

International Journal of Mathematics And its Applications

On β^* -closed Spaces in Terms of Nets

P. Maragatha Meenakshi¹ and J. Sathya^{2,*}

1 Department of Mathematics, Periyar E.V.R College, Trichirapalli, Tamilnadu, India.

2 Department of Mathematics, Thanthai Hans Roever College, Perambalur, Tamilnadu, India.

 Abstract:
 The purpose of this paper is to obtain various characterizations of β^* -closed spaces interms nets.

 MSC:
 54C10, 54C08, 54C05.

 Keywords:
 Topological spaces, β^* -open sets, β^* -closed spaces.

 © JS Publication.
 Action

Accepted on: 23.06.2018

1. Introduction and Preliminaries

Generalized open sets play a very important role in General Topology and they are now the research topics of many topologists worldwide. Indeed a significant theme in General Topology and Real analysis concerns the various modified forms of continuity, separation axioms etc. by utilizing generalized open sets. Recently, Ali M. Mubarki [1] introduced a new class of generalized open sets called β^* -open sets into the field of topology. The purpose of this paper is to obtain various characterizations of β^* -closed spaces in terms of nets.

For a subset A of a topological space (X, τ) , Cl(A) and Int(A) denote the closure of A and the interior of A, respectively.

Definition 1.1 ([2]). The δ -closure of A, denoted by $\operatorname{Cl}_{\delta}(A)$, is defined to be the set of all $x \in X$ such that $A \cap \operatorname{Int}(\operatorname{Cl}(U)) \neq \emptyset$ for every open neighbourhood U of X. If $A = \operatorname{Cl}_{\delta}(A)$, then A is called δ -closed. The complement of a δ -closed set is a called δ -open set. The δ -interior of A is defined by the union of all δ -open sets contained in A and is denoted by $\operatorname{Int}_{\delta}(A)$.

Definition 1.2 ([1]). A subset S of a topological space (X, τ) is said to be β^* -open if $S \subset \text{Int}(\text{Cl}(\text{Int}(S))) \cup \text{Int}(\text{Cl}_{\delta}(S))$. The complement of a β^* -closed set is called a β^* -open set. The family of all β^* -open (β^* -closed) subsets of (X, τ) is denoted by $\beta^*O(X)(\beta^*C(X))$. The family of all β^* -open sets of (X, τ) containing a point $x \in X$ is denoted by $\beta^*O(X, x)$.

Definition 1.3 ([1]). The intersection of all β^* -closed sets containing $A \subset X$ is called the β^* -closure of A and is denoted by $\beta^* \operatorname{Cl}(A)$. The union of all β^* -open sets contained in $A \subset X$ is called the β^* -interior of A and is denoted by $\beta^* \operatorname{Int}(A)$.

2. β^* -closed Spaces

Definition 2.1. A topological space X is said to be β^* -closed if every cover of X by β^* -open sets (= β^* -open cover) has a finite subcover whose β^* -closures cover X.

^{*} E-mail: satvelan@gmail.com

Lemma 2.2 ([1]). Let A and B be subsets of a topological space X. If $A \in \beta^* O(X)$ and B is δ -open in X, then $A \cap B \in \beta^* O(B)$.

Theorem 2.3. Suppose that A and B are subsets of X such that $A \subset B \subset X$ and B is δ -open in X. Then A is β^* -closed relative to the subspace B if and only if A is β^* -closed relative to X.

Proof. Let $\{V_{\alpha} : \alpha \in I\}$ be a β^* -open cover of A. Then by Lemma 2.2, $B \cap V_{\alpha} \in \beta^*O(B)$. Since A is β^* -closed relative to B, there is a finite subfamily I_0 of I such that $A \subset \cup \{\beta^* \operatorname{Cl}(B \cap V_{\alpha}) : \alpha \in I_0\}$ Using Lemma 2.2 once again we have $A \subset \cup \{\beta^* \operatorname{Cl}(B \cap V_{\alpha}) : \alpha \in I_0\} \subset \cup \{\beta^* \operatorname{Cl}(V_{\alpha}) : \alpha \in I_0\}$. This shows that A is β^* -closed relative to X. Conversely, suppose that $\{V_{\alpha} : \alpha \in I\}$ is a cover of A, where $V_{\alpha} \in \beta^*O(B)$ for each $\alpha \in I$. Then by Lemma 2.2 we have $V_{\alpha} \in \beta^*O(X)$ for each $\alpha \in I$. Since A is β^* -closed relative to X, $A \subset \cup \{\beta^* \operatorname{Cl}(V_{\alpha}) : \alpha \in I_0\}$ for some finite subfamily I_0 of I. Again, in view of Lemma 2.2, $A \subset \cup \{\beta^* \operatorname{Cl}(V_{\alpha}) : \alpha \in I_0\}$; hence A is β^* -closed relative to X.

