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1. Introduction

The notion homeomorphisms plays a very important role in General topology. By definition, a homeomorphism between

two topological spaces X and Y is a bijective map f : X → Y when both f and f−1 are continuous. Malghan [5] introduced

the concept of generalized closed maps in topological spaces. In this paper, we first introduce a new class of closed maps

called sgα-closed maps in topological space and then we introduce and study sgα∗-homeomorphisms and prove that the set

of all sgα∗-homeomorphisms forms a group under the operation composition of functions.

2. Preliminaries

Throughout this paper (X, τ) and (Y, σ) represent topological spaces on which no separation axioms are assumed unless

otherwise mentioned. For a subset A of a space (X, τ), Cl(A), Int(A) and Ac denote the closure of A, the interior of A and

the complement of A in X, respectively. We recall the following definitions and some results, which are used in the sequel.

Definition 2.1. A subset A of a space (X, τ) is called :

(1). semiopen [3] if A ⊆ Cl(Int(A)),

(2). α-open [4] if A ⊆ Int(Cl(Int(A))),

The complement of an α-open set is called an α-closed set. The α-closure of a subset A of X, denoted by αClX(A) briefly

αCl(A) is defined to be the intersection of all α-closed sets of X containing A.
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Definition 2.2. A subset A of a space (X, τ) is called a semi-generalized α-closed (briefly sgα-closed) [6] if αCl(A) ⊆ U

whenever A ⊆ U and U is semiopen in (X, τ). The complement of a sgα-closed set is called a sgα-open set.

Definition 2.3. A function f : (X, τ)→ (Y, σ) is called :

(1). sgα-continuous [7] if f−1(V ) is sgα-closed in (X, τ) for every closed set V in (Y, σ),

(2). sgα-irresolute if f−1(V ) is sgα-closed in (X, τ) for every sgα-closed set V in (Y, σ),

(3). irresolute [2] if f−1(V ) is semiclosed (semiopen) in (X, τ) for each semiclosed (semiopen) set V of (Y, σ).

Definition 2.4 ([6]). Let (X, τ) be a topological space and E ⊆ X. We define the sgα-closure of E to be the intersection of

all sgα-closed sets of X containing E and is denoted by sgα-Cl(E).

Theorem 2.5 ([6]). Let (X, τ) be a topological space and E ⊆ X. The following properties are hold:

(1). sgα-Cl(E) is the smallest sgα-closed set containing E and,

(2). E is sgα-closed if and only if sgα-Cl(E) = E.

Theorem 2.6 ([6]). For any two subsets A and B of (X, τ),

(1). If A ⊆ B, then sgα-Cl(A) ⊆ sgα-Cl(B),

(2). sgα-Cl(A ∩B) ⊆ sgα-Cl(A) ∩ sgα-Cl(B).

Theorem 2.7 ([6]). Suppose that B ⊆ A ⊆ X, B is a sgα-closed set relative to A and that A is open and sgα-closed in

(X, τ). Then B is sgα-closed in (X, τ).

Corollary 2.8 ([6]). If A is a sgα-closed set and F a closed set, then A ∩ F is a sgα-closed set.

Theorem 2.9 ([6]). A set A is sgα-open in (X, τ) if and only if F ⊆ Int(A) whenever F is semiclosed in (X, τ) and F ⊆ A.

Definition 2.10 ([6]). Let (X, τ) be a topological space and E ⊆ X. We define the sgα-interior of E to be the union of all

sgα-open sets of X contained in E and is denoted by sgα-Int(E).

Lemma 2.11 ([6]). For any E ⊆ X, Int(E) ⊆ sgα-Int(E) ⊆ E.

Proof. Since every open set is sgα-open, the proof follows immediately.

3. sgα-Closed Functions

Definition 3.1. A function f : (X, τ)→ (Y, σ) is said to be sgα-closed if the image of every closed set in (X, τ) is sgα-closed

in (Y, σ).

