

International Journal of *Mathematics* And its Applications

Totally ψ gs-Continuous Functions in Topological Spaces

J. Sona^{1,*} and N. Balamani¹

1 Department of Mathematics, Avinashilingam Institute for Home Science and Higher Education for Women University, Coimbatore, Tamil Nadu, India.

Abstract: The aim of this paper is to introduce and study a new class of functions called totally ψ gs-continuous functions and ψ gs-totally continuous functions in topological spaces as a new generalization of ψ gs-continuity.

Keywords: Totally continuous function, ψ gs-continuous function, ψ gs-closed set and ψ gs-open set. © JS Publication.

1. Introduction

Levine [8] introduced the idea of continuous functions in topological spaces. Jain [6] introduced the concept of totally continuous functions in topological spaces. Balachandran [1] introduced generalized continuous functions in topological spaces. Sundaram [9] introduced semi generalized continuous functions in topological spaces. Devi [3] introduced generalized semi continuous functions in topological spaces. Veera kumar [10] introduced and studied ψ -continuous functions in topological spaces. In spaces. Gowsalya and Balamani [4, 5] introduced ψ gs-closed sets and ψ gs-continuous functions in topological spaces. In this paper we introduce a new type of totally continuous functions called totally ψ gs-continuous functions and ψ gs-totally continuous functions in topological spaces.

2. Preliminaries

Definition 2.1. Let (X, τ) be a topological space. A Subset A of a topological spaces (X, τ) is called

- (1). Semi open [7] if $A \subseteq cl(int(A))$ and semi-closed if $int(cl(A)) \subseteq A$.
- (2). generalized closed [8] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- (3). Semi generalized closed [2] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ) .
- (4). ψ -closed [10] if $scl(A) \subseteq U$ whenever $\subseteq U$ and U is sg-open in (X, τ) .
- (5). ψ gs-closed [4] if ψ cl(A) $\subseteq U$ whenever A $\subseteq U$ and U is semi-open in (X, τ) .
- (6). ψ gs-clopen [4] if it is both ψ gs-closed and ψ gs-open in (X, τ) .

^{*} E-mail: sonajayes@gmail.com (P.G Student)

Result 2.2.

- (1). Every closed (respectively open) subset in (X, τ) is ψ gs-closed (respectively ψ gs-open).
- (2). Every clopen subset in (X, τ) is ψ gs-clopen.

Definition 2.3. Let (X, τ) and (Y, σ) be two topological spaces. A function $f: (X, \tau) \to (Y, \sigma)$ is called

- (1). Continuous [8] if $f^{-1}(V)$ is closed in (X, τ) for every closed set V of (Y, σ) .
- (2). Totally continuous [6] if $f^{-1}(V)$ is clopen in (X, τ) for every open set V of (Y, σ) .
- (3). g-continuous [1] if $f^{-1}(V)$ is g-closed in (X, τ) for every closed set V of (Y, σ) .
- (4). ψ -continuous [10] if $f^{-1}(V)$ is ψ -closed in (X, τ) for every closed set V of (Y, σ) .
- (5). ψ gs-continuous [5] if $f^{-1}(V)$ is ψ gs-closed in (X, τ) for every closed set V of (Y, σ) .

3. Totally ψ gs-Continuous Function

Definition 3.1. Let (X, τ) and (Y, σ) be two topological spaces. A function $f : (X, \tau) \to (Y, \sigma)$ is called totally ψ gscontinuous if $f^{-1}(V)$ is ψ gs-clopen in (X, τ) for every open set V of (Y, σ) .

Example 3.2. Let $X = Y = \{a, b, c\}, \tau = \{\phi, \{a\}, \{b, c\}, X\}$ and $\sigma = \{\phi, \{a, b\}, Y\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be a function defined by f(a) = b, f(b) = c, f(c) = a. Then f is totally ψ gs-continuous.

Theorem 3.3. A function $f : (X, \tau) \to (Y, \sigma)$ is totally ψ gs-continuous if and only if the inverse image of every closed subset of (Y, σ) is a ψ gs-clopen subset of (X, τ) .

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ be a totally ψ gs-continuous function. Let V be any closed set in (Y, σ) . Then Y - V is open in (Y, σ) . Since f is totally ψ gs-continuous, $f^{-1}(Y - V) = X - f^{-1}(V)$ is ψ gs-clopen in (X, τ) which implies that $f^{-1}(V)$ is ψ gs-clopen in (X, τ) .