Corollary 2.4. A δ -open subset A of a topological space X is β^* -closed if and only if it is β^* -closed relative to X.

The following two theorems are easy consequences of the definitions and hence omitted.

Theorem 2.5. The union of a finite number of sets in a topological space X, each of which is β^* -closed relative to X, is β^* -closed relative to X.

Theorem 2.6. If A is a β^* -open as well as β^* -closed subset of a topological space X, then it is β^* -closed relative to X.

Definition 2.7. A filterbase \mathcal{F} on a topological space X is said to be:

- (1). β^* -converge to a point $x \in X$, written $\mathcal{F}\beta^*x$, if for each β^* -open set U containing x, there exists $F \in \mathcal{F}$ such that $F \subset \beta^* \operatorname{Cl}(U)$.
- (2). β^* -adhere at $x \in X$, written $x \in \beta^* ad(\mathcal{F})$, if for each β^* -open set U containing x and each $F \in \mathcal{F}$, $F \cap \beta^* \operatorname{Cl}(U) \neq \emptyset$.

Definition 2.8. Let A be a subset of a topological space X. Then a net $\{x_{\alpha} : \alpha \in (D, \geq)\}$ in A said to be:

(1). β^* -adhere at x, written $x \in \beta^* - ad(x_\alpha)$, if for each $U \in \beta^* O(X, x)$ and each $\alpha \in D$ there exists $\beta^* \in D$ with $\beta^* \ge \alpha$ such that $x \in \beta^* \operatorname{Cl}(U)$.

(2). β^* -converge at $x \in X$, denoted by $x_{\alpha} \beta^*_{\lambda} x$, if the net is eventually in $\beta^* \operatorname{Cl}(U)$ for all $U \in \beta^* O(X, x)$.

Theorem 2.9. For a nonempty set A of a topological space (X, τ) , the following are statements are equivalent:

- (1). A is β^* -closed relative to X.
- (2). Every maximal filterbase on X which meets A β^* -converges to some point of A.
- (3). Every maximal filterbase on A β^* -converges to some point of A.
- (4). Every filterbase on X which meets A β^* -converges to some point of A.
- (5). For every family $\{U_{\alpha} : \alpha \in I\}$ of nonempty β^* -closed sets with $(\bigcap_{\alpha \in I} U_{\alpha}) \cap A = \emptyset$, there is a finite subset I_0 of I such that $(\bigcap_{\alpha \in I} \beta^* \operatorname{Int}(U_{\alpha})) \cap A = \emptyset$.
- (6). Every filterbase on A β^* -adhere at some point of A.
- (7). For every family $\{U_{\alpha} : \alpha \in I\}$ of nonempty β^* -closed sets with $(\bigcap_{\alpha \in I} \beta^* \operatorname{Cl}(B_{\alpha})) \cap A = \emptyset$, there is a finite subset I_0 of I such that $(\bigcap_{\alpha \in I} B_{\alpha}) \cap A = \emptyset$.

- (8). Every net in A β^* -adheres at some point of A.
- (9). Every ultranet in A β^* -adheres at some point of A.
- (10). Every net in A has a β^* -convergent subnet.

Proof. (1) \Rightarrow (2): Suppose that \mathcal{F} is a maximal filterbase on X, which meets A and does not β^* -converge to any point of A. Then for each $x \in A$, there exists $V_x \in \beta^* O(X, x)$ such that $F \cap (X \setminus \beta^* \operatorname{Cl}(V_x)) \neq \emptyset$ for every $F \in \mathcal{F}$. The maximality of the filterbase \mathcal{F} then implies that there is some $F_x \in \mathcal{F}$ with $F_x \subset X \setminus \beta^* \operatorname{Cl}(V_x)$ then $F_x \cap \beta^* \operatorname{Cl}(V_x) = \emptyset$. Since $\mathcal{U} = \{V_x : x \in A\}$ is a β^* -open cover of A, $A \subset \bigcap_{i=1}^n \beta^* \operatorname{Cl}(V_{x_i})$ for some finite subcollection $\{V_{x_1}, V_{x_2}, \dots, V_{x_n}\}$ of \mathcal{U} . Let $F \in \mathcal{F}$ such that $F \subset \bigcap_{i=1}^n F_{x_i}$. Then $F \cap A \subset \bigcup_{i=1}^n \beta^* \operatorname{Cl}(V_{x_i}) = \emptyset$, which is a contradiction as \mathcal{F} meets A.

