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Abstract: In the past decades, modal analysis has become a major technology in the quest for determining, improving and opti-

mizing dynamic characteristics of engineering structures. Not only has it been recognized in mechanical and aeronautical

engineering, but modal analysis has also been discovered in profound applications for civil and building structures, space
structures, transportation and nuclear problems [4]. In this paper we introduced the new concept of double interval

sequence spaces Γ(gI) and Λ(gI). We present the different properties like completeness, solidness etc. Also, we have given

some new definitions and theorems about the sequence space of double interval numbers.
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1. Introduction

Interval arithmetic was first suggested by Dwyer [2] in 1951. Development of interval arithmetic as a formal system and

evidence of its value as a computational device was provided by Moore [9] in 1959 and Moore and Yang [10] 1962. Fur-

thermore, Moore and others [11] have developed applications to differential equations. Chiao in [5] introduced sequence of

interval numbers and defined usual convergence of sequences of interval number. Sengönül and Eryilmax [12] in 2010 studied

bounded and convergent sequence space of interval numbers and showed that these spaces are complete metric space. A set

consisting of a closed interval of real numbers x such that a ≤ x ≤ b is called an interval number. A real interval can also

be considered as a set. Thus we can investigate some properties of interval numbers, for instance arithmetic properties or

analysis properties. We denote the set of all real valued closed intervals by I<. Any elements of I< is called closed interval

and denoted by x̄. That is x̄ = {x ∈ < : a ≤ x ≤ b}. An interval number x̄is a closed subset of real numbers. Let xl and xr

be be respectively first and last points of the interval number x̄. For x̄1, x̄2 ∈ I<, we define x̄1 = x̄2 if and only if x1l = x2l

and x1r = x2r

x̄1 + x̄2 = {x ∈ < : x1l + x2l ≤ x ≤ x1r + x2r)}

x̄1 × x̄2 = {x ∈ < : min(x1lx2l, x1lx2r, x1rx2l, x1rx2r) ≤ x ≤ max(x1lx2l, x1lx2r, x1rx2l, x1rx2r)}

The set of all interval numbers I< is a complete metric space defined by

d(x̄1, x̄2) = max{|x̄1l − x̄2l| , |x̄1r − x̄2r|}
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In the special case x̄1 = [a, a] and x̄2 = [b, b], we obtain usual metric of <. Let us define transformation f : N × N → <,

k, l → f(k, l) = x̄k,l, then x̄ = (x̄k,l) is called double sequence of interval numbers. x̄k,l is called k,lth term of sequence

x̄ = (x̄k,l). We denote by ω2(IR) the set of all double sequence of interval numbers.

A sequence x̄ = (x̄k,l) of double sequence interval numbers is said to be convergent in the Pringsheim’s sense or P-convergent

to the interval number x̄0if for each ε > 0 there exists a positive integer k0 such that d(x̄k,l, x̄0) < ε for all k, l ≥ k0. A

sequence x̄ = (x̄k,l) of double sequence of interval numbers is said to be double interval fundamental sequence if for every

ε > 0 there exists k0 ∈ N such that d(x̄k,l, x̄m,n) < ε whenever m,n, k, l > k0. Let p = (pk,l) be a double sequence of positive

real numbers. We define convergent series, bounded series and p-absolute convergent series of sequences spaces of double

interval numbers which are denoted cs2(IR), bs2(IR), l2p(IR) respectively, that is

cs2(IR) =

{
x̄ = (x̄k,l) ∈ ω2(IR) : lim

m
lim
n

(
d(

m∑
k=1

n∑
l=1

x̄k,l, x̄0)

)
= 0̄

}
,

bs2(IR) =

{
x̄ = (x̄k,l) ∈ ω2(IR) : sup

m,n
d(

m∑
k=1

n∑
l=1

x̄k,l, 0̄) <∞

}
,

l2p(IR) =

x̄ = (x̄k,l) ∈ ω2(IR) :

(
m∑
k=1

n∑
l=1

(
d(

m∑
k=1

n∑
l=1

x̄k,l, 0̄)

)p)1/p

<∞, p ≥ 1


Clearly we see that the spaces cs2(IR), bs2(IR), l2p(IR) are sub vector spaces in accordance with scalar product and addition

on ω2(IR) which are metric spaces.