Example 3.2. Let X = {a, b, c}, τ = {∅, {a}, {b}, {a, b}, X} and σ = {∅, {a}, {b, c}, X}. Then the identity function f :

(X, τ) → (X,σ) is a sgα-closed function.

Theorem 3.3. A function f : (X, τ) → (Y, σ) is sgα-closed if and only if sgα-Cl(f(A)) ⊆ f(Cl(A)) for every subset A of

(X, τ).
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Proof. Suppose that f is sgα-closed and A ⊆ X. Then f(Cl(A)) is sgα-closed in (Y, σ). We have f(A) ⊆ f(Cl(A)) and

by Theorems 2.5 and 2.6, sgα-Cl(f(A)) ⊆ sgα-Cl(f(Cl(A))) = f(Cl(A)). Conversely, let A be any closed set in (X, τ).

Then A = Cl(A) and so f(A) = f(Cl(A)) ⊇ sgα-Cl(f(A)), by hypothesis. We have f(A) ⊆ sgα-Cl(f(A)) by Theorem 2.5.

Therefore, f(A) = sgα-Cl(f(A)); hence f(A) is sgα-closed by Theorem 2.5. Therefore f is a sgα-closed function.

Theorem 3.4. A function f : (X, τ)→ (Y, σ) is sgα-closed if and only if for each subset S of (Y, σ) and for each open set

U containing f−1(S) there exists a sgα-open set V of (Y, σ) such that S ⊆ V and f−1(V ) ⊆ U .

Proof. Suppose that the function f is sgα-closed. Let S ⊆ Y and U be an open subset of (X, τ) such that f−1(S) ⊆ U .

Then V = (f(Uc))c is a sgα-open set containing S such that f−1(V ) ⊆ U . For the converse, let S be a closed set of (X, τ).

Then f−1((f(S))c) ⊆ Sc and Sc is open in X. By assumption, there exists a sgα-open set V of (Y, σ) such that (f(S))c

⊆ V , follows that f−1(V ) ⊆ Sc and so S ⊆ (f−1(V ))c. Hence V c ⊆ f(S) ⊆ f((f−1(V ))c) ⊆ V c which implies f(S) = V c.

Since V c is sgα-closed, f(S) is sgα-closed and therefore f is sgα-closed.

Theorem 3.5. If f : (X, τ)→ (Y, σ) is irresolute sgα-closed and A is a sgα-closed subset of (X, τ), then f(A) is sgα-closed.

Proof. Let U be a semiopen set in (Y, σ) such that f(A) ⊆ U . Since f is irresolute, f−1(U) is a semiopen set containing

A. Hence αCl(A) ⊆ f−1(U) as A is sgα-closed (X, τ). Since f is sgα-closed, f(Cl(A)) is a sgα-closed set contained in the

semiopen set U , which implies that αCl(f(Cl(A))) ⊆ U and hence αCl(f(A)) ⊆ U . Therefore, f(A) is a sgα-closed set.

Remark 3.6. The converse of the Theorem 3.5 is not true in general. The function f defined in Example 3.2 is f(A) is

sgα-closed but not irresolute.

The following example shows that the composition of two sgα-closed functions is not a sgα-closed function.

Example 3.7. Let (X, τ), (X,σ) and f be as in Example 3.2. Let Z = {a, b, c} and η = {∅, {a, c}, Z}. Define a function

g : (X,σ) → (Z, η) by g(a) = g(b) = b and g(c) = a . Then both f and g are sgα-closed functions but their composition

g ◦ f : (X, τ) → (Z, σ) is not a sgα-closed function, since for the closed set {c} in (X, τ), (g ◦ f)({c}) = {a}, which is not

sgα-closed in (Z, η).

Corollary 3.8. Let f : (X, τ) → (Y, σ) be a sgα-closed function and g : (Y, σ) → (Z, η) be sgα-closed irresolute function,

then their composition g ◦ f : (X, τ)→ (Z, σ) is sgα-closed.