(2) \Leftrightarrow (3): It is clear because of the fact that whenever \mathcal{F} is a maximal filterbase on X, which meets A, the filterbase $\mathcal{F}' = \{F \cap A : F \in \mathcal{F}\}$ on A is also maximal.

(2) \Rightarrow (4): Let \mathcal{F} be a given filterbase \mathcal{F} on X, which meets A. Then \mathcal{F} is contained in a maximal filterbase \mathcal{F}^* which meets A. Since $\mathcal{F}_{\beta}^* x$ for some $x \in A$, for every $V \in \beta^* O(X, x)$ there exists $F_0 \in \mathcal{F}^*$ such that $F_0 \subset \beta^* \operatorname{Cl}(V)$. Since $F \cap F_0 \neq \emptyset$ for each $F \in \mathcal{F}$, we have $\beta^* \operatorname{Cl}(V) \cap F \neq \emptyset$ for each $F \in \mathcal{F}$. It follows that $x \in \beta^* - ad(\mathcal{F})$.

(4) \Rightarrow (1): If possible, let there exists a β^* -open cover \mathcal{U} of A such that for every finite subfamily \mathcal{U}_0 of $\mathcal{U} \land \bigcup_{U \in \mathcal{U}_0} (U) \neq \emptyset$. Then $\mathcal{F} = \{A \setminus_{U \in \mathcal{U}_0} \beta^* \operatorname{Cl}(U)$: \mathcal{U}_0 is a finite subfamily of $\mathcal{U}\}$ is a filterbase on X, which meets A. By (iv), there is $a \in A$ such that $a \in \beta^* - ad\mathcal{U}$. Now \mathcal{U} being a cover of A, there is $U_a \in \mathcal{U}$ such that $a \in U_a$. But then $X \setminus \beta^* \operatorname{Cl}(U_a) \in \mathcal{F}$ containing the fact that $a \in \beta^* - ad\mathcal{F}$.

 $(1) \Rightarrow (5): \text{ If } \{U_{\alpha} : \alpha \in I\} \text{ is a family of nonempty } \beta^{*} \text{-closed sets with } (\bigcap_{\alpha \in I} U_{\alpha}) \cap A = \emptyset, \text{ then } A \subset X \setminus \bigcap_{\alpha \in I_{0}} U_{\alpha} = \bigcup_{\alpha \in I} (X \setminus U_{\alpha}), \text{ that is, } \{(X \setminus U_{\alpha}) : \alpha \in I\} \text{ is } \beta^{*} \text{-open cover of } A. \text{ By } (i), \text{ there is a finite subset } I_{0} \text{ of } I \text{ such that } A \subset \bigcup_{\alpha \in I_{0}} \beta^{*} \operatorname{Cl}(X \setminus U_{\alpha}) = \bigcup_{\alpha \in I_{0}} (X \setminus \beta^{*} \operatorname{Int}(U_{\alpha})) = X \setminus \bigcap_{\alpha \in I_{0}} \beta^{*} \operatorname{Int}(U_{\alpha}). \text{ Hence } A \cap (\bigcap_{\alpha \in I_{0}} \beta^{*} \operatorname{Int}(U_{\alpha})) = \emptyset.$

(5) \Rightarrow (1): Let $\{U_{\alpha} : \alpha \in I\}$ be any β^* -open cover of A. If $U_{\alpha} = X$ for some $\alpha \in I$, then we are through. If $U_{\alpha} \neq X$ for each $\alpha \in I$, then $\{X \setminus U_{\alpha} : \alpha \in I\}$ is a family of nonempty β^* -closed sets such that $(\bigcap_{\alpha \in I} (X \setminus U_{\alpha})) \cap A = (X \setminus \bigcup_{\alpha \in I} U_{\alpha}) \cap A = \emptyset$. By (v), there is a finite subset I_0 of I such that $\emptyset \neq A \cap (\bigcap_{\alpha \in I} (X \setminus \beta^* \operatorname{Cl}(U_{\alpha}))) = A \cap (X \setminus \bigcup_{\alpha \in I_0} (\beta^* \operatorname{Cl}(U_{\alpha})))$; hence $A \subset \bigcup_{\alpha \in I_0} (\beta^* \operatorname{Cl}(U_{\alpha}))$ proving that A is β^* -closed relative to X.

 $(4) \Rightarrow (6)$: Obvious.

