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1. Introduction

Queuing theory originated when a Danish mathematician A.K. Erlang published in 1909 his pioneering paper “The theory

of probabilities and telephone conversations” on the study of congestion of telephone traffic. His studies are now classics

in queuing theory. Until about 1940 the development of the new branch of applied probability was directed by the needs

encountered in the design of automatic telephone exchanges. After the Second World War when applications of mathematical

models and methods in technology and other applied areas rose to a level previously unknown, it was realized that queuing

theory too had a very broad field of applicability to various scientific and organizational phenomena. Queuing theory plays

an important role in modeling real life problems involving congentions in wide areas of science, technology and management.

In queuing theory, a model is constructed so that queue lengths and waiting times can be predicted [1]. Queuing theory

is generally considered a branch of operations research because the results are often used when making business decisions

about the resources needed to provide service. Queuing theory is a mathematical access in Operations Research applied to

the analysis of queue.

A queuing system may be described as one having a service facility at which units of some kind arrive for service , and

where, whenever there are more units in the system than the service facility can handle simultaneously, a queue or waiting

line is formed. These units take their turn for service according to a preassigned rule and after service they leave the system.

By units we mean those demanding service , e.g. customers at a bank counter or at a reservation counter, calls arriving

arriving at a telephone exchange, vehicles at a traffic intersection, machines for repair before a repairman, airplanes waiting
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for take-off or landing at a busy airport, merchandise awaiting shipment at a yard, computer programs waiting to be run

on a time-sharing basis, etc. Thus, the input to the system consists of the customers demanding service and the output is

the serviced customers. Generally, a queuing system is characterized by the following:

(i). The input process

(ii). The queue discipline

(iii). The service mechanism

In queuing system, we will discuss two common concepts:.

1.1. Utilization factor

Utilization plays the crucial role and is defined as the proportion of the system‘s resources which is used by the traffic which

arrives at it. It should be strictly less than one for the system to function well. It is usually denoted by the symbol ρ. If

ρ ≥ 1, then the queue will continue to grow as time goes on. In the simplest case of an M/M/1 queue (Poisson arrivals and

a single Poisson server) then it is given by the mean arrival rate over the mean service rate, that is, ρ = λ
µ

, where λ is the

mean arrival rate and µ is the mean service rate.

More generally, ρ = λ
µ×c , where λ is the mean arrival rate, µ is the mean service rate and c is the number of servers, such

as in an M/M/c queue. In general, a lower utilization corresponds to less queuing for customers but means that the system

is more idle, which may be considered inefficient.

1.2. Little’s theorem

Little’s theorem [2] describes the relationship between throughput rate (i.e. arrival and service rate), cycle time and work

in process (i.e. number of customers/jobs in the system). The theorem states that the expected number of customers (N)

for a system in steady state can be determined using the following equation:

L = λT

Here, λ is the average customer arrival rate and T is the average service time for a customer. Three fundamental relationships

can be derived from Little’s theorem [3]:

• L increases if λ or T increases.

• λ increases ifL increases or T decreases.

• T increases if L increases or λ decreases.

A useful queuing model represents a real life system with sufficient accuracy and is analytically tractable. A queuing

model based on the Poisson process and its companion exponential probability distribution often meets two requirements.

A Poisson process models random events as maintaining from a memoryless process. That is, the length of time interval

from the current time to the occurrence of the next event does not depend upon the time occurrence of the last event.

Heterogeneous queuing systems have been studied by Neuts [4], Yechiali and Naor [5], and Murari and Agrawal [6]. In

queuing model studied in [5], the arrival process at a service station is Poisson; the service time distribution is taken as

negative exponential and the parameter depends on the environment. In the queuing problem studied by Murari and

Agarwal [6], the arrival process breaks down with two arrival intensities viz., λ and 0. Krishanamoorthy [7] considers a
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Poisson queue with two-heterogeneous servers with modified queue disciplines. The steady-state solution, transient solution

and busy period distribution for the first discipline and the steady-state solution for the second discipline are obtained.

Heterogeneous researches in the area of queuing theory have been studied be Yechiali and Naor [5], Murari and Agarwal [6],

Madan K. C. [8], Saraswat and Agarwal [10], Rakesh Kumar and Sumeet Kumar Sharma [11]. Singh [12] extends the work

of Krishanamoorthy [7] on heterogeneous servers by incorporating balking to compares results with homogeneous servers

queue to show that the conditions under which the heterogeneous system is better than corresponding homogeneous system.