2. Main Results

We define the entire sequence spaces of symmetric modals which are denoted by Γ2(IR) and Λ2(IR) respectively.

Γ2(IR) =

{
x̄ = (x̄k,l) ∈ ω2(IR) : lim

k,l
(D(x̄k,l, 0̄)) = 0

}
Λ2(IR) =

{
x̄ = (x̄k,l) ∈ ω2(IR) : sup

k,l
(D(x̄k,l, 0̄)) <∞

}

where D(x̄k,l, ȳk,l) = max

{∣∣∣xk,l − yk,l∣∣∣1/pk,l

, |x̄k,l − ȳk,l|1/pk,l

}
the metric defined by

d̄(x̄k,l, ȳk,l) = sup
k,l

max

{∣∣∣xk,l − yk,l∣∣∣1/pk,l

, |x̄k,l − ȳk,l|1/pk,l

}
= sup

k,l
D(x̄k,l, ȳk,l) (1)

which satisfies the metric space axioms.

Theorem 2.1. The sequence space Γ2(IR) is a complete metric space with respect to the metric defined by (1).

Proof. Let (x̄(n)) be a fundamental double sequence of interval numbers in Γ2(IR). Then for a given ε > 0 there exists

a positive integer n0 such that d̄(x̄
(n)
k,l , x̄

(m)
k,l ) = sup

k,l
D(x̄

(n)
k,l , x̄

(m)
k,l ) < ε for all n,m ≥ n0. This is true for all k, l, we have

D(x̄
(n)
k,l , x̄

(m)
k,l ) < ε for all n,m ≥ n0

max

{∣∣∣x(n)k,l − x
(m)
k,l

∣∣∣1/pk,l

,
∣∣∣x̄(n)k,l − x̄

(m)
k,l

∣∣∣1/pk,l
}
< ε for all n,m ≥ n0∣∣∣x(n)k,l − x

(m)
k,l

∣∣∣pk,l

< εpk,l and
∣∣∣x̄(n)k,l − x̄

(m)
k,l

∣∣∣1/pk,l

< εpk,l for all n,m ≥ n0

This leads to the fact x̄
(n)
k,l is a fundamental sequence in IR. Since IR is a complete metric space, x̄

(n)
k,l is convergent.

lim
n
x̄
(n)
k,l = x̄k,l for each k, l ∈ N. This is true for all k, l, sup

k,l
D(x̄

(n)
k,l , x̄k,l) < ε. So x̄

(n)
k,l → x̄k,l as n → ∞ in Γ2(IR), we

have to show that x̄ = (x̄k,l) ∈ Γ2(IR). Since x̄
(n)
k,l ∈ Γ2(IR), we have d̄(x̄

(n)
k,l , 0̄) < ε. Consider d̄(x̄k,l, 0̄) = sup

k,l
D(x̄k,l, 0̄) ≤

sup
k,l

D(x̄
(n)
k,l , x̄k,l) + sup

k,l
D(x̄

(n)
k,l , 0̄) < ε+ ε = 2ε. Hence (x̄k,l) ∈ Γ2(IR). This completes the proof.

236



S. Zion Chella Ruth

Theorem 2.2. A necessary and sufficient condition that D(
∑
x̄k,lȳk,l, 0̄) should be convergent for every (x̄k,l) for which

lim
k,l

(D(x̄k,l, 0̄)) = 0 is that D(ȳk,l, 0̄) should be bounded.

Proof. Suppose D(ȳk,l, 0̄) is bounded. then we can find M so that D(ȳk,l, 0̄) ≤ M for k, l ≥ 1, since D(
∑
x̄k,l, 0̄) → 0̃ as

k, l→∞, we can find k0 so that D(
∑
x̄k,l, 0̄) ≤ 1

2M
, k, l ≥ k0

[D(x̄k,lȳk,l, 0̄)]pk,l ≤ [D(
∑

x̄k,l, 0̄)]pk,l [D(ȳk,l, 0̄)]pk,l

<

(
1

2M

)pk,l

Mpk,l =
1

2pk,l

So
∑

[D(x̄k,lȳk,l, 0̄)]pk,l converges.