(6) \Rightarrow (7): Let $\mathcal{B} = \{B_{\alpha} : \alpha \in I\}$ be a family of nonempty sets in X such that for every finite subset I_0 of I, $(\bigcap_{\alpha \in I_0} B\alpha \cap A \neq \emptyset$. Then $\mathcal{F} = \{(\bigcap_{\alpha \in I_0} B_{\alpha}) \cap A : I_0 \text{ is a finite subset of } I\}$ is a filterbase on A. By (vi), let $a \in A \cap \beta^* - ad\mathcal{F}$. then for each $\alpha \in I$ and each $U \in \beta^* O(X, a)$, $A \cap B_{\alpha} \cap \beta^* \operatorname{Cl}(B\alpha) \neq \emptyset$, that is $B_{\alpha} \cap \beta^* \operatorname{Cl}(U) \neq \emptyset$. Hence $a \in \beta^* \operatorname{Cl}(B_{\alpha})$ for each $\alpha \in I$ and consequently, $(\bigcap_{\alpha \in I} \beta^* \operatorname{Cl}(B_{\alpha})) \cap A \neq \emptyset$.

(7) \Rightarrow (1): Let $\{U_{\alpha} : \alpha \in I\}$ be a β^* -open cover of A. Then $A \cap (\bigcap_{\alpha \in I} (X \setminus U_{\alpha})) = \emptyset$. If foe some $\alpha \in I$, $X \setminus \beta^* \operatorname{Cl}(U_{\alpha}) = \emptyset$, then (i) follows. If $X \setminus \beta^* \operatorname{Cl}(U_{\alpha}) = B_{\alpha}$ (say), $\neq \emptyset$, for each $\alpha \in I$, then $\mathcal{B} = \{B_{\alpha} : \alpha \in I\}$ is a family of nonempty sets such that $(\bigcap_{\alpha \in I} \beta^* \operatorname{Cl}(B_{\alpha})) \cap A \subset A \cap (\bigcap_{\alpha \in I} (X \setminus U_{\alpha})) = \emptyset$ (*). In fact, let $x \in \beta^* \operatorname{Cl}(B_{\alpha}) = \beta^* \operatorname{Cl}(X \setminus \beta^* \operatorname{Cl}(U_{\alpha}))$. Then for every $V_x \in \beta^* O(X), (X \setminus \beta^* \operatorname{Cl}(U_{\alpha})) \cap (\beta^* \operatorname{Cl}(V_{\alpha})) \neq \emptyset$. Since $U_{\alpha} \in \beta^* O(X)$, if $x \in U_{\alpha}$, then $(X \setminus \beta^* \operatorname{Cl}(U_{\alpha})) \cap (\beta^* \operatorname{Cl}(V_{\alpha})) \neq \emptyset$, which is not possible. Thus, $x \notin U_{\alpha}$ so that $x \in U_{\alpha}$. Hence $\beta^* \operatorname{Cl}(B_{\alpha}) \subset X \setminus U_{\alpha}$ and (*) follows. By (vii), ther is a finite subset I_0 of I such that $(\bigcap_{\alpha \in I} (B_{\alpha}) \cap A = \emptyset$, that is, $A \subset X \setminus \bigcap_{\alpha \in I_{\alpha}} (X \setminus \beta^* \operatorname{Cl}(B_{\alpha})) = \bigcap_{\alpha \in I_{\alpha}} \beta^* \operatorname{Cl}(U_{\alpha})$.

(6) \Rightarrow (8): Let $\{x_n : n \in (D, \geq)\}$ be a net in A. Consider the filterbase $\mathcal{F} = \{T_n : n \in D\}$ generated by the net, where $T_n = \{x_m : m \in D \text{ and } m \geq n\}$. By (vi), there exists $a \in A \cap \beta^* - ad\mathcal{F}$. Then for each $U \in \beta^*O(X, a)$ and each $F \in \mathcal{F}$, $\beta^* \operatorname{Cl}(U) \cap F \neq \emptyset$, that is, $\beta^* \operatorname{Cl}(U) \cap T_n \neq \emptyset$ for all $n \in D$. Hence $a \in A \cap \beta^* - ad(x_n)$.

 $(8) \Rightarrow (9)$: Let $\{x_n : n \in (D, \geq)\}$ be an ultranet in A. By (viii), there exists $a \in \beta^* - ad(x_n) \cap A$. Let $U \in \beta^*O(X, a)$. Since the given net is an ultranet in A, it is eventually is either $A \cap \beta^* \operatorname{Cl}(U)$ or $A \setminus (A \cap \beta^* \operatorname{Cl}(U))$. But since the net is frequently

in $A \cap \beta^* \operatorname{Cl}(U)$, we conclude that the net is eventually in $\beta^* \operatorname{Cl}(U)$. Hence $x_n \beta_{\underline{}}^* a$.