Kumar and Sharma [11] study the two-heterogeneous server Markovian queuing model with discouraged arrivals, reneging

and retention of reneged customers. The steady-state probabilities of system size are obtained explicitly using iterative

method and also discussed some useful measures of effectiveness. In recent research, a queuing system studied by Saraswat

G. K. [13] with multiple inputs.

In the ensuing problem, we study a queuing system with three arrival rates. It is assumed that service rate is same for all

three states of the input. To be more clear, once units join the queue from different states of the input, they do not wear

labels, viz., active, sick or passive. This queuing model closely adheres with so many practical situations. For example,

consider, production unit of a factory engaged in the production of some food products like, canned juices, jam, spices, etc.

The ready stocks of these food items are sent to a sales depot, where depot manager supervises the sale of these items. If we

consider sales depot as a service channel and the supply from the factory as arrivals to sales depot then that factory must

maintain a normal supply of the item to the sales depot in order to keep depot manager busy continuously and thereby fulfill

the demands of customers. But, for various difficulties, like power shortage, go-slow practice by the workers or shortage

of raw material, the factory is bound to reduce its output and sometimes, in cases of power failure, strike by the workers,

breakdown of machine, it stops sending items to the sales depot. However, after an elapse of some time when it (factory)

becomes normal, it renews the supply. It seems reasonable to assume that:

(i). The time during which normal supply of the items is maintained,

(ii). The time during which the reduced supply is maintained,

(iii). The time during which production stops and nothing is supplied,

are random variables which exponentially distributed.

2. Queuing Model Description

A stream of Poisson-type unit arrives at a single service station. The arrival pattern is multifarious, i.e., there exists three

different arrival rates λa (when input source is active), λs (when input source is sick) and zero (when input source is

passive). The input source is operative in one state at a time. The service time of customers is exponentially distributed

with Poissonian service rate µ corresponding to arrival rates λa, λs and 0 (zero). The state of the system, operating with

arrival rate λa is designated as P, operating with arrival rate λs is designated as Q, and operating with arrival rate zero is

designated as R. The system starts with input source in active state. The time duration for which it remains in active state

is a random variable which is exponentially distributed with parameter ηap. After the active state the input source moves

to the sick state, that is, the rate of arrival of units decreases considerably. The time period which is spent in sick state is

also a random variable with parameter ηsp, which is different from active state. After the sick state, the input source shifts

to passive state. In this state, units stop arriving at a service facility. The input remains in the passive state for a random

time with exponential rate ηpa, which is different from those of active and sick states. After the passive state the input
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source again moves to active state and process continues in this way. The transition rate from one state to another state is

as shown in the following figure:

Further, service time is assumed to be exponentially distributed with parameter µ for all states of the input. The stochastic

processes involved, viz., interarrival time of units and service time of customers are independent of each other. The following

results have been analyzed.

(i). L.T.′S of the probability generating function of the distribution of the number of units in the system for different

states of the input.

(ii). L.T.′S of the probabilities for different states of the input.

(iii). A particular case, when input does not move to sick state.

(iv). The explicit steady state results corresponding to (i).

(v). The explicit steady state probabilities corresponding to (ii).

3. Solution of Queuing Model

In this section, the mathematical framework of the queuing model is presented. The time dependent and steady state

solution of the problem have been discussed.

3.1. Time dependent solution

Define

Pn (t) ≡ Probability that at time t, the input is in the active state P and n units are in the system.

Qn (t) ≡ Probability that at time t, the input is in the sick state Q and n units are in the system.

Rn (t) ≡ Probability that at time t, the input in the passive state R and n units are in the system.

Sn (t) ≡ Probability that at time t, there are n units is in the system.

Clearly,

Sn (t) ≡ Pn (t) +Qn (t) +Rn (t) .

