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Abstract : A study of the reflection and transmission of elastic waves from a plane surface separating a viscous

liquid half space and a fluid saturated porous half space is presented when a longitudinal or a transverse wave

impinge obliquely at the interface. Amplitude ratios of various reflected and transmitted waves are obtained

using suitable boundary conditions at the interface. The amplitude ratios have been computed numerically for

a particular model and the results obtained are presented graphically. It is observed that the amplitude ratios

depend not only on the angle of incidence of the incident wave, but also on material properties of the medium

through which the waves traversed. Special cases with empty porous half space medium and inviscid liquid half

space has been obtained from the present investigation.
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1 Introduction

Due to the importance of porous media in different branches of study like material science, petroleum industry,

soil mechanics, geophysics, seismology, earth sciences, earthquake engineering and civil engineering etc., many

researchers made a considerable work on porous medium by taking different theories for the porous medium. Based

on the work of Von Terzaghi ([20, 21]), Biot [2] proposed a general theory of three dimensional deformations of

fluid saturated porous solids. Biot ([3, 4, 5]) showed the propagation of two dilatational waves and one rotational

elastic wave in fluid saturated porous solids. Many researchers worked by taking the Biot theory of Poroelasticity,

e.g. Berryman [1], Vashishth, Sharma, and Gogna [22], Kumar, Miglani and Garg [15] and Sharma [18] etc.

1Corresponding author E-Mail: neelamkumaricdlu@gmail.com (Neelam Kumari)



2 Int. J. Math. And Its App. Vol.2 No.4 (2014)/ Aseem Miglani and Neelam Kumari

Biot’s theory was based on the assumption of compressible constituents. But there are sufficient reasons for

considering the fluid saturated porous constituents as incompressible, for example, soil in which both the solid as

well as liquid constituents are incompressible. Bowen [6] and de Boer & Ehlers ([8, 9]) developed an interesting

theory for porous medium in which all the constituents are incompressible. The assumption of incompressible

constituents resembles the properties appearing in many porous media materials, which are of use in many

branches of study stated above. It also avoids the introduction of many complicated material parameters as

considered in the Biot theory. Based on this theory, many researchers like de Boer & Didwania [7], de Boer &

Liu([11, 12]), Kumar & Hundal [13], Tajuddin & Hussaini [19] and Kumar et.al.[16] etc. studied some problems

of wave propagation in fluid saturated porous media.

In the present study, i.e., the reflection and transmission of longitudinal and transverse waves at an interface

between a viscous liquid half space and a fluid saturated porous half space,we have used the porous media theory

given by de Boer and Ehlers [9]. The model considered is assumed to exist in the oceanic crust part of the earth

and the propagation of wave through such a model will be of great use in the fields related to earth sciences.

Special cases of the problem are also solved by taking the fluid saturated porous half space to be empty porous

solid and viscous liquid half space to be inviscid liquid half space. Amplitude ratios of various reflected and

transmitted waves are computed for a particular model and the results are shown graphically to discuss them.

2 Basic equations

The equations governing the deformation of an incompressible porous medium saturated with non-viscous fluid

in the absence of body forces are given by de Boer and Ehlers [9] as

∇.
(
ηSu̇S + ηF u̇F

)
= 0, (2.1)(

λS+µS
)
∇
(
∇.uS

)
+µS∇2uS−ηS∇p−ρSüS+Sv

(
u̇F−u̇S

)
= 0 (2.2)

ηF∇p+ ρF üF +Sv

(
u̇F−u̇S

)
= 0, (2.3)

TS
E= 2µSES+λS

(
ES .I

)
I (2.4)

ES=
1

2

(
grad uS+gradTuS

)
(2.5)

where ui, u̇i, üi, i = F, S denote the displacement, velocity and acceleration of fluid and solid phases,

respectively and p is the effective pore pressure of the incompressible pore fluid. ρS and ρFare the densities of

the solid and fluid constituents, respectively. TS
E is the effective stress in the solid phase and ES is the linearized

langrangian strain tensor. λS and µS are the macroscopic Lame’s parameters of the porous solid and ηS and ηF

are the volume fractions satisfying

ηS+ηF = 1. (2.6)