Conversely, assume that U is any open set in (Y, σ) . Then Y - U is closed in (Y, σ) . By assumption, $f^{-1}(Y - U) = X - f^{-1}(U)$ is ψ gs-clopen in (X, τ) which implies that $f^{-1}(U)$ is ψ gs-clopen in (X, τ) . Hence f is totally ψ gs-continuous.

Proposition 3.4. Every totally continuous function is a totally ψ gs-continuous function but not conversely.

Proof. Let V be any open set in (Y, σ) . Since f is totally continuous, $f^{-1}(V)$ is clopen in (X, τ) . By Result 2.2, $f^{-1}(V)$ is ψ gs-clopen in (X, τ) . Hence f is totally ψ gs-continuous.

Example 3.5. Let $X = Y = \{a, b, c\}, \tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ and $\sigma = \{\phi, \{a, b\}, Y\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be a function defined by f(a) = a, f(b) = c, f(c) = b. Then f is totally ψ gs-continuous but not totally continuous, since for the open set $\{a, b\}$ in $(Y, \sigma), f^{-1}(\{a, b\}) = \{a, c\}$ is ψ gs-clopen in (X, τ) but not clopen subset in (X, τ) .

Proposition 3.6. Every totally ψ gs-continuous function is a ψ gs-continuous function but not conversely.

Proof. Let $f:(X,\tau) \to (Y,\sigma)$ be a totally ψ gs-continuous function. Let V be any open set in (Y,σ) . Since f is totally ψ gs-continuous, $f^{-1}(V)$ is ψ gs-clopen in (X,τ) which implies that $f^{-1}(V)$ is ψ gs-open in (X,τ) . Hence f is ψ gs-continuous. \Box

Example 3.7. Let $X = Y = \{a, b, c\}, \tau = \{\phi, \{a, b\}, X\}$ and $\sigma = \{\phi, \{a\}, Y\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be the identity function. Then f is ψ gs-continuous but not totally ψ gs-continuous, since for the open set $\{a\}$ in $(Y, \sigma), f^{-1}(\{a\}) = \{a\}$ is ψ gs-open but not ψ gs-closed in (X, τ) .

Proposition 3.8. Every continuous function is independent from totally ψ gs-continuous function.

Example 3.9. Let $X = Y = \{a, b, c\}, \tau = \{\phi, \{a\}, \{a, b\}, X\}$ and $\sigma = \{\phi, \{a, b\}, Y\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be the identity function. Then f is continuous but not totally ψ gs-continuous, since for the open set $\{a, b\}$ in $(Y, \sigma), f^{-1}(\{a, b\}) = \{a, b\}$ is open but not ψ gs-clopen in (X, τ) .

Example 3.10. Let $X = Y = \{a, b, c\}, \tau = \{\phi, \{a\}, \{b, c\}, X\}$ and $\sigma = \{\phi, \{a\}, Y\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be a function defined by f(a) = c, f(b) = b, f(c) = a. Then f is totally ψ gs-continuous but not continuous, since for the open set $\{a\}$ in $(Y, \sigma), f^{-1}(\{a\}) = \{c\}$ is ψ gs-clopen but not open in (X, τ) .

Proposition 3.11. If $f:(X,\tau) \to (Y,\sigma)$ is totally ψ gs-continuous and X is ψ gs-connected, then Y is an indiscrete space.

Proof. Suppose Y is not indiscrete space. Let V be a non-empty open subset of Y. Since f is totally ψ gs-continuous, $f^{-1}(V)$ is non-empty ψ gs-clopen subset of X. Then $X = f^{-1}(V) \cup (f^{-1}(V))^C$. Thus X is union of two non-empty disjoint ψ gs-open sets which is a contradiction to the fact that X is ψ gs-connected. Therefore Y must be indiscrete space.

Theorem 3.12. Let $f : (X, \tau) \to (Y, \sigma)$ be any function from discrete space (X, τ) into a topological space (Y, σ) . Then f is totally ψ gs-continuous function if and only if

- (1). f is a continuous function.
- (2). f is a ψ gs-continuous function.

Proof.

