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Abstract : One of central problems of k-valued logic is identification and construction of complete generators

(Sheffer functions). This problem is solved in 3-valued logic but is not solved in 4-valued logic. We prove Slupecki’s

theorem for functions with partial ranges and use it to construct complete generators of the functions. We use

Rousseau’s theorem to construct complete generators of functions with all ranges. For both cases we calculate

the numbers of generators for every diagonal of the generators and give the minimal and maximal generators. We

find that the number 9 of one-ary functions used by Rousseau can be decreased to 3. The number of generators

of functions with ranges of cardinal 2 equals 41 760, the number of generators of functions with ranges of cardinal

3 equals 32 969 664, and the number for cardinal 4 equals 942 897 552.
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1 Introduction

There are very much multi-valued logics but the most fruitful of them is Post’s [1,2]. We use this logic in

our paper. In Post’s logic, the negation, disjunction, and conjunction are presented by computable functions:

x̄ = x+ 1 ( mod k), x1∨x2 = max(x1, x2), and x1∧x2 = min(x1, x2). One of central problems of k-valued logic is

identification and construction of complete generators (Sheffer functions). Some classes of them were got for all

k ([3]-[15]). But it is impossible to find all complete generators for all k since any complete generator must create

1Corresponding author E-Mail: mamalkov@gmail.com (M.A. Malkov)



50 Int. J. Math. And Its App. Vol.2 No.4 (2014)/ M.A. Malkov

all one-ary permutational functions but they belong to the symmetric groups, some of which can be sporadic. For

k = 3 all complete generators have been constructed ([16],[17]). For k = 4 there are 4 · 109 complete generators

and all of them we will construct in the paper. For k = 5 all complete generators can be constructed too, but it

is very difficult since the number of two-ary functions equals 3 · 1017 and all of them must be tested. For 6-valued

logic this construction is impossible since the number of all 2-ary functions equals 1030. After Post [18] we call a

function f(x1, x2) δ if f(x, x) 6= x for all x. We call a function f(x1, x2) permutational if it is δ and its range is

{0,1,2,3}. We call a function f(x) permutational if its range is {0,1,2,3}.

Below we call complete generators just generators. If we use functions with several ranges then we point out

only the maximal range. For example, we use range {0,1,2} instead of ranges {}, {0},{1},{2}, {0,1}, {0,2}, {1,2},

{0,1,2} ({} means empty range and this range belongs to constants). If we use functions with only one range

then we use definite article, otherwise articles are absent. The same rule is used for cardinals. We use ranges

of functions and rages of their diagonals. We call ranges instead of ranges of functions. Except introduction the

article has 3 sections. Section 2 is named ”Classification of functions and generators”. We present 4 levels of the

classifications. The first level contains classes of functions such that the classes contain functions with ranges of

the same cardinal. The second level contains additionally classes of functions with ranges of the same cardinal.

The third level contains classes of functions which additionally have diagonals with the same range. And the

last level contains classes of functions which have additionally the same diagonals. Generators have the same

classification but classes of the first level do not exist for functions with ranges of the cardinals 0 and 1 since such

functions do not generate anything except themselves.

Section 3 is ”Generators of functions with partial ranges”. We call functions partial if they have the ranges of

the cardinals 2 and 3. Functions with the ranges of the cardinals 0 and 1 are partial too, but they are constants

and functions with all variables to be fictitious. They need not investigation. We prove that a function is generator

if the function generates all one-ary functions with partial ranges. We use this result to calculate numbers of

generators for every ranges. But these numbers are the same for all ranges of the cardinal of diagonals. So we give

numbers for ranges of the cardinals of diagonals only. The numbers are very large, therefore we present only least

and greatest generators for every partial ranges. The last section is ”Generators of functions with all ranges”. We

calculate numbers of generators of functions with the any range. There are several criteria for the calculation but

only Rousseau’s criterion is more quick for compare with the other criteria. We find that the number 9 of one-ary

functions used by Rousseau’s criterion can be decreased to 3. There are 6 ranges of diagonals of the cardinal 2, 4

ranges of the cardinal 3, and 1 range for the cardinal 4. The numbers are the same for all ranges of the cardinal

2 and the numbers are the same for all ranges of the cardinal 3. We give numbers for ranges of the cardinals of

diagonals only. But we present least and greatest generators for every the ranges.