Proof. Let A be a closed subset of (X, τ). Then by hypothesis f(A) is a sgα-closed set in (Y, σ). Since g is sgα-closed

and irresolute by Theorem 3.5, g(f(A)) = (g ◦ f)(A) is sgα-closed in (Z, η) and hence g ◦ f is sgα-closed .

Theorem 3.9. Let f : (X, τ)→ (Y, σ) and g : (Y, σ)→ (Z, η) be two functions such that their composition g ◦ f : (X, τ)→

(Z, η) be a sgα-closed function. Then the following statements are true.

(1). If f is continuous and surjective, then g is sgα-closed.

(2). If g is sgα-irresolute and injective, then f is sgα-closed.

Proof.

(1). Let A be a closed set of (Y, σ). Since f is continuous, f−1(A) is closed in (X, τ) and since g ◦ f is sgα-closed,

(g ◦ f)(f−1(A)) is sgα-closed in (Z, η). Then g(A) is sgα-closed in (Z, η), since f is surjective. Therefore, g is sgα-

closed.
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(2). Let B be a closed set of (X, τ). Since g ◦ f is sgα-closed, (g ◦ f)(B) is sgα-closed in (Z, η). Since g is sgα-irresolute,

g−1((g ◦f)(B)) is sgα-closed in (Y, σ). Then f(B) is sgα-closed in (Y, σ), since g is injective. Thus, f is sgα-closed.

As for the restriction fA of a function f : (X, τ)→ (Y, σ) to a subset A of (X, τ), we have the following:

Theorem 3.10. Let (X, τ) and (Y, σ) be topological spaces. Then

(1). If f : (X, τ)→ (Y, σ) is sgα-closed and A is a closed subset of (X, τ), then fA: (A, τA) → (Y, σ) is sgα-closed.

(2). If f : (X, τ)→ (Y, σ) is irresolute sgα-closed and A is an open subset of (X, τ), then fA: (A, τA) → (Y, σ) is sgα-closed.

(3). If f : (X, τ) → (Y, σ) is sgα-closed (resp. closed) and A = f−1(B) for some closed (resp. sgα-closed) set B of (Y, σ),

then fA: (A, τA) → (Y, σ) is sgα-closed.

Proof.

(1). Let B be a closed set of A. Then B = A ∩ F for some closed set F of (X, τ) and so B is closed in (X, τ). By hypothesis,

f(B) is sgα-closed in (Y, σ). But f(B) = fA(B) and therefore fA is sgα-closed.

(2). Let C be a closed set of A. Then C is sgα-closed relative to A. Since A is both open and sgα-closed, C is sgα-closed,

by Theorem 2.7. Since f is both irresolute and sgα-closed, f(C) is sgα-closed in (Y, σ), by Theorem 3.5. Since f(C) =

fA(C), fA is sgα-closed.

(3). Let D be a closed set of A. Then D = A ∩ H for some closed set H in (X, τ). Now fA(D) = f(D) = f(A ∩ H) =

f(f−1(B) ∩ H) = B ∩ f(H). Since f is sgα-closed, f(H) is sgα-closed and so B ∩ f(H) is sgα-closed in (Y, σ) by

Corollary 2.8. Therefore, fA is a sgα-closed function.

The next theorem shows that normality is preserved under continuous sgα-closed functions.

Theorem 3.11. If f : (X, τ)→ (Y, σ) is a continuous, sgα-closed function from a normal space (X, τ) onto a space (Y, σ),

then (Y, σ) is normal.

Proof. Let A and B be two disjoint closed subsets of (Y, σ). Since f is continuous, f−1(A) and f−1(B) are disjoint closed

sets of (X, τ). Since (X, τ) is normal, there exist disjoint open sets U and V of (X, τ) such that f−1(A) ⊆ U and f−1(B)

⊆ V . Since f is sgα-closed, by Theorem 3.4, there exist disjoint sgα-open sets G and H in (Y, σ) such that A ⊆ G, B ⊆

H, f−1(G) ⊆ U and f−1(H) ⊆ V . Since U and V are disjoint, α Int(G) and α Int(H) are also disjoint α-open and hence

sgα-open sets in (Y, σ). Since A is closed, A is semiclosed and A ⊆ G, B ⊆ H, we have by Theorem 2.9, A ⊆ α Int(G).