(1). Assume that f is a totally ψ gs-continuous function. Let V be any open set in (Y, σ) . Then $f^{-1}(V)$ is ψ gs-clopen in (X, τ) . Since (X, τ) is discrete space, every subset of (X, τ) is open and closed in (X, τ) which implies that $f^{-1}(V)$ is open in (X, τ) . Therefore f is continuous.

Conversely, assume that f is continuous. Let V be any open set in (Y, σ) . Then $f^{-1}(V)$ is open in (X, τ) . Since (X, τ) is discrete space, every subset of (X, τ) is clopen in (X, τ) which implies that $f^{-1}(V)$ is ψ gs-clopen in (X, τ) . Therefore f is totally ψ gs-continuous.

(2). Assume that f is a totally ψ gs-continuous function. Let V be any open set in (Y, σ) . Then $f^{-1}(V)$ is ψ gs-clopen in (X, τ) . Since (X, τ) is discrete space, $f^{-1}(V)$ is open in (X, τ) . By Result 2.2, $f^{-1}(V)$ is ψ gs-open in (X, τ) . Therefore f is ψ gs-continuous.

Conversely, assume that f is ψ gs-continuous. Let V be any open set in (Y, σ) . Then $f^{-1}(V)$ is ψ gs-open in (X, τ) . Since (X, τ) is discrete space, $f^{-1}(V)$ is clopen in (X, τ) . By Result 2.2, $f^{-1}(V)$ is ψ gs-clopen in (X, τ) . Therefore f is totally ψ gs-continuous.

Proposition 3.13. The composition of two totally ψ gs-continuous functions need not be a totally ψ gs-continuous function as seen from the following example.

Example 3.14. Let $X = Y = Z = \{a, b, c\}, \tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}, \sigma = \{\phi, \{a\}, \{b, c\}, Y\}$ and $\eta = \{\phi, \{a, b\}, Z\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be the identity function and $g : (Y, \sigma) \to (Z, \eta)$ be the identity function. Then f and g are totally ψ gs-continuous but their composition $g \circ f : (X, \tau) \to (Z, \eta)$ is not totally ψ gs-continuous, since $\{a, b\}$ is open in (Z, η) , where as $(g \circ f)^{-1}(\{a, b\}) = \{a, b\}$ is not ψ gs-clopen in (X, τ) .

Proposition 3.15. If $f : (X, \tau) \to (Y, \sigma)$ is a totally ψ gs-continuous function and $g : (Y, \sigma) \to (Z, \eta)$ is a continuous function, then $g \circ f : (X, \tau) \to (Z, \eta)$ is a totally ψ gs-continuous function.

Proof. Let V be any open set in (Z, η) . Since g is continuous, $g^{-1}(V)$ is open in (Y, σ) . Since f is totally ψ gs-continuous, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is ψ gs-clopen in (X, τ) . Hence $g \circ f$ is a totally ψ gs-continuous function.

Proposition 3.16. Let $f: (X, \tau) \to (Y, \sigma)$ and $g: (Y, \sigma) \to (Z, \eta)$ be two functions, then $g \circ f: (X, \tau) \to (Z, \eta)$ is a totally ψ as-continuous function if

- (1). f is a totally ψ gs-continuous function and g is a totally continuous function.
- (2). f and g are totally continuous functions.

Proof.

- (1). Let V be any open set in (Z, η) . Since g is totally continuous, $g^{-1}(V)$ is clopen in (Y, σ) which implies $g^{-1}(V)$ is open in (Y, σ) . Since f is totally ψ gs-continuous, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is ψ gs-clopen in (X, τ) . Hence $g \circ f$ is a totally ψ gs-continuous function.
- (2). Let V be any open set in (Z, η) . Since g is totally continuous, $g^{-1}(V)$ is clopen in (Y, σ) which implies $g^{-1}(V)$ is open in (Y, σ) . Since f is totally continuous, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is clopen in (X, τ) . By Result 2.2, $(g \circ f)^{-1}(V)$ is ψ gs-clopen in (X, τ) . Hence $g \circ f$ is a totally ψ gs-continuous function.

4. ψ gs-Totally Continuous Function

Definition 4.1. A function $f : (X, \tau) \to (Y, \sigma)$ is called ψ gs-totally continuous if $f^{-1}(V)$ is clopen in (X, τ) for every ψ gs-open set V of (Y, σ) .