Conversely, suppose D(ȳk,l, 0̄) is not bounded .Then we can find an increasing sequence {kq,{lq} of integers such that

D(ȳkq,lq , 0̄) ≥ q, q = 1, 2, .... That is, [D(ȳkq,lq , 0̄)]pkq,lq ≥ qpkq,lq , q = 1, 2, .... Take x̄k,l =


[

1

q
pkq,lq

, 0
]

if k = kq, l = lq

[0, 0] if k 6= kq, l 6= lq

.

Then lim
k,l

(D(x̄k,l, 0̄)) = 0. But

[D(x̄k,lȳk,l, 0̄)]pkq,lq [D(x̃kỹk, 0̃)]kp ≥ [D(x̄k,l, 0̄)]
pkq,lq

[D(ȳk,l, 0̄)]
pkq,lq

=

( 1

q
pkq,lq

) 1
pkq,lq

pkq,lq [
(qpkq,lq )

1
pkq,lq

]pkq,lq

= 1

so that
∑

[D(x̄k,lȳk,l, 0̄)] does not converges. Hence D(ȳk,l, 0̄) is bounded.

Theorem 2.3. The double sequence spaces of interval numbers Γ2(IR) and Λ2(IR) are solid.

Proof. We consider Γ2(IR) Now let d̄(ȳk,l, 0̄) ≤ d̄(x̄k,l, 0̄) for all k, l ∈ N and for some x̄ ∈ Γ2(IR). Then, we have

sup
k,l

max

{∣∣∣y
k,l

∣∣∣1/pk,l

, |ȳk,l|1/pk,l

}
≤ sup

k,l
max

{∣∣xk,l∣∣1/pk,l , |x̄k,l|1/pk,l

}

y
k,l
≤ xk,l and ȳk,l ≤ x̄k,l. That is ȳ ≤ x̄. It is clear that ȳ ∈ Γ2(IR). Therefore Γ2(IR) is solid.

Theorem 2.4. The sequence (ē1,l, ē2,l....ēk,l, ..) is schauder interval base for Γ2(IR), where ēk,l = {0̄, 0̄, ...[1, 1], 0̄, ...}.

Proof. Let x̄ = (x̄k,l) ∈ Γ2(IR). Therefore for every ε > 0 there exists a positive integer n ∈ N such that k, l ≥ n,

d̄(x̄k,l, 0̄) = sup
k,l

D(x̄k,l, 0̄) < ε. Now we should show the following statement. lim
k,l→∞

d̄((x̄k,l −
∑
ēk,lx̄k,l), 0̄) = 0. From here

we can write next steps

d̄((x̄k,l −
∑

ēk,lx̄k,l), 0̄) = d̄(([x1,l, x̄1,l], [x2,l, x̄2,l], ......[xk,l, x̄k,l], ...)− ([x1,l, x̄1,l], [x2,l, x̄2], ......[xn,l, x̄n,l]), 0̄)

= d̄(([0̄, 0̄, ......[xn+1,l, x̄n+1,l], [xn+2,l, x̄n+2,l]), 0̄)

= sup
k,l≥n+1

max
{∣∣xk,l∣∣1/pk,l |x̄k,l|1/pk,l

}
→ 0 as n→∞

We have

x̄k,l =

∞∑
k,l=1

ēk,lx̄k,l (2)
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Let us show uniqueness of the representation given by (2) for x̄ = (x̄k,l) ∈ Γ2(IR). Suppose that there exists a representation

x̄k,l =
∑∞
k,l=1 ēk,lȳk,l, then for n→∞, we have

d̄(

n∑
k,l=1

(x̄k,l − ȳk,l)ēk,l, 0̄) =

n∑
k,l=1

d̄((x̄k,l − ȳk,l)ēk,l, 0̄)

= sup
k,l≥n+1

max

{∣∣∣y
k,l
− xk,l

∣∣∣1/pk,l

, |ȳk,l − x̄k,l|1/pk,l

}
→ 0 as n→∞

∣∣∣y
k,l
− xk,l

∣∣∣1/pk,l

→ 0̃ and |ȳk,l − x̄k,l|1/pk,l → 0̃ as n→∞. Therefore y
k,l

= xk,l and ȳk,l = x̄k,l. That is ȳ = x̄.