Reckon time from the instant when the queue length is zero and the system is in the alive state. Initial conditions become

Pn (0) =

 1, n = 0

0, otherwise
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Qn (0) = 0, ∀ n ≥ 0

Rn (0) = 0, ∀ n ≥ 0

Now define the following probability generating functions:

P (z, t) =

∞∑
n=0

znpn (t) ,

Q (z, t) =

∞∑
n=0

znQn (t) ,

R (z, t) =

∞∑
n=0

znRn (t) ,

S (z, t) =

∞∑
n=0

znSn (t) ,

These must coverage with in the unit circle |z| = 1. Elementary probability reasoning lead to the following differential

equations:

d

dt
P0 (t) = − (λa + ηas)P0 (t) + µP1 (t) + ηsaR0 (t) (1)

d

dt
Pn (t) = − (λa + µ+ ηas)Pn (t) + λaPn−1 (t) + µPn+1 (t) + ηpaRn (t) , n ≥ 1 (2)

d

dt
Q0 (t) = − (λs + ηsp)Q0 (t) + µQ1 (t) + ηasP0 (t) (3)

d

dt
Qn (t) = − (λs + µ+ ηsp)Qn (t) + λsQn−1 (t) + µQn+1 (t) + ηasPn (t) , n ≥ 1 (4)

d

dt
R0 (t) = −ηpaR0 (t) + µR1 (t) + ηspQ0 (t) (5)

d

dt
Rn (t) = − (µ+ ηpa)Rn (t) + µRn+1 (t) + ηapQn (t) , n ≥ 1 (6)

Multiplying (1) - (6) by appropriate process of z, using their respective probability generating functions, taking L.T’s and

using initial conditions. We have

Ka (z, s)P (z, s) = z + µ (z − 1)P0 (s) + zηpaR (z, s) (7)

Ks (z, s)Q (z, s) = µ (z − 1)Q0 (s) + zηasP (z, s) (8)

Kp (z, s)R (z, s) = µ (z − 1)R0 (z, s) + zηspQ (z, s) (9)

s Where

Ka (z, s) = [z {s+ λa (1− z) + µ+ ηas} − µ]

Ks (z, s) = [z {s+ λs (1− z) + µ+ ηsp} − µ]

Kp (z, s) = [z (s+ µ+ ηpa)− µ]

On solving equations (7) - (9)

P (z, s) =
zKs (z, s)Kp (z, s) + µ (z − 1)

[
Ks (z, s)Kp (z, s)P0 (s) + zηpa +Ks (z, s)R0 (s) + z2ηspηpaQ0 (s)

]
Ka (z, s)Ks (z, s)Kp (z, s)− z3ηasηspηpa

(10)

Q (z, s) =
z2ηasKp (z, s) + µ (z − 1)

[
Ka (z, s)Kp (z, s)Q0 (s) + zηasKp (z, s)P0 (s) + z2ηasηpaR0 (s)

]
Ka (z, s)Ks (z, s)Kp (z, s)− z3ηasηspηpa

(11)
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R (z, s) =
z3ηasηsp + µ (z − 1)

[
Ka (z, s)Ks (z, s)R0 (s) + zηspKa (z, s)Q0 (s) + z2ηasηspP0 (s)

]
Ka (z, s)Ks (z, s)Kp (z, s)− z3ηasηspηpa

(12)

S (z, s) = P (z, s) +Q (z, s) +R (z, s) (13)

Substituting the values of P (z, s) , Q (z, s) and R (z, s) from equations (10) - (12) in equation (13). We obtain

S̄(z, s) =

zKs(z, s)Kp(z, s) + z2ηasKp(z, s) + z3ηasηsp + µ(z − 1)∑
s,p,a and P,Q,R[Ks(z, s)Kp(z, s)P̄0(s) + zηpaKs(z, s)R̄0(s) + z2ηspηpaQ̄0(s)]

Ka(z, s)Ks(z, s)Kp(z, s)− z3ηasηspηpa
(14)

Where
∑

runs cyclically over a, s, p and P,Q,R. S̄(z, s) is known in terms of three unknowns, viz., P0 (s) , Q0 (s) and R0 (s).

We proceed to obtain these unknowns. We first prove that each of Ka(z, s),Ks(z, s) and Kp(z, s) has a zero inside the unit

circle |z| = 1. Write,

g(z) = z{s+ λa(1− z) + µ+ ηas}

f(z) = µ

(i). Both g(z) and f(z) are analytic inside and on the contour |z| = 1,

(ii). On |z| = 1,

|g(z)| = |z{s+ λa(1− z) + µ+ ηas}|

> µ = |f(z)| , for Rl(s) > 0

Hence, |g(z)| > |f(z)|. Both the conditions of Rouche’s theorem are satisfied. Therefore, g(z) and g(z) − f(z), which is

Ka(z, s), have the same number of zeros inside the unit circle |z| = 1. Since g(z) has one zero inside the unit circle, Ka(z, s)

will also have one zero inside the unit circle. Similarly, it can be shown that Ks(z, s) and Kp(z, s) also have one zero inside

the unit circle |z| = 1. Consider the denominator of S̄(z, s) which is given by Ka (z, s)Ks (z, s)Kp (z, s) − z3ηasηspηpa.

