0.5774

0.8165 -5.5511 10-17 0.5774

 ,

1.7321 0

0 1

0 0

 ,
 0.7071 -0.7071

0.7071 0.7071



PseudoInv :=

 2
3
− 1

3
1
3

− 1
3

2
3

1
3



6. Discussion

The pseudo-inverse of an operator is useful for best approximation problems of the form Af = g in a Hilbert space H.

When the system A is over-complete over-determined, there are infinitely many ways to reconstruct f from g. The pseudo-

inverse A† helps in determining the optimal way to reconstruct f from g: f̂ = A†g. This notion plays a crucial role in

the construction of frames duals which are used in the reconstruction of finite frames, that find applications in digital

reconstruction, analysis and transmission of a signal f ∈ H from analysis operator A.
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