
Int. J. Math. And Appl., 6(4)(2018), 91–98

ISSN: 2347-1557

Available Online: http://ijmaa.in/
A
p
p
lications•ISSN:234

7-
15

57
•
In

te
r
n
a
ti
o
n
a
l
Jo

ur
na

l of Mathematics
A
n
d

its

International Journal ofMathematics And its Applications

Exact Zero-Divisor Graph of a Commutative Ring

Premkumar T. Lalchandani1,∗

1 Department of Mathematics, Saurashtra University, Rajkot, Gujarat, India.

Abstract: The aim of this article is to continue the study of exact zero-divisor graph of a commutative ring with nonzero identity.

We discuss the properties and nature of exact zero-divisor graph and compare some of its properties with zero-divisor
graph.

MSC: 13A15, 05C25.

Keywords: Zero Divisor, Exact Zero Divisor, Exact Zero-Divisor Graph.

c© JS Publication. Accepted on: 19.04.2018

1. Introduction

The study of graphs associated with algebraic structures was initiated in 1878 when Arthur Cayley introduced Cayley graph

of finite groups in [6]. After this, many graphs associated with algebraic structures were introduced. I. Beck defined the

zero-divisor graphs in [5]. The definition of Beck was later modified by Anderson and Livingston in [3]. In the definition

of I. Beck, the vertices are the elements of R, while Anderson and Livingston restricted the vertex set to only nonzero zero

divisors of R. This graph is denoted by Γ(R). Exact zero divisors were introduced by I. B. Henriques and I. M. Sega in [11].

Motivated by the study of zero-divisor graphs Γ(R) in [3], we begun the study of exact zero-divisor graph in [13]. In [13],

we have discussed several examples and properties of EΓ(R) and compare some of its properties with Γ(R).

Through out the article, the rings considered are commutative rings with nonzero identity. Following [11], we say that an

element x is an exact zero-divisor of R, if there exists y ∈ R∗ such that Ann(x) = {r ∈ R|rx = 0} is a principal ideal yR

whose annihilator is xR, i.e. Ann(x) = yR and Ann(y) = xR. We say that EZ(R) is the set of exact zero-divisors of R.

We associate a simple graph EΓ(R) to R with the vertex set EZ(R)∗ = EZ(R)−{0}, the set of nonzero exact zero divisors

of R. Two vertices x and y are adjacent if and only if (x, y) is a pair of exact zero-divisors of R, i.e. Ann(x) = yR and

Ann(y) = xR. The zero-divisor graph defined in [3] has the vertex set Z(R)∗ = Z(R)−{0}, the set of nonzero zero divisors

of R and two vertices x and y are adjacent if xy = 0. In this paper, we continue our investigation of exact zero-divisor graphs

begun in [13]. In section 2, we define basic terminologies and discuss some examples of EΓ(R). In section 3, we discuss the

properties of exact zero-divisor graphs for rings of the form Zn, with specific values of n. In section 4, we continue investing

properties of EΓ(R) and comparing with the properties of Γ(R). In section 5, we define compressed exact zero-divisor graph

defined using equivalence classes in R.

We call a graph G is connected if there is a path between any two distinct vertices. The length of the shortest path between

any two vertices x and y is denoted by d(x, y), and d(x, y) =∞ if no such path exists. The diameter of a graph G is defined
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as diam(G) = sup {d(x, y) | x & y are distinct vertices of G}. A cycle in a graph is a path of length at least 3 through

distinct vertices with same begin and end vertices. The girth of a graph G is denoted by g(G) and is defined to be the

length of the shortest cycle in G. g(G) = ∞ if G contains no cycle. A graph is said to be complete if each vertex in the

graph is adjacent to every other vertex. A complete graph with n vertices is denoted by Kn. A complete bipartite graph is

a graph such that every vertex in one partitioning subset is adjacent to every vertex in the other partitioning subset. If the

partitioning subsets have cardinalities m and n respectively, then the graph is denoted by Km,n. By a null graph, we mean

the edgeless graph, while by an empty graph, we mean a graph with no vertices. For a subset A ⊂ R, A∗ = A−{0}. Z, Zn

and Fm indicates ring of integers, ring of integers modulo n and field with m elements, respectively. We follow [4] for other

standard notations. To avoid trivialities, we assume that R is not an integral domain unless otherwise stated.

2. Examples and Preliminaries

In this section we recall several definitions from [13], and discuss a variety of examples of EΓ(R). Also we mention the

properties of EΓ(R) studied in [13]. As discussed in introduction, R is a commutative ring with nonzero identity.