Write,

G(z) = Ka (z, s)Ks (z, s)Kp (z, s)

F (z) = z3ηasηspηpa

(i). Both G(z) and F (z) are analytic inside and on the contour |z| = 1.

(ii). On |z| = 1

|G(z)| = |Ka(z, s)| |Ks(z, s)| |Kp(z, s)|

≥ [|z{s+ λa(1− z) + µ+ ηas}| − |µ|][|z{s+ λs(1− z) + µ+ ηsp}| − |µ|][|z(s+ µ+ ηpa)| − |µ|]

> [|µ+ ηas| − |µ|][|µ+ ηsp| − |µ|][|µ+ ηpa| − |µ|], for RI(s) > 0

> ηasηspηpa

= |F (z)|

Hence, |G(z)| > |F (z)|. Rouche’s theorem is satisfied. Therefore G(z) and G(z)−F (z), which is the denominator of S̄(z, s),

have the same number of zeros inside the unit circle |z| = 1. As we have already proved, that G(z) has three zeros inside the

|z| = 1, so the denominator of S̄(z, s) will also have three zeros inside the unit circle. Since S̄(z, s) is differentiable inside

the unit circle, then three zeros must vanish the numerator of S̄(z, s), which give rise to three equations in three unknowns,

viz., P0 (s) , Q0 (s) and R0 (s). Solving this set of three equations, the values of three unknowns are obtained. Thus S̄(z, s)

can be determined completely.
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Different States of Input Source

Laplace transform of various probabilities is in the active state, sick state and passive state can be got by setting Set z = 1

in equation (10) - (12).

P (1, s) =
(s+ ηsp)(s+ ηpa)

(s+ ηas)(s+ ηsp)(s+ ηpa)− ηasηspηpa
(15)

Q(1, s) =
ηas(s+ ηpa)

(s+ ηas)(s+ ηsp)(s+ ηpa)− ηasηspηpa
(16)

R(1, s) =
ηasηsp

(s+ ηas)(s+ ηsp)(s+ ηpa)− ηasηspηpa
(17)

Particular Case

When the input does not have sick state, that is, it goes to directly from active state to passive state and from passive state

to active state. The corresponding solution can be obtained by making ηsp tend to infinity, ηas tend to ηap and Q̄n(s) tend

to zero, (n = 0, 1, 2, 3, . . . ). Hence from equations (10) - (12).

P (z, s) =
zKp(z,s)+µ(z−1)[Kp(z,s)P0(s)+zηpaKs(z,s)R0(s)]

Ka(z,s)Kp(z,s)−z2ηapηpa

Q (z, s) = 0

R (z, s) =
z2ηap+µ(z−1)[Ka(z,s)R0(s)+zηapP0(s)]

Ka(z,s)Kp(z,s)−z2ηapηpa

 (18)

3.2. Steady State Solution

The steady state solution can be obtained by the well-known properly of the L, T., viz.,

Lim
s→0

sF̄ (s) = Lim
t→∞

F (t) (19)

If the limit on the right exists. Thus, if

Lim
t→∞

Pn(t) = Pn

We have,

Lim
s→0

sP̄n(s) = Pn etc.

Using property (19) to equations (7) - (9), we have.