Example 4.2. Let $X = Y = \{a, b, c\}, \tau = \{\phi, \{a\}, \{b, c\}, X\}$ and $\sigma = \{\phi, \{a, b\}, Y\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be a function defined by f(a) = f(b) = f(c) = a. Then f is ψ gs-totally continuous.

Theorem 4.3. A function $f : (X, \tau) \to (Y, \sigma)$ is ψ gs-totally continuous if and only if the inverse image of every ψ gs-closed subset of (Y, σ) is a clopen subset of (X, τ) .

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ be a ψ gs-totally continuous function. Let V be any ψ gs-closed set in (Y, σ) . Then Y - V is ψ gs-open in (Y, σ) . Since f is ψ gs-totally continuous, $f^{-1}(Y - V) = X - f^{-1}(V)$ is clopen in (X, τ) which implies that $f^{-1}(V)$ is clopen in (X, τ) .

Conversely, assume that U is any ψ gs-open set in (Y, σ) . Then Y - U is ψ gs-closed in (Y, σ) . By assumption, $f^{-1}(Y - U) = X - f^{-1}(U)$ is clopen in (X, τ) which implies that $f^{-1}(U)$ is clopen in (X, τ) . Hence f is ψ gs-totally continuous.

Proposition 4.4. If $f:(X,\tau) \to (Y,\sigma)$ is a ψ gs-totally continuous function, then

- (1). f is a totally continuous function.
- (2). f is a totally ψ gs-continuous function.

Proof.

- (1). Let V be any open set in (Y, σ) . By Result 2.2, V is ψ gs-open in (Y, σ) . Since f is ψ gs-totally continuous, $f^{-1}(V)$ is clopen in (X, τ) . Therefore f is totally continuous.
- (2). Let V be any open set in (Y, σ) . By Result 2.2, V is ψ gs-open in (Y, σ) . Since f is ψ gs-totally continuous, $f^{-1}(V)$ is clopen in (X, τ) . By Result 2.2, $f^{-1}(V)$ is ψ gs-clopen in (X, τ) . Therefore f is totally ψ gs-continuous.

The converse of Proposition 4.4 (1) need not be true in general as seen from the following example.

Example 4.5. Let $X = Y = \{a, b, c\}, \tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$ and $\sigma = \{\phi, \{a\}, Y\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be a function defined by f(a) = c, f(b) = a, f(c) = b. Then f is totally continuous but not ψ gs-totally continuous, since for the ψ gs-open set $\{a, b\}$ in (Y, σ) , $f^{-1}(\{a, b\}) = \{b, c\}$ is not clopen in (X, τ) .

The converse of Proposition 4.4 (2) need not be true in general as seen from the following example.

Example 4.6. Let $X = Y = \{a, b, c\}, \tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$ and $\sigma = \{\phi, \{a, b\}, Y\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be a function defined by f(a) = a, f(b) = c, f(c) = b. Then f is totally ψ gs-continuous but not ψ gs-totally continuous, since for the ψ gs-open set $\{a\}$ in $(Y, \sigma), f^{-1}(\{a\}) = \{a\}$ is not clopen in (X, τ) .

Proposition 4.7. If $f: (X, \tau) \to (Y, \sigma)$ is a ψ gs-totally continuous function, then

- (1). f is a continuous function.
- (2). f is a ψ gs-continuous function.

Proof.

- (1). Let V be any open set in (Y, σ) . By Result 2.2, V is ψ gs-open in (Y, σ) . Since f is ψ gs-totally continuous, $f^{-1}(V)$ is clopen in (X, τ) which implies that $f^{-1}(V)$ is open in (X, τ) . Therefore f is continuous.
- (2). Let V be any open set in (Y, σ). By Result 2.2, V is ψgs-open in (Y, σ). Since f is ψgs-totally continuous, f⁻¹(V) is clopen in (X, τ) which implies that f⁻¹(V) is open in (X, τ). By Result 2.2, f⁻¹(V) is ψgs-open in (X, τ). Therefore f is ψgs-continuous.

The converse of Proposition 4.7 (1) need not be true in general as seen from the following example.

Example 4.8. Let $X = Y = \{a, b, c\}, \tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$ and $\sigma = \{\phi, \{a\}, \{a, b\}, Y\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be a function defined by f(a) = a, f(b) = c, f(c) = b. Then f is continuous but not ψ gs-totally continuous, since for the ψ gs-open set $\{a, c\}$ in $(Y, \sigma), f^{-1}(\{a, c\}) = \{a, b\}$ is not clopen in (X, τ) .