Similarly B ⊆ α Int(H) and hence (Y, σ) is α-normal.

Analogous to a sgα-closed function, we define a sgα-open function as follows:

Definition 3.12. A function f : (X, τ)→ (Y, σ) is said to a sgα-open function if the image f(A) is sgα-open in (Y, σ) for

each open set A in (X, τ).

Theorem 3.13. For any bijective function f : (X, τ)→ (Y, σ), the following statements are equivalent:

(1). f−1 : (Y, σ)→ (X, τ) is sgα-continuous,

(2). f is sgα-open,

(3). f is sgα-closed.
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Proof. (1)⇒ (2): Let U be an open subset of (X, τ). By assumption (f−1)−1(U) = f(U) is sgα-open in (Y, σ) and so f

is sgα-open.

(2)⇒ (3): Let F be a closed subset of (X, τ). Then F c is open in (X, τ). By assumption, f(F c) is sgα-open in (Y, σ). Then

f(F c) = (f(F ))c is sgα-open in (Y, σ) and therefore f(F ) is sgα-closed in (Y, σ). Hence f is sgα-closed.

(3) ⇒ (1): Let F be a closed set in (X, τ). By assumption f(F ) is sgα-closed in (Y, σ). But f(F ) = (f−1)−1(F ) and

therefore f−1 is sgα-continuous on Y .

Definition 3.14. Let x be a point of (X, τ) and V be a subset of X. Then V is called a sgα-neighbourhood [7] of x in

(X, τ) if there exists a sgα-open set U of (X, τ) such that x ∈ U ⊆ V .

In the next two theorems, we obtain various characterizations of sgα-open functions.

Theorem 3.15. Let f : (X, τ) → (Y, σ) be a function. Then the following statements are equivalent:

(1). f is a sgα-open function.

(2). For a subset A of (X, τ), f(Int(A)) ⊆ sgα-Int(f(A)).

(3). For each x ∈ X and for each neighbourhood U of x in (X, τ), there exists a sgα-neighbourhood W of f(x) in (Y, σ) such

that W ⊆ f(U).

Proof. (1) ⇒ (2): Suppose f is sgα-open. Let A ⊆ X. Then Int(A) is open in (X, τ) and so f(Int(A)) is sgα-open in

(Y, σ). But f(Int(A)) ⊆ f(A). Therefore, by Lemma 2.11, f(Int(A)) ⊆ sgα-Int(f(A)).

(2) ⇒ (3): Suppose (2) holds. Let x ∈ X and U be an arbitrary neighbourhood of x in (X, τ). Then there exists an open

set G such that x ∈ G ⊆ U . By assumption, f(G) = f(Int(G)) ⊆ sgα-Int(f(G)). This implies f(G) = sgα-Int(f(G)). By

Lemma 2.11, we have f(G) is sgα-open in (Y, σ). Further, f(x) ∈ f(G) ⊆ f(U) and so (3) holds, by taking W = f(G).

(3)⇒ (1): Suppose (3) holds. Let U be any open set in (X, τ), x ∈ U and f(x) = y. Then y ∈ f(U) and for each y ∈ f(U),

by assumption there exists a sgα-neighbourhood Wy of y in (Y, σ) such that Wy ⊆ f(U). Since Wy is a sgα-neighbourhood

of y, there exists a sgα-open set Vy in (Y, σ) such that y ∈ Vy ⊆ Wy . Therefore, f(U) =
⋃
{Vy : y ∈ f(U)} is a sgα-open

set in (Y, σ). Thus, f is a sgα-open function.