Ka (z)P (z) = µ (z − 1)P0 + zηpaR (z) (20)

Ks (z)Q (z) = µ (z − 1)Q0 + zηasP (z) (21)

Kp (z)R (z) = µ (z − 1)R0 + zηspQ (z) (22)

Where

Ka (z) = [z {λa (1− z) + µ+ ηas} − µ]

Ks (z) = [z {λs (1− z) + µ+ ηsp} − µ]

Kp (z) = [z(µ+ ηsp)− µ]

Solving equations (19) - (21)

P (z) =
µ (z − 1)

[
Ks (z)Kp (z)P0 + zηpaKs (z)R0 + z2ηspηpaQ0

]
Ka (z)Ks (z)Kp (z)− z3ηasηspηpa

(23)
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Q (z) =
µ (z − 1)

[
Ka (z)Kp (z)Q0 + zηasKp (z)P0 + z2ηasηpaR0

]
Ka (z)Ks (z)Kp (z)− z3ηasηspηpa

(24)

R (z) =
µ (z − 1)

[
Ka (z)Ks (z)R0 + zηspKa (z)Q0 + z2ηasηspP0

]
Ka (z)Ks (z)Kp (z)− z3ηasηspηpa

(25)

S (z) = P (z) +Q(z) +R(z)

Hence, from equations (23) - (25)

S(z) =
µ(z − 1)

∑
s,p,a and P,Q,R[Ks(z)Kp(z)P0 + zηpaKs(z)R0(s) + z2ηspηpaQ0]

Ka(z)Ks(z)Kp(z)− z3ηasηspηpa
(26)

Where
∑

runs cyclically over a, s, p and P,Q,R. S(z) is known in terms of three unknowns, viz., P0, Q0 and R0. We proceed

to obtain these unknowns. Setting z = 1 in equations (20) - (22)

ηasP (1) = ηpaR (1) (27)

ηspQ (1) = ηasP (1) (28)

ηpaR (1) = ηspQ (1) (29)

Equations (27) - (29) lead to the following

P (1) ≡ The Steady state probability for which input will remain in active state.

=
ηspηpa

(ηspηpa + ηpaηas + ηasηsp)
(30)

Q(1) ≡ The Steady state probability for which input will remain in sick state.

=
ηpaηas

(ηspηpa + ηpaηas + ηasηsp)
(31)

R(1) ≡ The Steady state probability for which input will remain in passive state.

=
ηasηsp

(ηspηpa + ηpaηas + ηasηsp)
(32)

The denominator of P (z), Q(z) and R(z), [Ka (z)Ks (z)Kp (z)− z3ηasηspηpa] is of 5th degree in z. So this must have five

zeros. We now prove that it has three zeros inside and two zeros outside the unit circle. Ka(z) = [z{λa(1−z)+µ+ηas}−µ]

has two zeros, viz., α1 and α2, whose values are given by

α1 =
1

2λa
[(λa + µ+ ηas)−

√
{(λa + µ+ ηas)2 − 4λaµ}]

α2 =
1

2λa
[(λa + µ+ ηas) +

√
{(λa + µ+ ηas)2 − 4λaµ}]

As proved earlier Ka(z, s) has two real zeros, one inside and other outside unit circle |z| = 1. Therefore, we say α1 is inside

and α2 is outside of unit circle|z| = 1. Ks(z) = [z{λs(1− z) +µ+ηsp}−µ], has two real zeros, viz., α3 and α4, whose values

are given by

α3 =
1

2λs
[(λs + µ+ ηsp)−

√
{(λs + µ+ ηsp)2 − 4λsµ}]

α4 =
1

2λs
[(λs + µ+ ηsp) +

√
{(λs + µ+ ηsp)2 − 4λsµ}]
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By the reasoning given earlier α3 is inside and α4 is outside of unit circle|z| = 1. Kp(z) = {z(µ + ηpa) − µ} has one zero

viz., α5

α5 =
µ

(µ+ ηpa)
,

which is clearly inside of unit circle |z| = 1. So, we conclude that factor Ka(z, s)Ks(z)Kp(z) has three zeros, α1, α3 and α5

inside and two zeros α2 and α4 are outside of unit circle |z| = 1. Studying 1.23, a factor (z−1) is common in numerator and

denominator of P (z). We cancel this factor. The denominator of P (z) will now have four zeros, two inside and two outside

of unit circle. We now proceed to prove that denominator of P (z) has two real zeros outside the unit circle |z| = 1. Let

f(z) = Ka (z)Ks (z)Kp (z)− z3ηasηspηpa

≡ (z − α1)(z − α2)(z − α3)(z − α4)(z − α5)− z3ηasηspηpa
λaλs(µ+ ηpa)

(33)

Dividing f(z) by (z − 1) and taking limit as z tends to infinity, we find that

lim
z→∞

f(z)

z − 1
> 0

If we take limit as z tends to 1. Then

lim
z→1

f(z)

z − 1
= {µ(ηasηsp + ηspηpa + ηpaηas)− ηpa(λsηas + λaηsp)}

This is obtained by using L’ Hospital’s rule. For f(z)
(z−1)

to have even number of real zeros between 1 and ∞, lim
z→1

f(z)
z−1

> 0,

i.e.,

{µ(ηasηsp + ηspηpa + ηpaηas)− ηpa(λsηas + λaηsp)} > 0 (34)

and this must be true, as this is the condition of ergodicity, which is proved as below?