2 Classification of functions and generators

2.1 Classification of function

There is an hierarchy of classes. The first level of the of hierarchy is created by the next equivalent relation.
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Definition 2.1. Two functions are equivalent if they have ranges with the same cardinal.

There are 5 classes of ranges with cardinal 4. The class with the cardinal 0 contains constants and the class

with the cardinal 1 contains functions, all variables of which are fictitious. The classes 2, 3, and 4 contains the

other functions. The first relation divides functions into classes and the next relation divides the classes into

subclasses that are classes of the second level.

Definition 2.2. Two functions are equivalent by the second equivalent relation if they have the same range.

The classes with the cardinals 0, 1, 2 ,3 ,4 have 1,4, 6, 4, 1 subclasses respectively.

Definition 2.3. Two function are equivalent by the third equivalent relation if they have diagonals with the same

range.

Functions of ranges with the cardinal 4 have 14 classes with the next diagonal ranges: {0}, {1}, {2}, {3},

{0,1}, {0,2}, {0,3}, {1,2}, {1,3}, {2,3},{0,1,2}, {0,1,3}, {0,2,3}, {1,2,3}, {0,1,2,3}.

Definition 2.4. Two functions are equivalent by the forth equivalent relation if they have the same diagonal.

For functions of ranges with the cardinal 4 there are 1 class of functions of diagonal range with the cardinal

1, 14 classes for the cardinal 2, 36 classes for the cardinal 3, and 104 classes for the cardinal 4.

2.2 Classification of generators

Generators are functions and they have the same classification. But the classes of the first level with the cardinals

0 and 1 have no generators since every function of the classes does not generate anything (except itself). And

there are 4 classes of generators of the ranges with the cardinal 2, 12 classes of the ranges with the cardinal 3,

and 9 classes of the range {0,1,2,3}. The total number of classes is 81. The numbers of generators for classes of

all levels will be calculated in the next subsections. For that we must have a rule for the calculations. There are

several rules of the calculations. By one of the rules, a function is a generator if it generates all two-ary functions.

But this rule is not fulfilled for the classes since this takes very much time for computing. The next rule takes far

less time. By the rule a function is a generator if the function generates all one-ary functions. This rule is true

by Slupecki’s theorem [19] for functions with all ranges. Further we prove the theorem whenever some ranges are

absent. We denote generators of the third level by δ2 for the cardinal 2 of diagonal ranges, by δ3 for the cardinal

3 and δ4 for the cardinal 4.

3 Generators of functions with partial ranges

3.1 Generators of functions with ranges of cardinal 2

We will prove Slupecki theorem for the functions and use it for calculation of generators. But it is enough to

prove the theorem for functions with range {0,1}.
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Theorem 3.1. A subset of functions with range {0,1} is full if it contains any non-fictitious two-ary function f

with the range {0,1} and all one-ary functions with ranges {0,1}.

Proof. There are b1, b2, b3, b4 such that f(b1, b2) = 0, f(b1, b3) = f(b2, b4) = 1 since otherwise f is fictitious. Then

the function R(x1, x2) = f
(
A1(x1), A2(x2)

)
equals 0 whenever x1 = x2 = 0 and equals 1 whenever x1 = 0∧x2 = 1

or x1 = 1 ∧ x2 = 0, if A1 = (b1, b4, b4, b4) and A2 = (b2, b3, b3, b3). We will construct the function S(x1, x2) which

equals 0 if x1 = x2 = 0 and equals 1 for the other values of variables. Let the function B1 have values (1,0,0,0)

and B2 have values (0,1,1,1). If R(1, 1) = 0 then S(x1, x2) = B1

(
R(B2(x1), B2(x2)

)
and if R(1, 1) = 1 then

S(x1, x2) = R
(
B2(x1), B2(x2)

