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1 Introduction and Preliminaries

The fractional derivative operator D
(b)
z is an extension of the familiar derivative operator D

(n)
z (n being a positive

integer), to arbitrary (integer, rational, irrational and complex) values of b. The development of the fractional

derivative operators is receiving keen attention from many researchers presently. In particular, see for example,

the work of Lavoie, etal. [9], Manocha [11], Manocha-Sharma [12, 13, 14], Oldham-Spanier [15], Sharma-Abiodun

[17] and Deshpande [2]. In 1731, Euler extended the derivative formula in the following form.

Let D
(b)
z denotes the operator of fractional derivative having the arbitrary order b, as usually defined

D(b)
z [za−1] =

Γ(a)

Γ(a− b)z
a−b−1, (1.1)
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which holds for all values of b, except b = a and a is neither zero nor a negative integer.

Throughout in present paper, we use the following standard notations:

N := {1, 2, 3, . . .}, N0 := {0, 1, 2, 3, . . .} = N ∪ {0} and Z− := {−1,−2,−3, . . .} = Z−0 \{0}.

Here, as usual, Z denotes the set of integers, R denotes the set of real numbers, R+ denotes the set of positive

real numbers and C denotes the set of complex numbers.

The Pochhammer symbol (or the shifted factorial) (λ)ν (λ, ν ∈ C) is defined, in terms of the familiar Gamma

function, by

(λ)ν :=
Γ(λ+ ν)

Γ(λ)
=

1 (ν = 0;λ ∈ C\{0})

λ(λ+ 1) . . . (λ+ n− 1) (ν = n ∈ N;λ ∈ C)

it being understood conventionally that (0)0 = 1 and assumed tacitly that the Gamma quotient exists.

The object of the present paper is to establish a generating relation for the product of two restricted Jacobi poly-

nomials, using the fractional derivative operator (1.1). A number of interesting generating formulae for Jacobi

and Laguerre polynomials are obtained as special cases.

A unification of Lauricella’s fourteen triple hypergeometric functions F1, F2, . . . , F14 and three additional triple

hypergeometric functions HA, HB , HC , was introduced by Srivastava [18], who defined a general triple hypergeo-

metric series F (3)[x, y, z] in the form

F (3)

 (a) :: (b); (b′); (b′′) : (c); (c′); (c′′);

(e) :: (g); (g′); (g′′) : (h); (h′); (h′′);
x, y, z

 =

∞∑
m,n,p=0

Λ(m,n, p)
xm

m!

yn

n!

zp

p!
,

where, for convenience,

Λ(m,n, p) =

A∏
j=1

(aj)m+n+p

B∏
j=1

(bj)m+n

B′∏
j=1

(b
′
j)n+p

B′′∏
j=1

(b
′′
j )p+m

C∏
j=1

(cj)m

C′∏
j=1

(c
′
j)n

C′′∏
j=1

(c
′′
j )p

E∏
j=1

(ej)m+n+p

G∏
j=1

(gj)m+n

G′∏
j=1

(g
′
j)n+p

G′′∏
j=1

(g
′′
j )p+m

H∏
j=1

(hj)m

H′∏
j=1

(h
′
j)n

H′′∏
j=1

(h
′′
j )p

where (a) abbreviates the array of A parameters given by a1, a2, . . . , aA with similar interpretations for (b), (b′),

(b′′), et cetera. The above triple hypergeometric series converges absolutely when
1 + E +G+G′′ +H −A−B −B′′ − C > o,

1 + E +G+G′ +H ′ −A−B −B′ − C′ > o,

1 + E +G′ +G′′ +H ′′ −A−B′ −B′′ − C′′ > o,

where the equalities hold true for suitably constrained values of |x|, |y| and |z|.

The Jacobi’s polynomials P
(α,β)
n (x) [16] are given by

P (α,β)
n (x) =

(1 + α)n
n!

2F1

 −n, 1 + α+ β + n;

1 + α ;

1− x
2

 (1.2)

= (−1)nP (β,α)
n (−x)
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where Re(α) > −1 and Re(β) > −1.

The Laguerre’s polynomials L
(α)
n (x) [16] are given by

lim
|β|−→∞

P (α,β)
n

(
1− 2x

β

)
= L(α)

n (x) =
(1 + α)n

n!
1F1

 −n ;

1 + α;
x

 (1.3)

where Re(α) > −1

The Appell’s double hypergeometric function of first kind F1 [4] is given by

F1(a; b, b ′; c ;x, y) =

∞∑
r,s=0

(a)r+s(b)r(b
′)s

(c)r+s

xr

r!

ys

s!
(1.4)

where max{|x|, |y|} < 1.