The converse of Proposition 4.7 (2) need not be true in general as seen from the following example.

Example 4.9. Let $X = Y = \{a, b, c\}, \tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$ and $\sigma = \{\phi, \{a, b\}, Y\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be defined by f(a) = a, f(b) = c, f(c) = b. Then f is ψ gs-continuous but not ψ gs-totally continuous, since for the ψ gs-open set $\{b\}$ in $(Y, \sigma), f^{-1}(\{b\}) = \{c\}$ is not clopen in (X, τ) .

Theorem 4.10. Let $f : (X, \tau) \to (Y, \sigma)$ be any function from discrete space (X, τ) into a topological space (Y, σ) . If f is a ψ gs-totally continuous function, then

- (1). f is a continuous function.
- (2). f is a ψ gs-continuous function.

Proof.

(1). Let V be any open set in (Y, σ) . By Result 2.2, V is ψ gs-open in (Y, σ) . Since f is ψ gs-totally continuous, $f^{-1}(V)$ is clopen in (X, τ) which implies that $f^{-1}(V)$ is open in (X, τ) . Therefore f is continuous.

(2). Let V be any open set in (Y, σ) . By Result 2.2, V is ψ gs-open in (Y, σ) . Since f is ψ gs-totally continuous, $f^{-1}(V)$ is clopen in (X, τ) which implies that $f^{-1}(V)$ is open in (X, τ) . By Result 2.2, $f^{-1}(V)$ is ψ gs-open in (X, τ) . Therefore f is ψ gs-continuous.

Proposition 4.11. Let $f : (X, \tau) \to (Y, \sigma)$ be a ψ gs-totally continuous function and $g : (Y, \sigma) \to (Z, \eta)$ be any function. Then $g \circ f : (X, \tau) \to (Z, \eta)$ is a totally ψ gs-continuous function if

- (1). g is a totally ψ gs-continuous function.
- (2). g is a totally continuous function.

Proof.

- (1). Let V be any open set in (Z, η) . Since g is totally ψ gs-continuous, $g^{-1}(V)$ is ψ gs-clopen in (Y, σ) which implies that $g^{-1}(V)$ is ψ gs-open in (Y, σ) . Since f is ψ gs-totally continuous, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is clopen in (X, τ) . By Result 2.2, $(g \circ f)^{-1}(V)$ is ψ gs-clopen in (X, τ) . Therefore $g \circ f$ is totally ψ gs-continuous.
- (2). Let V be any open set in (Z, η) . Since g is totally continuous, $g^{-1}(V)$ is clopen in (Y, σ) which implies that $g^{-1}(V)$ is open in (Y, σ) . By Result 2.2, $g^{-1}(V)$ is ψ gs-open in (Y, σ) . Since f is ψ gs-totally continuous, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is clopen in (X, τ) . By Result 2.2, $(g \circ f)^{-1}(V)$ is ψ gs-clopen in (X, τ) . Therefore $g \circ f$ is totally ψ gs-continuous.

Proposition 4.12. Let $f : (X, \tau) \to (Y, \sigma)$ be a ψ gs-totally continuous function and $g : (Y, \sigma) \to (Z, \eta)$ be any function. Then $g \circ f : (X, \tau) \to (Z, \eta)$ is a totally ψ gs-continuous function if

- (1). g is a continuous function.
- (2). g is a ψgs -continuous function.

Proof.

- (1). Let V be any open set in (Z, η) . Since g is continuous, $g^{-1}(V)$ is open in (Y, σ) . By Result 2.2, $g^{-1}(V)$ is ψ gs-open in (Y, σ) . Since f is ψ gs-totally continuous, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is clopen in (X, τ) . By Result 2.2, $(g \circ f)^{-1}(V)$ is ψ gs-clopen in (X, τ) . Therefore $g \circ f$ is totally ψ gs-continuous.
- (2). Let V be any open set in (Z, η) . Since g is ψ gs-continuous, $g^{-1}(V)$ is ψ gs-open in (Y, σ) . Since f is ψ gs-totally continuous, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is clopen in (X, τ) . By Result 2.2, $(g \circ f)^{-1}(V)$ is ψ gs-clopen in (X, τ) . Therefore $g \circ f$ is totally ψ gs-continuous.