)
. Now we will construct the function U(x1, x2, x3, x4, x5) which equals x1 for

x2 = x4∧x3 = x5 and equals 0 for the other values of variables. Let the function E(x1, x2) = 0 whenever x1 = x2

and E(x1, x2) = 1 whenever x1 6= x2. Let the function F (x1, x2) = x1 whenever x2 = 0 and F (x1, x2) = 0

whenever x2 6= 0. Then U(x1, x2, x3, x4, x5) = F (x1, S(E(x2, x4), E(x3, x5)). The functions U and S were

introduced by Lukasiewisz (cf. [19]). They allow to generate any function f0(x1, x2) with range {0, 1}:

f0(x1, x2) = S
(
U
(
f0(0, 0), 0, 0, x1, x2

)
, S

(
U
(
f0(0, 1), 0, 1, x1, x2

)
,

S
(
U
(
f0(0, 2), 0, 2, x1, x2

)
, S

(
U
(
f0(0, 3), 0, 3, x1, x2

)
, ...

...S
(
U
(
f0(3, 0), 3, 0, x1, x2

)
, S

(
U
(
f0(3, 1), 3, 1, x1, x2

)
,

S
(
U
(
f0(3, 2), 3, 2, x1, x2

)
, S

(
U
(
f0(3, 3), 3, 3, x1, x2

)))))
...
))))

Corollary 3.2. A function is a generator if it generates all one-ary functions with ranges {0,1}.

Proof. If a function generates all one ary functions with range {0,1} then, by the theorem, the function is a

generator.

There are 6 the ranges of generator for diagonals of the cardinal 2: {01}, {0,2}, {0,3}, {1,2}, {1,3}, {2,3}.

They have the same numbers of all functions, of δ functions and of generators. But the least generators are

different and greatest generators are different. The total numbers of ranges and the least and greatest generators

for every ranges are presented in table 1.

Table: 1

Numbers of δ functions and generators

Cardinals of All functions Permutational Generators % of all % of permutational

diagonal ranges δ functions δ functions functions

2 393 216 98 304 41 760 11 42

Boundaries of generators

Ranges Least generators Greatest generators

{0,1} (1,0,0,0, 0,0,0,0, 0,0,1,0, 0,1,0,0) (1,1,1,1, 1,0,1,1, 1,1,0,1, 1,0,1,1)

{0,2} (2,0,0,0, 0,0,0,0, 0,2,0,0, 0,0,0,2) (2,2,2,2, 2,2,2,2, 2,0,0,2, 2,2,2,0)

{0,3} (3,0,0,0, 0,0,0,0, 0,0,0,3, 0,3,0,0) (3,3,3,3, 3,3,3,3, 3,3,3,0, 3,0,3,0)

{1,2} (1,1,1,1, 1,2,1,1, 2,1,1,1, 1,1,1,2) (2,2,2,2, 2,2,2,2, 1,2,1,2, 2,2,2,1)

{1,3} (1,1,1,1, 1,3,1,1, 1,1,1,3, 3,1,1,1) (3,3,3,3, 3,3,3,3, 3,3,3,1, 1,3,3,1)

{2,3} (2,2,2,2, 2,2,2,2, 2,2,3,3, 2,3,3,2) (3,3,3,3, 3,3,3,3, 3,3,3,2, 3,2,2,2)

all (1,0,0,0, 0,0,0,0, 0,0,1,0, 0,1,0,0) (3,3,3,3, 3,3,3,3, 3,3,3,2, 3,2,2,2)
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3.2 Generators of functions with ranges of cardinal 3

We will prove Slupecki theorem for the functions and use it for calculation of generators. But it is enough to

prove the theorem for functions with range {0,1,2}.

Theorem 3.3. A subset of functions of range {0,1,2} is full, if it contains any non-fictitious two-ary function f

with the range {0,1,2} and all one-ary functions with range {0,1,2}.

Proof. The function S has been constructed in the previous proof. This function will be used. Now we will con-

struct the function S1(x1, x2) which has values in {0,1,2} whenever x1 = 0∧x2 ∈ {0, 1, 2} or x1 ∈ {0, 1, 2}∧x2 = 0.