In the case of isotropic permeability, the tensor Sv describing the coupled interaction between the solid and fluid

is given by de Boer and Ehlers [9] as

Sv=

(
ηF
)2
γFR

K
I (2.7)
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where γFR is the specific weight of the fluid and K is the Darcy’s permeability coefficient of the porous medium

and I stands for unit vector. Assuming the displacement vector ui (i = F, S) as

ui=
(
ui, 0, wi

)
,where i = F, S, (2.8)

and hence Equation (2.1)- (2.3) give the equations of motion for fluid saturated incompressible porous medium

in the component form as

(
λS+µS

) ∂θS
∂x

+µS∇2umS−ηS ∂p
∂x
−ρS ∂

2uS

∂t2
+Sv

[
∂uF

∂t
−∂u

S

∂t

]
= 0, (2.9)

(
λS+µS

) ∂θS
∂z

+µS∇2wS−ηS ∂p
∂z
−ρS ∂

2wS

∂t2
+Sv

[
∂wF

∂t
−∂w

S

∂t

]
= 0, (2.10)

ηF
∂p

∂x
+ρF

∂2uF

∂t2
+Sv

[
∂uF

∂t
−∂u

S

∂t

]
= 0, (2.11)

ηF
∂p

∂z
+ρF

∂2wF

∂t2
+Sv

[
∂wF

∂t
−∂w

S

∂t

]
= 0, (2.12)

ηS
[
∂2uS

∂x∂t
+
∂2wS

∂z∂t

]
+ηF

[
∂2uF

∂x∂t
+
∂2wF

∂z∂t

]
= 0, (2.13)

where

θS=
∂
(
uS
)

∂x
+
∂
(
wS
)

∂z
, (2.14)

and

∇2 =
∂2

∂x2
+

∂2

∂z2
. (2.15)

Using the Helmholtz decomposition of displacement vector, the displacement components ui and wi are related

to the potential functions φi and ψi as

ui=
∂φi

∂x
+
∂ψi

∂z
, wi=

∂φi

∂z
−∂ψ

i

∂x
, i = F, S. (2.16)

Using, (2.16) in Equations (2.9)–(2.13), we obtain the following equations:

∇2φS− 1

C2

∂2φS

∂t2
− Sv

(λS+2µS) (ηF )2
∂φS

∂t
= 0 (2.17)

φF = − η
S

ηF
φS , (2.18)

µS∇2ψS−ρS ∂
2ψS

∂t2
+Sv

[
∂ψF

∂t
−∂ψ

S

∂t

]
= 0, (2.19)

ρF
∂2ψF

∂t2
+Sv

[
∂ψF

∂t
−∂ψ

S

∂t

]
= 0, (2.20)

(
ηF
)2
p−ηSρF ∂

2φS

∂t2
−Sv

∂φS

∂t
= 0, (2.21)

where

C =

√
(ηF )2 (λS + 2µS)

(ηF )2 ρS + (ηS)2 ρF
(2.22)
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Also, the normal and tangential stresses in the solid phase takes the form,

tSzz=λS

(
∂2φS

∂x2
+
∂2φS

∂z2

)
+2µS

(
∂2?S

∂z2
−∂

2ψS

∂x∂z

)
, (2.23)

tSzx=µS

(
2
∂2φS

∂x∂z
+
∂2ψS

∂z2
−∂

2ψS

∂x2

)
. (2.24)

The time harmonic solution of the system of Equations (2.17)–(2.21) can be considered as(
φS , φF , ψS , ψF , p

)
=
(
φS
1 , φ

F
1 , ψ

S
1 , ψ

F
1 , p1

)
exp (iωt) , (2.25)

where ω is the complex circular frequency. Making use of (2.25) in Equations (2.17)–(2.21), we obtain[
∇2+

ω2

C1
2−

iωSv

(λS+2µS) (ηF )2

]
φ1

S = 0 (2.26)[
µS∇2

+ρSω2−iωSv

]
ψ1

S=−iωSvψ1
F (2.27)

[
−ω2ρF +iωSv

]
ψ1

F−iωSvψ1
S = 0 (2.28)(

ηF
)2
p1 + ηSρFω2φS

1 − iωSvφ
S
1 = 0 (2.29)

φF
1 = − η

S

ηF
φ1

S . (2.30)

Equation (2.26) represents the propagation of a longitudinal wave with velocity V1, given by

V 2
1 =

1

G1
, (2.31)

where

G1=

[
1

C1
2−

iSv

ω (λS+2µS) (ηF )2

]
. (2.32)

From equations (2.27) and (2.28), we obtain

[
∇2+

ω2

V2
2

]
ψ1

S = 0 (2.33)

Equation (2.33) corresponds to the propagation of a transverse wave with velocity V2, given by V 2
2 = 1

G2
, where

G2=

{
ρS

µS
− iSv

µSω
− Sv

2

µS (−ρSω2+iωSv)