Definition 2.1. An element x of R is exact zero divisor if there exists y ∈ R∗ such that Ann(x) = {r ∈ R|rx = 0} is a

principal ideal yR whose annihilator is xR, i.e. Ann(x) = yR and Ann(y) = xR.

In this case, we say that (x, y) is a pair of exact zero divisors. It can be seen that an exact zero divisor is a zero divisor.

Definition 2.2. Let EZ∗(R) be the set of nonzero exact zero divisors of R. We associate a simple graph EΓ(R) to R with

vertex set EZ(R)∗, and two vertices x and y are adjacent if (x, y) is a pair of exact zero divisors, i.e. Ann(x) = yR and

Ann(y) = xR.

Clearly, EΓ(R) is an empty graph if R is an integral domain. We discuss a variety of examples of EΓ(R) by showing the

graphs of several rings only. Being an easy exercise, we omit the calculation part in the examples.

Example 2.3. The exact zero-divisor graphs of several commutative rings shown in the Figure 1, are the graphs such that

there is a vertex which is adjacent to every other vertex.

Figure 1.

Example 2.4. We can observe from Figure 2 that exact zero-divisor graph of a ring need not be connected. Note that the

zero-divisor graph of a commutative ring is always connected.

Figure 2.

92



P. T. Lalchandani

Example 2.5. The exact zero-divisor graph of R = Z5[X]/(X2) is a complete graph, which is shown in figure 3.

Example 2.6. The exact zero-divisor graph of Z2×Z4 is shown in figure 3. This example indicates that a zero-divisor may

not be an exact zero-divisor of a commutative ring R. For R = Z2 × Z4, (0, 2) ∈ Z(R)∗ but (0, 2) /∈ EZ(R)∗.

Example 2.7. The exact zero-divisor graph of Z × Z is shown in figure 3. This is an example of an infinite commutative

ring with its exact zero-divisor graph to be finite. We note that for a commutative ring R, its zero-divisor graph is finite if

and the ring R is finite or an integral domain ([3], Theorem 2.2).

Figure 3.

We have discussed some properties of EΓ(R) for a commutative ring R in [13]. We end this section by noting down some

facts from [13].

(1). A zero-divisor graph of R is always connected ([3], theorem 2.3). But the result is not true for exact zero-divisor graph

of a commutative ring R ([13], remark 3.1). It can be observed also from example 2.4.

(2). The zero-divisor graph Γ(R) of R is finite if and only if R is finite or an integral domain ([3] theorem 2.2). This is not

true in the case of exact zero-divisor graph of R ([13], remark 3.2). It can be observed also from example 2.7.

(3). If EΓ(R) is connected, then the length of the shortest path between any two vertices is at most two ([13], theorem 3.3).

Since EΓ(R) is not connected, we can modify this fact as if there is a path between any two distinct vertices of EΓ(R),

then the length of the path cannot exceed two.

(4). If EΓ(R) contains a cycle, then g(EΓ(R)) ≤ 4 ([13], theorem 3.4).

(5). If R is a ring of the form F1 × F2, where F1 and F2 are fields. Then EΓ(R) is connected and complete bipartite graph

([13], theorem 3.5). The converse of this statement is not true. (example 2.5)

(6). If R = F1 × F2, where F1 and F2 are fields. Then EΓ(R) and Γ(R) coincide in this case ([13], remark 3.5).

3. Exact Zero-Divisor Graph of Zn

In this section, we will focus on the exact zero-divisor graphs of a commutative ring of the form Zn. We will discuss the

nature of EΓ(R) for particular values of n. Clearly for R = Zp, where p is a prime, EΓ(R) is an empty graph. We note the

fact that for a ring of the form R = Zpn , the zero divisors of R are precisely the elements divisible by p.

Theorem 3.1. Let R = Zp2 , where p is a prime number. Then EΓ(R) is complete graph Kp−1 with p− 1 vertices.

Proof. Let R = Zp2 , where p is a prime. Then Z(R)∗ =
{
p, 2p, 3p, . . . , (p− 1)p

}
. Now, Ann(p) = pR. But since{

1, 2, 3, . . . , p− 1
}
⊂ U∗(R), we have pR = 2pR = 3pR = . . . = (p− 1)pR. Therefore Ann(p) = pR = 2pR = 3pR =

. . . = (p− 1)pR. Also Ann(p) = Ann(2p) = Ann(3p) . . . = Ann((p− 1)p). Hence Z(R)∗ = EZ(R)∗ and each of the
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p, 2p, 3p, . . . , (p− 1)p are adjacent with each other in EΓ(R). Thus EΓ(R) is a complete graph with p − 1 vertices, i.e.