Effective arrival rate of units is {λaP (1) + λsQ(1)}, as it represents the total number of arrivals in one unit of time when

the input is in working stage (active state and sick state). Total number of units served by the system in one unit of time

are [µ {P (1) +Q(1) +R(1)}]. Condition of ergodicity demands that effective arrival rate be less them effective service rate.

Therefore,

{λaP (1) + λsQ(1)}<µ {P (1) +Q(1) +R(1)} .

Substituting the values of P (1), Q(1) and R(1) from equations (30) - (32) respectively. We obtain,

{µ(ηasηsp + ηspηpa + ηpaηas)− ηpa(λsηas + λaηsp)} > 0 (35)

We find that (34) and (35) are identical and this gives the condition of ergodicity. This Concludes that lim
z→∞

f(z)
z−1

and lim
z→1

f(z)
z−1

have like signs, so an even number of zeros of f(z) lie in between 1 and ∞. We proceed to prove that f(z)
z−1

has two zeros say

z1 and z2, which lie outside |z| = 1. Considering α4 > α2, we have from (33).

lim
z→α2

f(z)

(z − 1)
= − α3

2ηasηspηpa
(α2 − 1)λaλs (µ+ ηpa)

< 0

Sign changes between 1 and α2. So there is a real zero, say z1, in between 1 and α2.

lim
z→α4

f(z)

(z − 1)
= − α3

4ηasηspηpa
(α4 − 1)λaλs (µ+ ηpa)

<0
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Like sign between α2 and α4. But there is a change of sign in between α4 and ∞. So there is a real zero, say z2, is between

α4 and ∞. This conclude that two real zeros of f(z)
z−1

, z1 and z2 lie in the interval [1, α2) and [α4,∞) respectively. The two

zeros of the denominator in (23) which are inside |z| = 1 must vanish its numerator, because P (z) is a well defined functions

inside the unit circle. Thus, cancelling two factors in the numerator and in the denominator corresponding to these zeros,

then equations (23) reduces to the following form:

P (z) =
A

(z − z1)
+

B

(z − z2)
(36)

Where A and B are to determined. Setting z = 1.

P (1) =
A

1− z1
+

B

1− z2

Using (30),

A = −
[
B (z1 − 1)

(z2 − 1)
+

(z1 − 1) ηspηpa
(ηasηsp + ηspηpa + ηpaηas)

]
Therefore, P (z) in term of B is

P (z) =
B (z2 − z1) (z − 1)

(z2 − 1) (z − z2) (z − z1)
− (z1 − 1) ηspηpa

(z − z1) (ηasηsp + ηspηpa + ηpaηas)
(37)

Pn = B

[
(z1 − 1)

(z2 − 1) zn+1
1

− 1

zn+1
2

]
+

(z1 − 1) ηspηpa

zn+1
1 (ηasηsp + ηspηpa + ηpaηas)

, n ≥ 0 (38)

P0 =
B (z1 − z2)

z1z2 (z2 − 1)
+

(z1 − 1) ηspηpa
z1(ηasηsp + ηspηpa + ηpaηas)

(39)

Substituting the values of P (z) and P0 from (37) and (39) in equation (20).

R(z) =
B (z2 − z1) (z − 1) {z(µ− z1z2λa) + z1z2(λa + µ+ ηas)− µ(z1 + z2)}

ηpa (z2 − 1) z1z2 (z − z1) (z − z2)

− (z1 − 1) ηsp{z(µ− z1λa) + z1(λa + ηas)− µ}
(z − z1) z1(ηasηsp + ηspηpa + ηpaηas)

(40)

Rn =
B (µ− z1z2λa)

z1z2ηpa

[
(z1 − 1)

(z2 − 1) zn1
− 1

zn2

]
+

B

z1z2ηpa

[
(z1 − 1)