Proposition 4.13. Let $f : (X, \tau) \to (Y, \sigma)$ and $g : (Y, \sigma) \to (Z, \eta)$ be any two functions. If g is a ψ gs-totally continuous function and if

- (1). f is a totally continuous function, then $g \circ f : (X, \tau) \to (Z, \eta)$ is a ψgs -totally continuous function.
- (2). f is a continuous function, then $g \circ f : (X, \tau) \to (Z, \eta)$ is a continuous function.
- (3). f is a ψ gs-continuous function, then $g \circ f : (X, \tau) \to (Z, \eta)$ is a ψ gs-continuous function.

Proof.

(1). Let V be any ψ gs-open set in (Z, η) . Since g is ψ gs-totally continuous, $g^{-1}(V)$ is clopen in (Y, σ) which implies that $g^{-1}(V)$ is open in (Y, σ) . Since f is totally continuous, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is clopen in (X, τ) . Therefore $g \circ f$ is ψ gs-totally continuous.

- (2). Let V be any open set in (Z, η) . By Result 2.2, V is ψ gs-open in (Z, η) . Since g is ψ gs-totally continuous, $g^{-1}(V)$ is clopen in (Y, σ) which implies that $g^{-1}(V)$ is open in (Y, σ) . Since f is continuous, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is open in (X, τ) . Therefore $g \circ f$ is continuous.
- (3). Let V be any open set in (Z, η) . By Result 2.2, V is ψ gs-open in (Z, η) . Since g is ψ gs-totally continuous, $g^{-1}(V)$ is clopen in (Y, σ) which implies that $g^{-1}(V)$ is open in (Y, σ) . Since f is ψ gs-continuous, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is ψ gs-open in (X, τ) . Therefore $g \circ f$ is ψ gs-continuous.

Proposition 4.14. Let $f : (X, \tau) \to (Y, \sigma)$ and $g : (Y, \sigma) \to (Z, \eta)$ be two ψ gs-totally continuous function, then $g \circ f : (X, \tau) \to (Z, \eta)$ is also a ψ gs-totally continuous function.

Proof. Let V be any ψ gs-open set in (Z, η) . Since g is ψ gs-totally continuous, $g^{-1}(V)$ is clopen in (Y, σ) . By Result 2.2, $g^{-1}(V)$ is ψ gs-clopen in (Y, σ) which implies that $g^{-1}(V)$ is ψ gs-open in (Y, σ) . Since f is ψ gs-totally continuous, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is clopen in (X, τ) . Therefore $g \circ f$ is ψ gs-totally continuous.

References

- K. Balachandran, P. Sundaram and H. Maki, On generalized continuous maps in topological spaces, Mem. Fac. Sci. Kochi Univ. Ser. A, Math., 12(1991), 5-13.
- [2] P. Bhattacharyya and B. K. Lahiri, Semi-generalized closed sets in topology, Indian J. Math., 29(1987), 376-382.
- R. Devi, H. Maki and K. Balachandran, Semi-generalized homeomorphisms and generalized semi-homeomorphism in topological spaces, Indian J. Pure. Appl. Math., 26(3)(1995), 271-284.
- [4] S. Gowsalya and N. Balamani, On ψ gs-closed sets in topological spaces, International Journal of Advance Foundation and Research in Computer, 3(4)(2016), 52-61.
- [5] S. Gowsalya and N. Balamani, ψ generalized semi closed sets in topological spaces, M.Sc. Thesis, Avinashilingam Institute for Home Science and Higher Education for Women University, Coimbatore, India, (2016).
- [6] R. C. Jain, The Role of Regular Open sets in General Topology, Ph.D. Thesis, Meerut University Institute of a Duanced Studies, Meerut, India, (1980).
- [7] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer, Math. Monthly, 70(1963), 36-41.
- [8] N. Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19(2)(1970), 89 -96.
- [9] P. Sundram, H. Maki and K. Balachandran, Semi-generalized continuous maps and semi-T_{1/2} spaces, Bull. Fukuoda Univ. Ed. Part III, 40(1991), 33-40.
- [10] M. K. R. S. Veerakumar, Between semi-closed sets and semi-pre closed sets, Rend. Istit. Mat. Univ. Trieste, (ITALY), XXXXII(2000), 25-41.