The Humbert’s double hypergeometric functions are defined by [4]

Φ1[a, b; c;x, y] =

∞∑
r,s=0

(a)r+s(b)r
(c)r+s

xr

r!

ys

s!
(1.5)

where |x| < 1, |y| <∞

Φ2[b, c; d;x, y] =

∞∑
r,s=0

(b)r(c)s
(d)r+s

xr

r!

ys

s!
(1.6)

where |x| <∞, |y| <∞

Φ3[b; d;x, y] =

∞∑
r,s=0

(b)r
(d)r+s

xr

r!

ys

s!
(1.7)

where |x| <∞, |y| <∞.

The triple hypergeometric function 3Φ
(1)
D of Jain [6] is the generalization of Humbert’s double hypergeometric

function Φ1 and is defined by

3Φ
(1)
D [a, b, c; d;x, y, z] =

∞∑
r,s,k=0

(a)r+s+k(b)r(c)s
(d)r+s+k

xr

r!

ys

s!

zk

k!
(1.8)

Other notations of 3Φ
(1)
D are Φ

(3)
D of Srivastava and Exton [19, 4] and FD1 of Exton [3].

Φ
(3)
D [a, b, c,−; d;x, y, z] =

∞∑
r,s,k=0

(a)r+s+k(b)r(c)s
(d)r+s+k

xr

r!

ys

s!

zk

k!
(1.9)

FD1 [a, a, a; b, c,−; d, d, d;x, y, z] =

∞∑
r,s,k=0

(a)r+s+k(b)r(c)s
(d)r+s+k

xr

r!

ys

s!

zk

k!
(1.10)

The triple hypergeometric function Φ
(3)
3 of Exton [4] is the generalization of Humbert’s double hypergeometric

functions Φ2 and Φ3 and is defined by

Φ
(3)
3 [a, b; c;x, y, z] =

∞∑
r,s,k=0

(a)r(b)s
(c)r+s+k

xr

r!

ys

s!

zk

k!
(1.11)

Any values of parameters and variables leading to the results given in sections 2 and 3 which do not make sense,

are tacitly excluded.
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2 Main Generating Relations

Consider the generating relation of Feldheim [5] in the form

∞∑
n=0

1

(1 + c)n
P (c,a−n)
n (x)tn = exp

{
(1 + x)t

2

}
1F1

 −a;

1 + c;

(1− x)t

2

 (2.1)

where P
(c,a−n)
n (x) and 1F1 are restricted Jacobi’s polynomials and Kummer’s confluent hypergeometric function

[16], respectively.

In equation (2.1), replacing t by bt, multiplying both the sides by (1 − by)mbd−1,(m being a positive integer),

using the operator D
(d−e)
b on both the sides and interpreting the result with the help of the definition (1.1), we

get the bilateral generating relation in the form

∞∑
n=0

(d)nP
(c,a−n)
n (x)

(e)n(1 + c)n
2F1

 −m, d+ n;

e+ n ;
by

 (bt)n

= F (3)

 d :: −;−;− : −;−a ;−m;

e :: −;−;− : −; 1 + c; −;

b(1 + x)t

2
,
b(1− x)t

2
, by

 (2.2)

where 2F1 and F (3) are Gauss’s ordinary hypergeometric polynomial [16] and Srivastava’s triple hypergeometric

function respectively.

In (2.2), replacing y, d, e and b by
1− y

2
, 1 + d+ e+m, 1 + e and 1, respectively and using the definition (1.2)

of Jacobi’s polynomial, we get a bilinear generating relation for Jacobi’s polynomials in the following form

∞∑
n=0

m!(1 + d+ e+m)nP
(c,a−n)
n (x)P

(e+n,d)
m (y)

(1 + e)m+n(1 + c)n
tn

= F (3)

 1 + d+ e+m :: −;−;− : −;−a ;−m;

1 + e :: −;−;− : −; 1 + c; −;

(1 + x)t

2
,

(1− x)t

2
,

1− y
2

 (2.3)

3 Special Cases

In (2.2) setting b = 1, replacing x and t by

(
2x

c
− 1

)
and −(1 + c)t, respectively, taking |c| −→ ∞, using the

confluence principle [10, 1, 19], we get

∞∑
n=0

(d)nL
(a−n)
n (x)

(e)n
2F1

 −m, d+ n;

e+ n;
y

 tn
= 3Φ

(1)
D [d,−a,−m; e;−t, y,−xt] (3.1)

= Φ
(3)
D [d;−a,−m,−; e;−t, y,−xt] (3.2)

= FD1 [d, d, d;−a,−m,−; e, e, e;−t, y,−xt] (3.3)
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Here L
(a−n)
n (x) are the restricted Laguerre’s polynomials (1.3).