Theorem 3.16. A function f : (X, τ) → (Y, σ) is sgα-open if and only if for any subset B of (Y, σ) and for any closed set

S containing f−1(B), there exists a sgα-closed set A of (Y, σ) containing B such that f−1(A) ⊆ S.

Proof. Similar to Theorem 3.4.

Corollary 3.17. A function f : (X, τ) → (Y, σ) is sgα-open if and only if f−1(sgα-Cl(B)) ⊆ Cl(f−1(B)) for every subset

B of (Y, σ).

Proof. Suppose that f is sgα-open. Let B any subset of Y , then f−1(B) ⊆ Cl(f−1(B)). By Theorem 3.16, there exists

a sgα-closed set A of (Y, σ) such that B ⊆ A and f−1(A) ⊆ Cl(f−1(B)). Since A is sgα-closed set (Y, σ), follows f−1(sgα-

Cl(B)) ⊆ f−1(A) ⊆ Cl(f−1(B)). Conversely, let S be any subset of (Y, σ) and F be any closed set containing f−1(S).

Put A = sgα-Cl(S). Then A is sgα-closed and S ⊆ A. By assumption, f−1(A) = f−1(sgα-Cl(S)) ⊆ Cl(f−1(S)) ⊆ A and

therefore by Theorem 3.16, f is sgα-open.

Finally in this section, we define another new class of functions called sgα∗-closed functions which are stronger than sgα-

closed functions.
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Definition 3.18. A function f : (X, τ) → (Y, σ) is said to be a sgα∗-closed function if the image f(A) is sgα-closed in

(Y, σ) for every sgα-closed set A in (X, τ).

For example, the function f in Example 3.2 is a sgα∗-closed function.

Remark 3.19. Since every closed set is a sgα-closed set we have every sgα∗-closed function is a sgα-closed function. The

converse is not true in general as seen from the following example.

Example 3.20. Let X = Y = {a, b, c}, τ = {∅, {a, b}, X}, σ = {∅, {a}, {a, b}, Y} and f : (X, τ) → (Y, σ) be the identity

function. Then f is sgα-closed but not sgα∗-closed, since {a, c} is a sgα-closed set in (X, τ), but its image under f is {a, c},

which is not sgα-closed in (Y, σ).

Theorem 3.21. A function f : (X, τ) → (Y, σ) is sgα∗-closed if and only if sgα-Cl(f(A)) ⊆ f(sgα-Cl(A)) for every subset

A of (X, τ).

Proof. Similar to Theorem 3.3.

Analogous to sgα∗-closed function we can also define sgα∗-open function.

Theorem 3.22. For any bijective function f : (X, τ) → (Y, σ), the following are equivalent:

(1). f−1 :(Y, σ) → (X, τ) is sgα-irresolute,

(2). f is a sgα∗-open,

(3). f is a sgα∗-closed function.

Proof. Similar to Theorem 3.13.

Theorem 3.23. If f : (X, τ) → (Y, σ) is irresolute sgα-closed functions, then it is sgα∗-closed.

Proof. Follows from Theorem 3.5.

The following example shows that the converse of Theorem 3.23 is not true in general.

Example 3.24. Let X = {a, b, c}, τ = {∅, {a}, X} and σ = {∅, {a}, {b, c}, X}. Then the identity function f : (X, τ) →

(X,σ) is sgα∗-closed but none of irresolute sgα-closed.

Lemma 3.25 ([6]). Let A be a subset of X. Then p ∈ sgα-Cl(A) if and only if for any sgα-neighborhood N of p in X,

A ∩N 6= ∅.

Definition 3.26. Let A be a subset of X. A function r : X → A is called a sgα-continuous retraction if r is sgα-continuous

and the restriction rA is the identity mapping on A.

Definition 3.27. A topological space (X, τ) is called a sgα-Hausdorff if for each pair x, y of distinct points of X, there

exists sgα-neighborhoods U1 and U2 of x and y, respectively, that are disjoint.