}
, (2.34)

Further, following Fehler (1982) the equations of motion for a viscous liquid medium in terms of the potential

functions φ′ and ψ′ corresponding to longitudinal and transverse waves are as

k′∇2φ′ +
4

3
η
∂

∂t
∇2φ′ = ρ′

∂2φ′

∂t2
, η

∂

∂t
∇2ψ′ = ρ′

∂2ψ′

∂t2
, (2.35)

where k′ is the bulk modulus, ρ′ is the fluid density, η is the fluid viscosity. The components of displacements

and stresses are given by

u′ =
∂φ′

∂x
− ∂ψ′

∂z
, w′ =

∂φ′

∂z
+
∂ψ′

∂x
, tzx

′ = η
∂

∂t

[
2
∂2φ′

∂x∂z
+
∂2ψ′

∂x2
− ∂2ψ′

∂z2

]
, (2.36)

tzz
′ =

[
k′ − 2

3
η
∂

∂t

] [
∂2φ′

∂x2
+
∂2φ′

∂z2

]
+ 2η

∂

∂t

[
∂2ψ′

∂x∂z
− ∂2φ′

∂z2

]
. (2.37)
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3 Formulation of the problem

Consider a viscous liquid half space medium M2 lying over an incompressible fluid saturated porous half space

medium M1. Taking the Cartesian coordinate system in such a way that the interface between the two half-spaces

represents the xy-plane and z-axis is pointed vertically downward in the lower half space medium M1, so the

medium M1 is represented as z ≥ 0 and medium M2 as z ≤ 0. A plane wave (P or SV-wave) propagates through

the half space medium M1 and incident at the plane interface z=0, making an angle θ0 with normal to the

surface. Corresponding to each incident wave (P or SV-wave), we get reflected P and SV- waves in the medium

M1, and transmitted P and SV-waves in medium M2. The problem considered is a two dimensional problem with

∂
∂y
≡ 0.

Fig.1– Geometry of the problem

4 Solution of the problem

The potential function solution of the equations (2.17)–(2.21) can be taken as

{φS , φF , p} = {1,m1,m2}[A01 exp{ik1(x sin θ0 − z cos θ0) + iω1t}

+A1 exp{ik1(x sin θ1 + z cos θ1) + iω1t}],
(4.1)

{ψS , ψF } = {1,m3}[B01 exp{ik2(x sin θ0 − z cos θ0) + iω2t}

+B1 exp{ik2(x sin θ2 + z cos θ2) + iω2t}],
(4.2)

where

m1 = − η
S

ηF
, m2 = −

[
ηSω2

1ρ
F − iω1Sv

(ηF )2

]
, m3 =

iω2Sv

iω2Sv − ω2
2ρ

F
, (4.3)

A01 and B01 are the amplitudes of the incident P and SV-waves, respectively, and A1, B1 are the amplitudes

of the reflected P and SV-waves, respectively. Following Kumar & Tomar [17], the solution of the system of

Equation (2.35) is taken in the form
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φ
′
=A1

′
exp

{
−i
(

K
′2
−k1

′2
sin2θ1

′) 1
2
z

}
exp

{
i
(
ω1

′
t+k1

′
x sinθ1

′)}
(4.4)

ψ
′
=B1

′
exp

{
−i

(
iω

ν
+k2

′2
sin2θ2

′
) 1

2

z

}
exp

{
i
(
ω2

′
t+k2

′
x sinθ2

′)}
, (4.5)

where A′1 and B′1 are the amplitudes of transmitted P- and SV-waves. Also

K
′
=
ω

c′

(
1+

4

3

iων

c′2

)−1/2

, c
′2

=
k
′

ρ′ , ν=
η

ρ′ , (4.6)

k′1 and k′2 are the wave numbers of transmitted P- and SV-waves, respectively.

5 Boundary conditions

The appropriate boundary conditions at the interface z = 0 are the continuity of displacements and stresses.