There are b1, b2, b3, b4 such that f(b1, b2) 6= f(b1, b4), f(b1, b2) 6= f(b3, b4), and f(b1, b4) 6= f(b3, b4) since otherwise

f is fictitious. Let the function A1(x) have values (0,1,2) whenever x has values
(
f(b1, b4), f(b1, b2), f(b3, b4)

)
.

Let the function A2(x) have values (b1, b3) whenever x has values (0,1). And let the function A3(x) have values

(b4, b2) whenever x has values (0,1). Then there is a function R(x1, x2) = A1

(
f
(
A2(x1), A3(x2)

))
such that

R(0, 0) = 0, R(0, 1) = 1, R(1, 0) = 2. Let the functions C1(x) and C2(x) have values (0,0,1) and (0,1,0) respec-

tively whenever x has values (0,1,2). And let the function D(x) has values (0,1) whenever x has values (0,1).

Then S1(x1, x2) = R
(
D
(
S(C1(x1)C1(x2)

)
, D

(
S(C2(x1)C2(x2)

))
. The function U(x1, x2, x3, x4, x5) has been con-

structed in the previous proof. The functions U and S1 allow to generate any function f0(x1, x2) with range

{0, 1, 2}:

f0(x1, x2) = S1

(
U
(
f0(0, 0), 0, 0, x1, x2

)
, S1

(
U
(
f0(0, 1), 0, 1, x1, x2

)
, S1

(
U
(
f0(0, 2), 0, 2, x1, x2

)
,

S1

(
U
(
f0(0, 3), 0, 3, x1, x2

)
, ... ...S1

(
U
(
f0(3, 0), 3, 0, x1, x2

)
, S1

(
U
(
f0(3, 1), 3, 1, x1, x2

)
,

S1

(
U
(
f0(3, 2), 3, 2, x1, x2

)
, S1

(
U
(
f0(3, 3), 3, 3, x1, x2

)))))
...
))))

Corollary 3.4. A function is a generator if it generates all one-ary functions with ranges {0,1,2}

Proof. If a function generates all one ary functions with ranges {0,1,2} then, by the theorem, the function is a

generator.

There are 2-ary functions with the cardinals of ranges of diagonals 2 and 3. For the cardinal 2 there are 6

the ranges: {01}, {0,2}, {0,3}, {1,2}, {1,3}, {2,3}. Every of them has the same numbers of all functions, of δ

functions, and of generators. For the cardinal 3 there are 4 the ranges of diagonals: {0,1,2}, {0,1,3}, {2,1,3},

{1,2,3}. Every of them also has the same numbers of all functions, of δ functions, and of generators. The number

of all functions equals 172 186 884 for the any cardinal. The total numbers of generators and permutational δ

functions of the cardinals 2 and 3 are presented in table 2.
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Table: 2

Numbers of δ functions and generators

Cardinals of Permutational Generators % of all % of Permutational

diagonal ranges δ functions functions δ functions

2 25 410 864 13 583 880 8 53

3 25 509 168 19 385 784 11 76

all 50 920 032 32 969 664 19 65

The least and greatest generators for every ranges are presented in table 3.

Table: 3

Boundaries of generators

Diagonal Ranges Least generators Greatest generators

generators δ2

{0,1} (1,0,0,0, 2,0,0,0, 0,0,0,0, 0,0,0,1) (1,3,3,3, 3,0,3,3, 3,3,1,3, 3,3,3,1)

{0,2} (2,0,0,0, 0,0,0,0, 1,0,0,0, 0,0,0,2) (2,3,3,3, 3,2,3,3, 3,3,0,3, 3,3,3,2)

{0,3} (3,0,0,0, 0,0,0,0, 0,0,0,0, 1,0,1,0) (3,3,3,3, 3,3,3,3, 3,3,3,3, 2,0,3,0)

{1,2} (1,0,0,0, 0,2,0,0, 0,0,1,0, 0,0,0,1) (2,3,3,3, 3,2,3,3, 3,3,1,3, 3,3,3,2)

{1,3} (1,0,0,0, 0,3,0,0, 0,0,1,0, 0,0 0 1) (3,3,3,3, 3,3,3,3, 3,3,3,3, 3,0,1,1)