Example 3.28. Let X = {a, b, c} and τ = {∅, {a}, {b, c}, X}. Clearly, the topological space (X, τ) is a sgα-Hausdorff space.

Theorem 3.29. Let A be a subset of X and r : X → A be a sgα-continuous retraction. If X is sgα-Hausdorff, then A is a

sgα-closed set of X.
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Proof. Suppose that A is not sgα-closed. Then there exists a point x in X such that x ∈ sgα-Cl(A) but x /∈ A. It follows

that r(x) 6= x because r is sgα-continuous retraction. Since X is sgα-Hausdorff, there exists disjoint sgα-open sets U and V

in X such that x ∈ U and r(x) ∈ V . Now let W be an arbitrary sgα-neighborhood of x. Then W ∩U is a sgα-neighborhood

of x. Since x ∈ sgα-Cl(A), by Lemma 3.25, we have (W ∩U)∩A 6= ∅. Therefore there exists a point y in W ∩U ∩A. Since

y ∈ A, we have r(y) = y ∈ U and hence r(y) /∈ V . This implies that r(W ) * V because y ∈ W . This is contrary to the

sgα-continuity of r. Consequently, A is a sgα-closed set of X.

Theorem 3.30. Let {Xi|i ∈ I} be any family of topological spaces. If f : X → ΠXi is a sgα-continuous mapping, then

Pr1 ◦ f : X → Xi is sgα-continuous for each i ∈ I, where Pr1 is the projection of ΠXj on Xi.

Proof. We shall consider a fixed i ∈ I. Suppose Ui is an arbitrary open set in Xi. Then P−1
r1 (Ui) is open in ΠXi. Since f

is sgα-continuous, we have f−1(P−1
r1 (Ui)) = (Pr1 ◦f)−1(Ui) is a sgα-open set in X. Therefore, Pr1 ◦f is sgα-continuous.

4. sgα∗-Homeomorphisms

In this section, we introduced the following definition:

Definition 4.1. A bijective function f : (X, τ) → (Y, σ) is said to be sgα∗-homeomorphism if both f and f−1 are sgα-

irresolute.

We denote the family of all sgα∗-homeomorphisms of a topological space (X, τ) onto itself by sgα∗-h(X, τ).

Theorem 4.2. If f : (X, τ) → (Y, σ) and g : (Y, σ) → (Z, η) are sgα∗-homeomorphisms, then their composition g ◦ f :

(X, τ) → (Z, η) is also sgα∗-homeomorphism.

Proof. Let U be a sgα-open set in (Z, σ). Now, (g◦f)−1(U) = f−1(g−1(U)) = f−1(V ), where V = g−1(U). By hypothesis,

V is sgα-open in (Y, σ) and so again by hypothesis, f−1(V ) is sgα-open in (X, τ). Therefore, g ◦f is sgα-irresolute. Also for

a sgα-open set G in (X, τ), we have (g ◦ f)(G) = g(f(G)) = g(W ), where W = f(G). By hypothesis, f(G) is sgα-open in

(Y, σ) and so again by hypothesis, g(f(G)) is sgα-open in (Z, η). i.e., (g ◦ f)(G) is sgα-open in (Z, η) and therefore (g ◦ f)−1

is sgα-irresolute. Hence g ◦ f is a sgα∗-homeomorphism.

On sgα∗-h(X, τ), we define a binary operation ∗: sgα∗-h(X, τ) × sgα∗-h(X, τ) → sgα∗-h(X, τ) by f ∗ g = g ◦ f . It is easy

to see that the operation ∗ is well define, see Theorem 4.2 and associative, also the identity function I: (X, τ) → (X, τ)

belongs to sgα∗-h(X, τ) serves as the identity element. From all of this, we obtain the following theorem

Theorem 4.3. The set sgα∗-h(X, τ) is a group under the composition of functions.