Kp−1.

[9], theorem 3.1 indicates that the zero-divisor graph Γ(R) of a commutative ring Zp2 is also Kp−1. So in this case Γ(R)

and EΓ(R) coincide. We have seen that, for a prime number p, EΓ(R) of Zp2 is a complete graph. Example of Z16 = Z24

is a disjoint union of two complete bipartite graphs (example 2.4). Also the exact zero-divisor graph EΓ(R) of Z32 is as in

figure 4, which is also a disjoint union of two complete bipartite graphs. We generalize this fact in the next theorem.

Figure 4.

Theorem 3.2. If R = Zpn(n ≥ 3), then EΓ(R) is disjoint union of [n/2] number of complete bipartite graphs, where [n/2]

is integer part of n
2

.

Proof. Let R = Zpn(p ≥ 3), n ∈ N. Therefore the zero divisors in R are precisely the elements divisible by p, i.e.

u1p, u2p
2, . . . , un−1p

n−1; where each ui (1 ≤ i ≤ n − 1) are units in R. Now, Ann(u1p) = (un−1pn−1)R and

Ann(un−1pn−1) = (u1p)R. Similarly, Ann(u2p2) = (un−2pn−2)R and Ann(un−2pn−2) = (u2p2)R. This process (say ∗)

will continue up to n/2 or (n− 1)/2 depending upon the value of n, whether it is even or odd.

Case I: n is even.

If n is even, the process ∗ will end with Ann(un/2pn/2) = (un/2pn/2)R. Thus the vertex set of EΓ(R) will be disjoint union

of n/2 sets. Also each uipi is adjacent to each un−ipn−i in EΓ(R). Therefore each vertex set gives a complete bipartite

graph. Hence EΓ(R) is disjoint union of n/2 = [n/2] number of complete bipartite graphs, where [n/2] indicates the integer

part of n
2

.

Case II: n is odd.

If n is odd, the process ∗ will end with Ann(u(n−1)/2p(n−1)/2) = (u(n+1)/2p(n+1)/2)R and Ann(u(n+1)/2p(n+1)/2) =

(u(n−1)/2p(n−1)/2)R. Thus the vertex set of EΓ(R) will be disjoint union of (n− 1)/2 sets. Also each uipi is adjacent

to each un−ipn−i in EΓ(R). Therefore each vertex set gives a complete bipartite graph. Hence EΓ(R) is disjoint union of

(n− 1)/2 = [n/2] number of complete bipartite graphs, where [n/2] indicates the integer part of n
2

.

We end the section with following result.

Theorem 3.3. Let R = Zpq, where p and q are distinct primes. Then EΓ(R) is a complete bipartite graph Kp−1,q−1.

Proof. Let R = Zpq, where p and q are distinct primes. Then Zpq is isomorphic to Zp × Zq. But since p and q are

primes, Zp and Zq are fields. Therefore by ([13], theorem 3.5), EΓ(R) is complete bipartite graph. Also in this case

Z(R)∗ = EZ(R)∗ = A ∪B, where A =
{

(1, 0), (2, 0), . . . , (p− 1, 0)
}

and B =
{

(0, 1), (0, 2), . . . , (0, q − 1)
}

, and A ∩B = φ.

Thus EΓ(R) = Kp−1,q−1.
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4. Some Properties of EΓ(R)

In section 3, we have discussed several properties of EΓ(R) for rings of the form Zn. In this section, we will discuss some

properties of EΓ(R) for R to be a commutative ring. We begin the section with a result that generalizes the theorem 3.5 of

[13] for integral domains.

Theorem 4.1. Let R = D1×D2, where D1 and D2 are integral domains. Then EΓ(R) is connected and complete bipartite

graph.