3. α, β, γ Duals of Sequence Space the Modals

For the sequence spaces λ2(IR) and µ2(IR), we define the set S(λ2(IR), µ2(IR)) by

S(λ2(IR), µ2(IR)) =
{

(ȳk,l) ∈ ω2(IR) : (x̄k,l,ȳk,l) ∈ µ2(IR)
}
for all x̄k,l ∈ λ2(IR) (3)

with the notation of (3), the α, β, γ duals of double sequence space λ2(IR) which are denoted by λ2,α(IR), λ2,β(IR) and

λ2,γ(IR) are defined by

λ2,α(IR) = S(λ2(IR), l21(IR)),

λ2,β(IR) = S(λ2(IR), cs2(IR))

λ2,γ(IR) = S(λ2(IR), bs2(IR))

Theorem 3.1. The β dual of sequence space Γ2(IR) is Λ2(IR).

Proof. Let us suppose that and ȳ = (ȳk,l) ∈ Λ2(IR) for every x̄ = (x̄k,l) ∈ Γ2(IR), then supD(ȳk,l, 0̄) <∞, we can write

lim
m,n

D

 m,n∑
k,l=1

x̄k,lȳk,l, 0̃

 = lim
n
D

 m,n∑
k,l=1

[y
k,l
, ȳk,l], [xk,l, x̄k,l], 0̄


= lim
m,n

D

 m,n∑
k,l=1

[y
k,l
xk,l, ȳk,lx̄k,l], 0̄


= lim
m,n

max


∣∣∣∣∣∣
m,n∑
k,l=1

y
k,l
xk,l

∣∣∣∣∣∣
1/pk,l

,

∣∣∣∣∣∣
m,n∑
k,l=1

ȳk,lx̄k,l

∣∣∣∣∣∣
1/pk,l


≤ lim
m,n

max


m,n∑
k,l=1

∣∣∣y
k,l
xk,l

∣∣∣1/pk,l

,

m,n∑
k,l=1

|ȳk,lx̄k,l|1/pk,l


= lim
m,n

M max


m,n∑
k,l=1

∣∣xk,l∣∣1/pk,l ,

m,n∑
k,l=1

|x̄k,l|1/pk,l


Where M = max{M1,M2}; M1 = sup

k,l

∣∣∣y
k,l

∣∣∣1/pk,l

, M2 = sup
k,l
|ȳk,l|1/pk,l .

lim
m,n

D

 m,n∑
k,l=1

x̄k,lȳk,l, 0̄

 ≤ lim
m,n

MD

 m,n∑
k,l=1

x̄k,l, 0̄


= MD

 ∞∑
k,l=1

x̄k,l, 0̄


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= M

∞∑
k,l=1

D(x̄k,l, 0̄) <∞

Therefore, we get x̄k,lyk,l ∈ cs2(IR). Hence (ȳk) ∈ Γ2,β(IR).

Λ2(IR) ⊂ Γ2,β(IR) (4)

Let ȳ = (ȳk,l) ∈ Γ2,β(IR), then
∑
D(x̄k,lȳk,l, 0̄) converges for every x̄ = (x̄k,l) ∈ Γ2(IR). By Theorem 2.2, D(ȳk,l, 0̄) is

bounded. sup
k,l

D(ȳk,l, 0̄) is bounded, then ȳ = (ȳk,l) ∈ Λ2(IR)

Γ2,β(IR) ⊂ Λ2(IR) (5)

From (4) and (5), Γ2,β(IR) = Λ2(IR).

Theorem 3.2. Γ2,α(IR) = Γ2,β(IR) = Γ2,γ(IR) = Λ2(IR).

Proof. From Theorem 3.1, Γ2,β(IR) = Λ2(IR). From Theorem 2.3 and Theorem 2.4, Γ2,α(IR) = Γ2,β(IR) = Γ2,γ(IR).

Hence Γ2,α(IR) = Γ2,β(IR) = Γ2,γ(IR) = Λ2(IR).
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