{2,3} (2,0,0,0, 0,2,0,0, 0,0,3,0, 0,0,0,2) (3,3,3,3, 3,3,3,3, 3,3,3,3, 3,2,0,2)

all (1,0,0,0, 0,2,0,0, 0,0,1,0, 0,0,0,1) (3,3,3,3, 3,3,3,3, 3,3,3,3, 3,2,0,2)

generators δ3

{0,1,2} (1,0,0,0, 0,2,0,0, 0,0,0,0, 0,0,0,1) (2,2,2,2, 2,2,2,2, 2,0,1,2, 2,2,2,0)

{0,1,3} (1,0,0,0, 0,3,0,0, 0,0,0,0, 0,0,0,1) (3,3,3,3, 3,3,3,3, 3,3,1,3, 1,3,3,0)

{0,2,3} (2,0,0,0, 0,0,0,0, 0,0,3,0, 0,0,0,2) (3,3,3,3, 3,3,3,3, 3,3,0,3, 3,2,3,2)

{1,2,3} (1,1,1,1, 1,2,1,1, 1,1,3,1, 1,1,1,2) (3,3,3,3, 3,3,3,3, 3,3,1,3, 3,2,3,2)

all (1,0,0,0, 0,2,0,0, 0,0,0,0, 0,0,0,1) (3,3,3,3, 3,3,3,3, 3,3,1,3, 3,2,3,2)

all generators

(1,0,0,0, 0,2,0,0, 0,0,0,0, 0,0,0,1) (3,3,3,3, 3,3,3,3, 3,3,3,3, 3,2,0,2)

4 Generators of functions of all ranges

4.1 Rousseau’s theorem

The theorem gives criterion of finding generators. There are many other criteria but all of them take a very much

time for computing. The time is far less if we use Rousseau’s theorem . By the theorem a function f(x1, x2) is a

generator if it does not fulfill 3 conditions:

• the substitution rule (Martin [16],1954)

∃ D ∀x1, x2, x3, x4 x1 ∼ x3 ∧ x2 ∼ x4(D)→ f(x1, x2) ∼ f(x3, x4)(D)

where D is a decomposition of {0, 1, 2, 3} into disjoint subsets, ∼ means belonging to the same subset, the
number of the decompositions is 16:

{{0}, {1, 2, 3}}, {{1}, {0, 2, 3}}, {{2}, {0, 1, 3}}, {{3}, {0, 1, 2}}, {{0, 1}, {2, 3}}, {{0, 2}, {3, 4}}, {{0, 3}, {1, 2}},

{{1, 2}, {0, 3}}, {{1, 3}, {0, 2}}, {{2, 3}, {0, 1}}, {{0}, {1}, {2, 3}}, {{0}, {2}, {1, 3}},

{{0}, {3}, {1, 2}}, {{1}, {2}, {0, 3}}, {{1}, {3}, {0, 2}}, {{2}, {3}, {0, 1}},

• the close rule (Martin [16], 1954):

∃X X ⊂ {0, 1, 2} ∧X 6= ∅ ∧ ∀x1, x2 x1, x2 ∈ X → f(x1, x2) ∈ X
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• the automorphism rule (Rousseau [20], 1967):

∀s, x1, x2 f
(
s(x1, s(x2)

)
= s

(
f(x1, x2)

where s(x) ∈ {s1(x) = (1, 0, 3, 2), s2(x) = (2, 3, 0, 1), s3(x) = (3, 2, 1, 0), s4(x) = (0, 1, 3, 2), s5(x) = (0, 2, 1, 3),

s6(x) = (0, 3, 2, 1), s7(x) = (1, 0, 2, 3), s8(x) = (2, 1, 0, 3), s9(x) = (3, 1, 2, 0). The functions s4-s9 will be excluded

since they are not δ functions. So only 3 functions remain.