Proof. Let R = D1 ×D2, where D1 and D2 are integral domains. Then Z(R)∗ = X ∪ Y , where X = {(x, 0)|x ∈ D1} and

Y = {(0, y)|y ∈ D2}. Clearly X ∩ Y = φ. Let (u, 0), (0, v) ∈ R such that u ∈ U(D1)∗, v ∈ U(D2)∗. Then Ann((u, 0)) =

{0}×D2 = (0, v)R and Ann((0, v)) = D1×{0} = (u, 0)R. Therefore (u, 0), (0, v) ∈ EZ(R)∗ and (u, 0)−(0, v) are adjacent in

EΓ(R) for u ∈ U(D1)∗, v ∈ U(D2)∗. Now let (x, 0) ∈ R such that x ∈ D1−U(D1)∗. Then Ann((x, 0)) = {0}×D2 = (0, 1)R.

But Ann(0, 1) = D1×{0} 6= (x, 0)R. Thus (x, 0) is not an exact zero divisor of R. Similarly (0, y) such that y ∈ D2−U(D2)∗

is not an exact zero divisor of R. Also for u, u′ ∈ U(D1)∗ and v, v′ ∈ U(D2)∗, (u, 0)−(u′, 0) and (0, v)−(0, v′) are not adjacent

in EΓ(R). Hence vertex set of EΓ(R) is A ∪ B, where A = U(D1)∗ and B = U(D2)∗. And each (u, 0)−(0, v) are adjacent

in EΓ(R), where u ∈ U(D1)∗, v ∈ U(D2)∗. Thus EΓ(R) is a connected and complete bipartite graph.

We know that for fields F1 and F2, if R = F1 × F2, then EΓ(R) is connected. In next theorem, we will show that if EΓ(R)

is connected for R to be Von Neumann Regular Ring, then R ' F1 × F2.

Theorem 4.2. Let R to be Von Neumann Regular Ring. If EΓ(R) is connected, then R ' F1 × F2.

Proof. Let R to be Von Neumann Regular Ring. Suppose that R admits more than two prime ideals. Let P1, P2, P3 be

prime ideals of R such that P2 ∩ P3 * P1 and P1 ∩ P3 * P2. Let x ∈ (P2 ∩ P3)−P1 and y ∈ (P1 ∩ P3)−P2. Therefore

x = ue, y = vf , where u, v ∈ U(R) and e, f are idempotent elements. Since EΓ(R) is connected, let x−z−y be the shortest

path between x and y. Also z = u1e1, where u1 ∈ U(R), and e1 is an idempotent element. Now by the definition of EΓ(R),

Ann(x) = zR, & Ann(z) = xR. Since x = ue, z = u1e1, we have e1 = 1− e. Similarly, since y = vf , and z−y are adjacent

in EΓ(R), we have e1 = 1 − f . But then e = f , which gives Rx = Ry, a contradiction. Therefore R admits exactly two

prime ideals. Thus R ' F1 × F2.

Corollary 4.3. Let R = F1 × F2 × . . .× Fn, where each Fi(1 ≤ i ≤ n) are fields. If EΓ(R) is connected, then n = 2.

Proof. Let R = F1 × F2 × . . . × Fn, where each Fi(1 ≤ i ≤ n) are fields. Then R is Von Neumann Regular Ring. Hence

by theorem 4.2, n = 2.

Remark 4.4. Let R = F1 × F2 × F3, where each F1,F2,F3 are fields. We know that EΓ(R) is not connected. Here we

will discuss about the number of connected components of EΓ(R). Let α1, α2, α3 be arbitrary elements from F∗1,F∗2,F∗3,

respectively. Then Ann((α1, 0, 0)R) = (0, α2, α3)R and Ann((0, α2, α3)R) = (α1, 0, 0)R. Ann((0, α2, 0)R) = (α1, 0, α3)R

and Ann((α1, 0, α3)R) = (0, α2, 0)R; Ann((0, 0, α3)R) = (α1, α2, 0)R and Ann((α1, α2, 0)R) = (0, 0, α3)R. Therefore we

can observe that EΓ(R) is disjoint union of three complete bipartite graphs. We generalize this fact in next theorem.

Theorem 4.5. Let R = F1 × F2 × . . .× Fn, where each Fi, (1 ≤ i ≤ n) is a field. Then the exact zero-divisor graph EΓ(R)

is a disjoint union of 2n−1 − 1 number of complete bipartite graphs.