(z2 − 1) zn+1
1

− 1

zn+1
2

]
{z1z2(λa + µ+ ηas)− µ(z1 + z2)}

+
(z1 − 1) ηsp[z1{λa((1− z1) + µ+ ηas} − µ]

zn+1
1 (ηasηsp + ηspηpa + ηpaηas)

, n ≥ 0 (41)

R0 =
(z1 − 1) ηsp{z1(λa + ηas)− µ}
z21(ηasηsp + ηspηpa + ηpaηas)

− B (z2 − z1) {z1z2(λa + µ+ ηas)− µ(z1 + z2)}
z21z

2
2ηpa (z2 − 1)

(42)

Substituting the values of R(z) and R0 from (40) and (42) in equation (22)

Q(z) =
B (z2 − z1) (z − 1)

ηpaηspz21z
2
2 (z2 − 1) (z − z1) (z − z2)

[z1z2{z(µ+ ηpa)− µ}{µ− z1z2λa}

+ {z1z2(λa + µ+ ηas)− µ(z1 + z2)}{z1z2(µ+ ηpa) + zµ− µ(z1 + z2)}]

− (z1 − 1)

z21 (z − z1) (ηasηsp + ηspηpa + ηpaηas)
[{z(µ+ ηpa)− µ}(µ− z1λa)z1 + (zµ+ z1ηpa − µ){z1(λa + ηas)− µ}] (43)

Qn =
B

ηspηpa


(z1−1)(µ−z1z2λa){z1(µ+λa)−µ}

zn+2
1 z2(z2−1)

− (µ−z1z2λa){z2(µ+ηpa)−µ}
z1z

n+2
2

+
(z1−1){z1z2(λa+µ+ηas)−µ(z1+z2)}{z1µ+z1z2(µ+ηpa)−µ(z1+z2)}

zn+3
1 z22(z2−1)

− {z1z2(λa+µ+ηas)−µ(z1+z2)}{z2µ+z1z2(µ+ηpa)−µ(z1+z2)}
z21z

n+3
2


+

(z1 − 1) {z1(µ+ ηpa)− µ}
zn+3
1 (ηasηsp + ηspηpa + ηpaηas)

[{z1(λa + ηas)− µ}+ z1(µ− z1λa)], n ≥ 0 (44)
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Q0 =
B (z2 − z1)

z31z
3
2 (z2 − 1) ηspηpa

 z1z2µ(µ− z1z2λa)− {z1z2(λa + µ+ ηas)

−µ(z1 + z2)}{z1z2(µ+ ηpa)− µ(z1 + z2)}


+

(z1 − 1)

z31(ηasηsp + ηspηpa + ηpaηas)
[(z1ηpa − µ){z1(λa + ηas)− µ} − z1µ(µ− z1λa)] (45)

Equations (37) - (45) give the values of P (z), Pn, P0;R(z), Rn, R0 and Q(z), Qn, Q0 respectively in terms of B. If B is known,

these are all obtained explicitly. Setting z = α5 in equation(22), we get

Q(α5) =
ηpa
ηsp

R0

Substituting the value of R0 from (42)

Q (α5) =
B (z1 − z2) {z1z2(λa + µ+ ηas)− µ(z1 + z2)}

z21z
2
2 (z2 − 1) ηsp

+
ηpa (z1 − 1) {z1(λa + ηas)− µ}
z21(ηasηsp + ηspηpa + ηpaηas)

Substituting z = α5 in Q(z) gives by (43) and equating two values of Q (α5), thus obtained, we get

B (z1 − z2)

ηspz22 (z2 − 1) {µ− z2(µ+ ηpa)}

 {z1z2(λa + µ+ ηas)− µ(z1 + z2)}[z1z2(µ+ ηpa)2 + µ2

−µ(z1 + z2)(µ+ ηpa)} − {µ− z1(µ+ ηpa)}{µ− z2(µ+ ηpa)}]



=
(z1 − 1) {z1(λa + ηas)− µ}
(ηasηsp + ηspηpa + ηpaηas)

[{µ2 + z1ηpa − µ)(µ+ ηpa)}+ ηpa{µ− z1(µ+ ηpa)}] (46)

Equation (46) gives value of Bin term of known quantities.

4. Conclusion

This research paper has discussed the queuing model with three different type inputs. From the result, we have obtained

that, the time dependent and steady state probabilities formulae explicitly. To extend work in future, we consider three

types service rates.
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