(9) \Leftrightarrow (10): Let $\{x_n : n \in (D, \geq)\}$ be a net in A. Since net has a subnet, the subnet of the given net β^* -converges to some point of A by (ix), and (x) follows.

(8) \Leftrightarrow (10): Let $T : E \to A$ be a β^* -convergent subnet of a given net $S : D \to A$, and suppose $T \stackrel{*}{\rightarrow} a \in A$. Then $T = S \circ N$, where $N : E \to D$ is a function such that for each $n \in D$, there exists $P \in E$ with the property that $N(m) \ge n$ in Dwhenever $m \in E$ with $m \ge p$. Let $U \in \beta^* O(X, a)$ and $n \in D$, there is $m_1 \in E$ such that $T(m) \in \beta^* \operatorname{Cl}(U)$ for all $m \ge m_1$ $(m \in E)$. For the given $n \in D$, let $p \in E$ with the above stated property and $m_2 \in E$ such that $m_2 \ge p, m_1$. Then $N(m_2) \ge n$ in D, and we have $T(m_2) = S \circ N(m_2) \in \beta^* \operatorname{Cl}(U)$ (since $m_2 \ge m_1$). Hence $a \in \beta^* - ad(S) \cap A$. This completes the proof of the Theorem.

Putting A = X in the above Theorem, we now obtain the following characterization of a β^* -closed space.

Theorem 2.10. For a nonempty set A of a topological space (X, τ) , the following are statements are equivalent:

- (1). X is a β^* -closed space.
- (2). Every maximal filterbase on X β^* -converges.
- (3). Every filterbase on X β^* -adherent.
- (4). For every family $\{U_{\alpha} : \alpha \in I\}$ of nonempty β^* -closed sets in X with $\bigcap_{\alpha \in I_0} U_{\alpha} = \emptyset$, there is a finite subset I_0 of I such that $\bigcap_{\alpha \in I_0} \beta^* \operatorname{Int}(U_{\alpha}) = \emptyset$.
- (5). For every family $\{B_{\alpha} : \alpha \in I\}$ of nonempty closed sets in X with $\bigcap_{\alpha \in I_0} \beta^* \operatorname{Cl}(B_{\alpha}) = \emptyset$, there is a finite subset I_0 of I such that $\bigcap_{\alpha \in I_0} B_{\alpha} = \emptyset$.
- (6). Every net in X has a β^* -adherent point.
- (7). Every ultranet in X β^* -converges.
- (8). Every net in X has a β^* -convergent subnet.

Theorem 2.11. A topological space X is β^* -closed if and only if every filterbase on X with atmost one β^* -adherent point is β^* -convergent.

Proof. Let X be β^* -closed, and a filterbase \mathcal{F} on X with atmost one β^* -adherent point by Theorem 2.10. let x_0 be a unique β^* -adherent point of \mathcal{F} and if possible, let \mathcal{F} does not β^* -converge to x_0 . Then for some $U \in \beta^*O(X, x_0)$ and for each $F \in \mathcal{F}$, $F \cap (X \setminus \beta^* \operatorname{Cl}(U)) \neq \emptyset$. So $y = \{F \cap (X \setminus \beta^* \operatorname{Cl}(U)) : F \in \mathcal{F}\}$ is a filterbase on X and hence a β^* -adherent point x in X. Since $U \in \beta^*O(x, x_0)$ and $\beta^* \operatorname{Cl}(U) \cap G = \emptyset$ for all $G \in \mathcal{F}$, we have $x \neq x_0$. Now for each $V \in \beta^*O(X, x)$ and each $F \in \mathcal{F}$, $\beta^* \operatorname{Cl}(U) \supset \beta^* \operatorname{Cl}(X) \cap (X \setminus \beta^* \operatorname{Cl}(U)) \neq \emptyset$, that is, $F \cap \beta^* \operatorname{Cl}(V) \neq \emptyset$. Thus, x is a β^* -adherent point of \mathcal{F} . The converse is clear in view of Theorem 2.10 and the fact that a point x is necessarily a β^* -adherent point of a filterbase \mathcal{F} if $\mathcal{F} \beta X$.

References

Ali M. Mubarki, Massed M. Al-Rshudi and Mohammad A. Al-Juhani, β^{*}-Open sets and β^{*}-continuity in topological spaces, Journal of Taibah University for Science, 8(2014), 142-148.

^[2] N. V. Veličko, H-closed topological spaces, Amer. Math. Soc. Transl., 78(2)(1968), 103-118.