4.2 Generators of functions

There are 2-ary functions with the cardinals 2, 3, and 4 of ranges of diagonals. For the every cardinal the number

of all functions is 4 294 967 296. For the cardinal 2 there are 6 the ranges of diagonals: {0,1}, {0,2}, {0,3}, {1,2},

{1,3}, {2.3}. Every of the ranges have the same numbers of all functions, of δ functions, and of generators. For

the cardinal 3 we have 4 the ranges of diagonals: {0,1,2}, {0,1,3}, {2,1,3}, {1,2,3}. For every range the number

of all functions, of δ functions, and of generators are the same. The last is the cardinal 4. There is only one the

range of diagonals {0,1,2,3}. The least and greatest generators for every the cardinals and every the ranges of

Table: 4

Numbers of δ functions and generators

Cardinals of Permutational Generators % of all % of permutational

diagonal ranges δ functions functions δ functions

2 377 242 320 221 809 968 5 59

3 779 797 200 592 308 864 14 76

4 150994 944 128 778 720 3 85

all 1 308 034 464 942 897 552 22

the cardinals are presented in table 5. The results of function distributions by the conditions are given in table 6.

Table: 5

Boundaries of generators

Diagonal Ranges Least generators Greatest generators

generators δ2

{0,1} (1,0,0,0, 2,0,0,0, 0,3,0,0, 0,0,0,0) (1,3,3,3, 3,0,3,3, 3,3,1,3, 3,2,3,1)

{0,2} (2,0,0,0, 0,0,0,0, 1,3,0,0, 0,0,0,0) (2,3,3,3, 3,2,3,3, 3,3,0,3, 3,3,1,2)

{0,3} (3,0,0,0, 0,0,0,0, 0,0,0,0, 1,2,0,0) (3,3,3,3, 3,3,3,3, 3,3,3,3, 2,3,1,0)

{1,2} (1,0,0,0, 0,2,0,0, 0,3,1,0, 0,0,0,1) (2,3,3,3, 3,2,3,3, 3,3,1,3, 3,3,0,2)

{1,3} (1,0,0,0, 0,3,0,0, 0,0,1,0, 0,2,0,1) (3,3,3,3, 3,3,3,3, 3,3,3,3, 3,2,0,1)

{2,3} (2,0,0,0, 0,2,0,0, 0,0,3,0, 0,0,1,2) (3,3,3,3, 3,3,3,3, 3,3,3,3, 3,0,1,2)

all (1,0,0,0, 0,2,0,0, 0,3,1,0, 0,0,0,1) (3,3,3,3, 3,3,3,3, 3,3,3,3, 3,2,0,1)

generators δ3

{0,1,2} (1,0,0,0, 0,2,0,0, 0,3,0,0, 0,0,0,0) (2,3,3,3, 3,2,3,3, 3,3,1,3, 3,3,3,0)

{0,1,3} (1,0,0,0, 0,3,0,0, 0,0,0,0, 0,2,0,0) (3,3,3,3, 3,3,3,3, 3,3,1,3, 2,3,3,0)

{0,2,3} (2,0,0,0, 0,0,0,0, 0,0,3,0, 0,0,1,0) (3,3,3,3, 3,3,3,3, 3,3,0,3, 3,2,1,2)

{1,2,3} (1,0,0,0, 0,2,0,0, 0,0,3,0, 0,0,0,1) (3,3,3,3, 3,3,3,3, 3,3,1,3, 3,2,0,2)

all (1,0,0,0, 0,2,0,0, 0,0,3,0, 0,0,0,1) (3,3,3,3, 3,3,3,3, 3,3,0,3, 3,2,1,2)

generators δ4

{0,1,2,3} (1,0,0,0, 0,2,0,0, 0,0,3,0, 0,0,0,0) (3,3,3,3, 3,2,3,3, 3,3,1,3, 2,3,3,0)

all generators

(1,0,0,0, 0,2,0,0, 0,0,3,0, 0,0,0,0) (3,3,3,3, 3,3,3,3, 3,3,3,3, 3,2,0,1)

As it follows from the table, non-generators satisfy only closed and substitution conditions. This means that the

conditions are needed for identification of generators. But the automorphic condition is superfluous for generators