Theorem 4.4. Let f : (X, τ) → (Y, σ) be a sgα∗-homeomorphism. Then f induces an isomorphism from the group sgα∗-

h(X, τ) onto the group sgα∗-h(Y, σ).

Proof. Using the function f , we define a function θf : sgα∗-h(X, τ) → sgα∗-(Y, σ) by θf (h) = f ◦ h ◦ f−1 for every h ∈

sgα∗-h(X, τ). Then θf is a bijection. Further, for all h1, h2 ∈ sgα∗-h(X, τ), θf (h1 ◦h2) = f ◦ (h1 ◦h2) ◦ f−1 = (f ◦h1 ◦f−1)

◦ (f ◦ h2 ◦ f−1) = θf (h1) ◦ θf (h2). Therefore, θf is a homeomorphism and so it is an isomorphism induced by f .

Theorem 4.5. sgα∗-homeomorphism is an equivalence relation in the collection of all topological spaces.

Proof. Reflexivity and symmetry are immediate and transitivity follows from Theorem 4.2.

Theorem 4.6. If f : (X, τ) → (Y, σ) is sgα∗-homeomorphism, then sgα-Cl(f−1(B)) = f−1(sgα− Cl(B)) for all B ⊆ Y .
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Proof. Since f is sgα∗-homeomorphism, f is sgα-irresolute. Since sgα-Cl(f(B)) is a sgα-closed set in (Y, σ), f−1(sgα-

Cl(f(B))) is sgα-closed in (X, τ). Now, f−1(B) ⊆ f−1(sgα-Cl(B)) and so by Theorem 2.6, sgα-Cl(f−1(B)) ⊆ f−1(sgα-

Cl(B)). Again since f is a sgα∗-homeomorphism, f−1 is sgα-irresolute. Since sgα-Cl(f−1(B)) is sgα-closed in (X, τ),

(f−1)−1(sgα-Cl(f−1(B))) = f(sgα-Cl(f−1(B))) is sgα-closed in (Y, σ). Now, B ⊆ (f−1)−1(f−1(B))) ⊆ (f−1)−1(sgα-

Cl(f−1(B))) = f(sgα-Cl(f−1(B))) and so sgα-Cl(B) ⊆ f(sgα-Cl(f−1(B))). Therefore, f−1(sgα-Cl(B)) ⊆ f−1(f(sgα-

Cl(f−1(B)))) ⊆ sgα-Cl(f−1(B) and hence the equality holds.

Corollary 4.7. If f : (X, τ) → (Y, σ) is sgα∗-homeomorphism, then sgα-Cl(f(B)) = f(sgα-Cl(B)) for all B ⊆ X.

Proof. Since f : (X, τ) → (Y, σ) is sgα∗-homeomorphism, f−1: (Y, σ) → (X, τ) is also sgα∗-homeomorphism. Therefore,

by Theorem 4.6, sgα-Cl((f−1)−1(B)) = (f−1)−1(sgα-Cl(B)) for all B ⊆ X. i.e., sgα-Cl(f(B)) = f(sgα-Cl(B)).

Corollary 4.8. If f : (X, τ) → (Y, σ) is sgα∗-homeomorphism, then f(sgα-Int(B)) = sgα-Int(f(B)) for all B ⊆ X.

Proof. For any set B ⊆ X, sgα-Int(B) = (sgα-Cl(Bc))c. Thus,

f(sgα-Int(B)) = f((sgα-Cl(Bc))c)

= (f(sgα-Cl(Bc)))c

= (sgα-Cl(f(Bc)))c, by Corollary 4.7

= (sgα-Cl((f(B))c))c = sgα-Int(f(B)).

Corollary 4.9. If f : (X, τ) → (Y, σ) is sgα∗-homeomorphism, then f−1(sgα-Int(B)) = sgα-Int(f−1(B)) for all B ⊆ Y .

Proof. Since f−1: (Y, σ) → (X, τ) is also sgα∗-homeomorphism, the proof follows from Corollary 4.8.
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