Mathematically, these boundary conditions can be expressed as:

tSzz − p = t′zz, tSzx = t′zx, ws = w′, us = u′. (5.1)

Snell’s law:

sin θ0
V0

=
sin θ1
V1

=
sin θ2
V2

=
sin θ′1
V ′1

=
sin θ′2
V ′2

, (5.2)

where

V ′1 =

[
k′

ρ′

(
1 +

4

3

iωη

k′

)] 1
2

, V ′2 =

[
iωη

ρ′

] 1
2

. (5.3)

Also

k1V1 = k2V2 = k′1V
′
1 = k′2V

′
2 = ω, at z = 0, (5.4)

For incident longitudinal P-wave, we take

V0 = V1, θ0 = θ1, (5.5)

For incident transverse SV-wave, we have

V0 = V2, θ0 = θ2, (5.6)

For incident longitudinal wave at the interface z = 0, we put B01 = 0 in equation (4.1) and for incident transverse

wave, we put A01 = 0 in equation (4.1). Now substitute the expressions of potentials given by (4.1)–(4.1) in

equations (2.16) and then in (2.23)–(2.24), and also substitute (4.4)–(4.5) in (2.36)–(2.37). Then using all these

in boundary conditions (5.1), we get a system of four non homogeneous equations which can be written as

4∑
j=1

aijZj = Yi, (i = 1, 2, 3, 4), (5.7)

where

Z1 =
A1

A
, Z2 =

A2

A
, Z3 =

A′1
A
, Z4 =

B′1
A
, (5.8)
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where A is the amplitude of incident wave. Coefficients aij in non dimensional form are obtained as

a11 =
λs

µs
+ 2 cos2 θ1 +

m2

µSk21
,

a12 = −2 sin θ2 cos θ2
k22
k21
,

a13 =
1

µSk21

[
K′

2
(

8

3
iηω′1 − k′

)
− 2iηω′1k

′
1
2
sin2 θ1

′
]
,

a14 = 2iηω2
′k2
′sin θ2

′
(
iω

ν
+ k′2

2
sin2 θ2

′
) 1

2

,

a21 = 2 sin θ1 cos θ1,

a22 =
k22
k21

(
cos2 θ1 − sin2 θ2

)
,

a23 =
1

µSk21

[
2iηω′1k

′
1sin θ1

′
(
K′2 − k′1

2
sin2 θ1

′
) 1

2

]
,

a24 =
1

µSk21

[
iηω′2

(
iω

ν

)]
,

a31 = cos θ1,

a32 = −k2
k1

sin θ2,

a33 =
1

k1

(
K′2 − k′21 sin2 θ1

′
) 1

2
,

a34 = −k
′
2

k1
sin θ2

′,

a41 = sin θ1,

a42 = −k2
k1

cos θ2,

a43 = −k
′
1

k1
sin θ1

′,

a44 = − 1

k1

(
iω

ν
+ k′22 sin2 θ2

′
) 1

3

.

(5.9)

For incident longitudinal wave, we have

A = A01, Y1 = −a11, Y2 = a21, Y3 = a31, Y4 = −a41, (5.10)

For incident transverse wave, we have

A = B01, Y1 = a12, Y2 = −a22, Y3 = −a32, Y4 = a42, (5.11)

6 Particular cases

Case-1

If pores are absent or gas is filled in the pores then F is very small as compared to S and can be neglected, so

the relation (2.22) gives us

C =

√
λS + 2µS

ρS
, (6.1)
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and the coefficients a11 in (5.9) changes to

a11 =
λs

µs
+ 2 cos2 θ1 (6.2)

Case-2

Neglecting the viscous effect of the liquid, that is, we take η = 0, then medium M2 becomes inviscid liquid half

space and the problem reduces to the problem of inviscid liquid half space over incompressible porous solid half

space. Boundary conditions for this case reduces to

tSzz − p = t′zz, t
S
zx = t′zx, w

s = w′, (6.3)

and hence we obtain a system of three non-homogeneous equations which can be written as

3∑
j=1

aijZj = Yi, (i = 1, 2, 3), (6.4)

where aij are obtained as under

a11 =
λs

µs
+ 2 cos2 θ1 +

m2

µSk21
,

a12 = −2 sin θ2 cos θ2
k22
k21
, a13 = −ρ′ω′21 ,

a21 = 2 sin θ1 cos θ1, a22 =
k22
k21

(
cos2 θ1 − sin2 θ2

)
,

a23 = 0, a31 = cos θ1,

a32 = −k2
k1

sin θ2, a33 =
k′1
k1

cos θ′1

(6.5)

which can also be obtained directly from (5.9) by taking η = 0.