δ3.
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Table: 6

Distribution of functions by conditions

Fulfilled conditions Numbers The least functions

Functions for cardinal 1 of ranges of diagonals

substitution 0

closing 59 616 648 (0,0,0,0, 0,0,0,0, 0,0,0,0, 1,2,3,0)

substitution and closing 7 492 216 (0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0)

automorphism 0

automorphism and substitution 0

automorphism and closing 0

all 3 0

no one 0

total 67 108 864 (0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0)

Functions for cardinal 2 of ranges of diagonals

substitution 529 104 (1,0,0,0, 0,2,0,0, 0,3,1,1, 0,2,1,1)

closing 1 075 792 032 (0,0,0,0, 0,0,0,0, 0,0,0,0, 0,2,3,1)

substitution and closing 111 056 736 (0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,1)

automorphism 23 808 (1,0,0,0, 0,2,0,0, 3,3,1,3, 3,3,3,2)

automorphism and substitution 768 (1,0,0,1, 1,3,0,2, 2,3,3,2, 2,0,3,1)

automorphism and closing 62 112 (0,0,0,0, 0,0,0,2, 1,3,3,3, 3,3,3,3)

all 3 11 616 (0,0,0,0, 0,0,0,0, 2,2,2,2, 2,2,2,2)

no one 221 809 968 (1,0,0,0, 0,2,1,3, 0,2,1,3, 3,3,3,2)

total 1 409 286 144 (0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,1)

Functions for cardinal 3 of ranges of diagonals

substitution 857 472 (1,0,0,0, 0,2,0,0, 0,3,0,0, 0,2,0,0)

closing 1 689 461 736 (0,0,0,0, 0,0,0,0, 0,0,1,0, 0,2,3,2)

substitution and closing 133 291 032 (0,0,0,0, 0,0,0,0, 0,0,1,0, 0,0,0,2)

automorphism 0

automorphism and substitution 0

automorphism and closing 0

all 3 0

no one 592 308 864 (1,0,0,0, 0,2,0,0, 0,0,3,0, 0,0,0,1)

total 2 415 919 104 (0,0,0,0, 0,0,0,0, 0,0,1,0, 0,0,0,2)

Functions for cardinal 4 of ranges of diagonals

substitution 150 240 (1,0,0,1, 0,3,0,0, 0,0,0,0, 1,0,0,2)

closing 258 471 948 (0,0,0,0, 0,1,0,0, 0,0,2,0, 1,2,3,3)

substitution and closing 15 154 484 (0,0,0,0, 0,1,0,0, 0,0,2,0, 0,0,0,3)

automorphism 42 558 (1,0,0,0, 0,2,0,0, 2,2,3,2, 2,2,2,0)

automorphism and substitution 3 330 (1,0,0,1, 0,3,0,0, 3,3,0,3 2,3,3,2)

automorphism and closing 43 178 (0,0,0,0, 0,1,0,2, 1,3,2,3, 3,3,3,3)

all 3 8 726 (0,0,0,0, 0,1,0,0, 2,2,2,2, 2,2,2,3)

no one 128 778 720 (1,0,0,0, 0,2,0,0, 0,0,3,0, 0,0,0,0)

total 402 653 184 (0,0,0,0, 0,1,0,0, 0,0,2,0, 0,0,0,3)

All functions

substitution 1 536 816 (1,0,0,0, 0,2,0,0, 0,3,0,0, 0,2,0,0)

closing 3 083 342 364 (0,0,0,0, 0,0,0,0, 0,0,0,0, 0,2,3,1)

substitution and closing 266 994 468 (0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0)

automorphism 66 366 (1,0,0,0, 0,2,0,0, 2,2,3,2, 2,2,2,0)

automorphism and substitution 4 098 (1,0,0,0, 0,0,0,0, 0,0,0,2, 0,0,3,0)

automorphism and closing 105 290 (0,0,0,0, 0,0,0,2, 1,3,3,3, 3,3,3,3)

all 20 342 (0,0,0,0, 0,0,0,0, 2,2,2,2, 2,2,2,2)

no one 942 897 552 (1,0,0,0, 2,0,0,0, 0,3,0,0, 0,0,0,0)

total 4 294 967 256 (0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0)
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