Proof. Let R = F1 × F2 × . . .× Fn, where each Fi, (1 ≤ i ≤ n) is a field. Let αi ∈ Fi, then vertices of EΓ(R) are n-tuples

of αi ∈ Fi with at least one αi 6= 0. Suppose that n is odd. Then we can observe that for each (1 ≤ i ≤ n), the vertex
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of the form (0, 0, . . . , 0, αi, 0, . . . , 0)R with αi( 6= 0) ∈ Fi is adjacent with (α1, α2, . . . , αi−1, 0, αi+1, . . . , αn)R, which gives(
n
1

)
number of complete bipartite components. Similarly, the vertices with exactly two nonzero α′is gives

(
n
2

)
number of

complete bipartite components. Since n is odd, the total number of components of EΓ(R) is
∑n−1

i=1

(
n
i

)
= 2n−1 − 1. Thus if

n is odd, EΓ(R) is disjoint union of 2n−1 − 1 number of complete bipartite graphs. Similarly, if n is even, then the number

of components are
∑n

2
i=1

(
n
i

)
= 2n−1−1. Thus EΓ(R) is disjoint union of 2n−1−1 number of complete bipartite graphs.

Theorem 4.6. Let R be a commutative ring with nonzero identity. If zero-divisor graph Γ(R) of R is complete, then for

exact zero-divisor graph EΓ(R), Γ(R) = EΓ(R).

Proof. Let R be a commutative ring with nonzero identity such that zero-divisor graph Γ(R) of R is complete. Therefore

either R ' Z2 × Z2 or xy = 0 for all x, y ∈ Z(R) ([3], theorem 2.8). Clearly if R ' Z2 × Z2, then Γ(R) = EΓ(R). Now

let xy = 0 for all x, y ∈ Z(R). If possible suppose that Γ(R) 6= EΓ(R). Therefore either V (Γ(R)) 6= V (EΓ(R)) and/or

E(Γ(R)) 6= E(EΓ(R)). If V (Γ(R)) 6= V (EΓ(R)), then there exists a zero divisor x ∈ Z(R)∗ such that x /∈ EZ(R)∗. Therefore

either Ann(x) 6= (y) or Ann(y) 6= (x) for any y ∈ R∗. In any of the case, we get for r ∈ R∗, rxy 6= 0, which contradicts the

fact that xy = 0. Thus Γ(R) = EΓ(R). Thus V (Γ(R)) = V (EΓ(R)). Similarly, we can show that E(Γ(R)) = E(EΓ(R)).

Thus Γ(R) = EΓ(R).

We recall that the chromatic number of a graph G is the minimum number of colours needed to produce a proper colouring

of G. It is denoted by χ(G). The clique is a subset of vertices of an undirected graph G such that every two vertices are

adjacent, i.e. its induced subgraph is complete. The number of vertices in a maximum clique of G is denoted by ω(G).

Definition 4.7. A perfect graph G is a graph in which the chromatic number of every induced subgraph equals the size of

the largest clique of that subgraph, i.e. for every subgraph H ⊆ G, ω(H) = χ(H).

We note that a graph Pn is the graph with n vertices such that the vertices ui and the edges ej form an alternating sequence

u1, e1, u2, e2, · · · , un−1, en−1, un, where ei = ui−1ui for i = 1, 2, · · · , n and ui 6= uj for all i 6= j. The graph P4 is shown in

the figure. The following theorem provides a tool for proving that a graph is perfect.

Figure 5.

Theorem 4.8 ([7]). If a graph G does not contain P4 as an induced subgraph, then G is perfect.

Theorem 4.9. For a commutative ring R, the exact zero-divisor graph EΓ(R) of a commutative ring R is perfect.

Proof. We know that the shortest path between any two vertices in EΓ(R) for a commutative ring R cannot exceed two

([13], theorem 3.3). So if there is an alternating sequence u1, e1, u2, e2, u3, e3, u4 of vertices u1, u2, u3, u4 and edges e1, e2, e3

in EΓ(R), then there is an edge between the vertices u1 and u4. So for any commutative ring R, EΓ(R) does not contains

P4 as the induced subgraph. Therefore EΓ(R) is perfect.

Remark 4.10. We can observe from ([10], theorem 1.2) that the zero-divisor graph of Γ(Zpn), where p is prime, is perfect.

Theorem 4.7 indicates that the fact also holds for exact zero-divisor graphs. Also the zero-divisor graph of Γ(Zp1p2), where

p1, p2 are primes, is perfect which is also true in case of exact zero-divisor graphs.