7 Numerical results and discussion

The theoretical results obtained above indicate that the amplitude ratios Zi (i = 1, 2, 3) depend on the angle of

incidence of incident wave and material properties. The behaviour of various amplitude ratios are observed through

numerical computations by considering a particular model, for which the numerical values of the parameters are

taken as under:-

In medium M1, the physical constants for fluid saturated incompressible porous medium are taken from de Boer,

Ehlers and Liu [10] as ηs = 0.67, ηF = 0.33, ρs = 1.34 Mg/m3, ρF = 0.33 Mg/m3, λs = 5.5833 MN/m2,

KF =0.01m/s, γFR = 10.00KN/m3, µs = 8.3750 N/m2, ω∗ = 10/s. In medium M2, k′ = 0.119× 1011 dyne/cm2,

ρ′ = 1.01g/cm3, η = 0.0014 poise
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Fig.2– Variation of the amplitude ratio |Z1| of the reflected P-wave for an incident P-wave

Fig.3– Variation of the amplitude ratio |Z2| of the reflected SV-wave for an incident P-wave

Fig.4– Variation of the amplitude ratio |Z4| of the transmitted P-wave for an incident P-wave
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Fig.5– Variation of the amplitude ratio |Z4| of the transmitted SV-wave for an incident P-wave

Fig.6– Variation of the amplitude ratio |Z1| of the reflected P-wave for an incident SV-wave

Fig.7– Variation of the amplitude ratio |Z2| of the reflected SV-wave for an incident SV-wave
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Fig.8– Variation of the amplitude ratio |Z3| of the transmitted P-wave for an incident SV-wave

Fig.9– Variation of the amplitude ratio |Z4| of the transmitted SV-wave for an incident SV-wave

Fig.10– Variation of the amplitude ratio |Z1| of the reflected P-wave for an incident P-wave
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Fig.11– Variation of the amplitude ratio |Z2| of the reflected SV-wave for an incident P-wave

Fig.12– Variation of the amplitude ratio |Z3| of the transmitted P-wave for an incident P-wave

Fig.13– Variation of the amplitude ratio |Z1| of the reflected P-wave for an incident SV-wave
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Fig.14– Variation of the amplitude ratio |Z2| of the reflected SV-wave for an incident SV-wave

Fig.15– Variation of the amplitude ratio |Z3| of the transmitted P-wave for an incident SV-wave

Figures (2)-(9) represent the case of either fluid saturated porous half space or empty porous solid half space

lying under viscous liquid half space. The case of incident P-wave is shown in figures (2)-(5) and that of incident

SV-wave in figures (6)-(9).The solid curves correspond to the case of fluid saturated porous medium whereas the

dotted lines correspond to the case of empty porous medium. From figures (2)-(9), the effect of fluid present

in the pores of fluid saturated porous half space can be observed. It is clear from these figures that it plays an

important role in both the situations whether P-wave is incident or SV-wave is incident. For the case of incident

P-wave in figures (2)-(5), it is observed that the value of amplitude ratio in case of reflected P-wave is one for

extreme value of incident angle i.e. θ = 00 (0 radians), and θ = 900 (1.5750 radians),whereas it is zero for the

case of reflected SV-wave. In between, the value changes continuously to give absolute maximum with the change

in angle of incidence before reaching the ultimate value. Also, it is seen that the magnitude of amplitude ratio in

case of reflected SV-wave is large as compared to reflected P-wave. Further, absolute maximum for fluid saturated

case is larger than empty porous solid for both the reflected waves. Similar trends are observed from figures (4)

and (5) for transmitted P and SV waves with change in curves and values are very very small in comparison

to its reflected counterparts. Also at θ = 00 (0 radians), the value of amplitude ratio is finite for the case of

transmitted P-wave. Similar distribution is noticed from figures (6)-(9) in case of incident SV-wave where the

change in magnitude values in different situations is observed with the exception that there is a specific value of
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at which the curve change its trend suddenly for empty porous solid case in all the four cases of reflected and

transmitted P and SV waves.

Figures (10)-(15) show the variation of amplitude ratios when fluid saturated porous half space lies under

either the viscous liquid half space or inviscid liquid half space. In these figures solid lines represent the case

of viscous liquid and dotted lines for inviscid liquid. From figures (10)-(15), the effect of viscosity of viscous

liquid is observed for both cases of incident P-wave and SV-wave. These figures depict the effect of viscosity

on amplitude ratios. Further from figures (10)-(15), which depicts the effect of viscosity, it is observed that the

curves for reflected P and SV waves remain confined to value 1 or 0 for almost all the values of except for

large values of in case of incident P-wave. From the above observations, it is concluded that the amplitudes

ratios of various reflected and transmitted waves depend on the angle of incidence of the incident wave, the kind

of incident wave and the material properties of the medium through which they travel. The fluid filled in the

pores of incompressible fluid saturated porous medium and viscosity of liquid have significant effect on different

amplitude ratios. The model presented in this paper is an earth model which is more realistic. Such a situation

can be thought of in the earths crust.
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