In (3.1) or (3.2) or (3.3), replacing e, t and y by 1 + e,
t

d
and

y

d
, respectively and taking |d| −→ ∞, we get a

bilinear generating function for restricted Laguerre’s polynomials
∞∑
n=0

m!L
(a−n)
n (x)L

(e+n)
m (y)

(1 + e)m+n
tn = Φ

(3)
3 [−a,−m; 1 + e;−t, y,−xt] (3.4)

Setting t = −y in (3.3) and using a transformation of Exton [3], we get

∞∑
n=0

(d)nL
(a−n)
n (x)

(e)n
2F1

 −m, d+ n;

e+ n ;
y

 (−y)n = Φ1 [d;−(a+m); e; y, xy] (3.5)

Replacing y by −y and taking m = 0, (3.5) reduces to a known generating function of Khan [8]

∞∑
n=0

(d)nL
(a−n)
n (x)

(e)n
yn = Φ1 [d;−a; e;−y,−xy] (3.6)

When y is replaced by
y

d
, taking |d| −→ ∞, (3.6) reduces to another known generating function of Khan [7]

∞∑
n=0

L
(a−n)
n (x)

(e)n
yn = Φ3 [−a; e;−y,−xy] (3.7)

When y = 0 or m = 0, (3.3) reduces to (3.6).

When x = 0, (3.3) reduces to

∞∑
n=0

(a)n(d)n
(e)n

2F1

 −m, d+ n;

e+ n ;
y

 tn
n!

= F1 [d; a;−m; e; t, y] (3.8)

Replacing t by
t

a
in (3.8) and taking |a| −→ ∞, we get

∞∑
n=0

(d)n
(e)n

2F1

 −m, d+ n;

e+ n ;
y

 tn
n!

= Φ1 [d;−m; e; y, t] (3.9)

On replacing y, t and e by
y

d
,
t

d
and 1 + e, respectively and taking |d| −→ ∞, (3.8) reduces to

∞∑
n=0

m!(a)n
(1 + e)m+n

L(e+n)
m (y)

tn

n!
= Φ2 [a,−m; 1 + e; t, y] (3.10)

Similarly by the process of confluence, (3.10) gives

∞∑
n=0

m!

(1 + e)m+n
L(e+n)
m (y)

tn

n!
= Φ3 [−m; 1 + e; y, t] (3.11)

When y = 0 or m = 0 in (3.4), we again get (3.7) and when x = 0, (3.4) reduces to (3.10). Alternatively (3.1),

(3.8) and (3.9) can also be written in the following bilateral and linear generating relations

∞∑
n=0

(1 + e+ d+m)n
(1 + e+m)n

L(a−n)
n (x)P (e+n,d)

m (y)tn

=
(1 + e)m
m!

3Φ
(1)
D

[
1 + e+ d+m,−a,−m; 1 + e;−t, 1− y

2
,−xt

]
(3.12)

∞∑
n=0

(a)n(1 + e+ d+m)n
(1 + e+m)n

P (e+n,d)
m (y)

tn

n!
=

(1 + e)m
m!

F1

[
1 + e+ d+m,a,−m; 1 + e; t,

1− y
2

]
(3.13)

and
∞∑
n=0

(1 + e+ d+m)n
(1 + e+m)n

P (e+n,d)
m (y)

tn

n!
=

(1 + e)m
m!

Φ1

[
1 + e+ d+m;−m; 1 + e;

1− y
2

, t

]
(3.14)
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4(1974), 47–57.

[3] H. Exton, On certain confluent hypergeometric functions of three variables, Ganita, 21(2)(1970), 79–92.

[4] H. Exton, Multiple hypergeometric functions and applications, John Wiley and Sons (Halsted Press), New

York, Ellis Horwood, Chichester, U.K, (1976).
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