Remark 4.11. ([10], theorem 1.4) indicates that the zero-divisor graph Zn is perfect if and only if n = pk for some prime p

or n = p1p2 for some distinct primes p1 and p2. Theorem 4.9 indicates that for any commutative ring R, EΓ(R) is perfect.
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5. Compressed Exact Zero-Divisor Graph

As in [2], for any element r and s of R, define r ∼ s if and only if annR(r) = annR(s). Then ∼ is an equivalence relation

on R. For any r ∈ R, let [r]R = {s ∈ R|r ∼ s}. Thus it is clear that [0]R = {0} , [1]R = R−Z(R), & [r]R ⊂ Z(R)−{0}, for

every ring R−([0]R ∪ [1]R). Furthermore, the operation on equivalence classes given by [r]R[s]R = [rs]R is well defined and

thus makes the set RE = {[r]R|r ∈ R} into a commutative monoid.

As in [14], Γ(RE) or ΓE(R) will denote the compressed zero-divisor graph of R, whose vertices are the elements of

Z(RE)−{[0]R} such that distinct vertices [r]R and [s]R are adjacent if and only if [r]R[s]R = [0]R, if and only if rs = 0.

In this section, we will define the compressed exact zero-divisor graph EΓE(R) for a commutative ring R. We discuss the

compressed exact zero-divisor graphs of several rings whose exact zero-divisor graphs are discussed in section 2. We also

discuss some properties of EΓE(R) and compare with the properties of ΓE(R).

The compressed zero-divisor graph ΓE(R) was first defined by S. B. Mulay in [12], where it has been noted that several

graph-theoretic properties of Γ(R) remain valid for ΓE(R). However, some properties of Γ(R) does not hold for ΓE(R). For

example, Γ(R) is finite if and only if R is finite or an integral while ΓE(R) may be finite even if R is infinite and not an

integral domain.

Definition 5.1. The graph of equivalence classes of exact zero divisors of a ring R, denoted by EΓE(R), is the graph

associated to R whose vertices are the classes of elements in EZ(R)∗, and two distinct vertices x and y are adjacent if and

only if Ann(x) = yR and Ann(y) = xR.

Example 5.2. We have mentioned compressed exact zero-divisor graphs of some of the rings in figure 6, whose exact

zero-divisor graphs are discussed in section 2.

Figure 6.

In ([14], theorem 1.4), it has been shown that ΓE(R) is connected for every commutative ring with nonzero identity. Also

diam(ΓE(R)) ≤ 3. From example 5.2, we can observe that EΓE(R) need not be connected. In theorem 5.3, we will prove

that if the compressed exact-zero divisor graph is connected, then it must be either K1 and K2.

Theorem 5.3. If EΓE(R) is connected, then EΓE(R) is either K1 or K2.

Proof. Let EΓE(R) is connected. Suppose that EΓE(R) is different from K1 or K2. Let [x]E , [y]E , and [z]E be three

distinct vertices of EΓE(R). Therefore there exists a path [x]E−[y]E−[z]E of shortest length between vertices [x]E , [y]E , [z]E

in EΓE(R). By the definition of EΓE(R), we have Ann(x) = yR and Ann(y) = xR. Similarly, Ann(y) = zR and

Ann(z) = yR. But then Ann(x) = yR = Ann(z). Thus [x]E = [z]E . Therefore, there does not exist a path of length three

between any two distinct vertices. Hence if EΓE(R) is connected, then EΓE(R) is either K1 or K2.

Remark 5.4. We have seen that diam(ΓE(R)) ≤ 3 for a commutative ring R. But if the compressed zero-divisor graph

EΓE(R) is connected, then diam(EΓE(R)) ≤ 1.
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Remark 5.5. From theorem 5.3, we can observe that any compressed zero-divisor graph with three distinct vertices cannot

be connected. Hence we have the following theorem.

Theorem 5.6. For any commutative ring R, if the compressed exact zero-divisor graph EΓE(R) is not connected, then

EΓE(R) is disjoint union of the complete graphs K1 or K2, i.e. EΓ(R) =
j=n⋃
j=1

(Ki)j; where i = 1 or 2.

Proof. Suppose compressed exact zero-divisor graph EΓE(R) of a commutative ring R is not connected. Let x, y, z

from a connected component of EΓE(R) such that [x]E−[y]E−[z]E . But by definition of EΓE(R), we can observe that

[x]E = [y]E . Thus any connected component of EΓ(R) can contain at most two vertices. Thus EΓE(R) is disjoint union of

the complete graphs K1 or K2. Hence EΓ(R) =
j=n⋃
j=1

(Ki)j ; where i = 1 or 2.

We end this section with an immediate corollary of theorem 5.1 and 5.2.

Corollary 5.7. For any commutative ring R, EΓE(R) does not contain a cycle.
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