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Abstract: Let G = (V, E) be an undirected simple graph. The transformation graph G~~~ of G is a simple graph with vertex
set V(G) U E(G) in which adjacency is defined as follows: (a) two elements in V(G) are adjacent if and only if they are
non-adjacent in G, (b) two elements in F(G) are adjacent if and only if they are non-adjacent in G, and (c) an element
of V(G) and an element of E(G) are adjacent if and only if they are non-incident in G. In this paper, we determine the
chromatic number of Transformation graph G~~~ for Complete, Wheel and Friendship graph.
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1. Introduction

In this paper, we are concerned with finite, simple graph. Let G = (V (G), E (G)) be a graph, if there is an edge e joining
any two vertices u and v of G, we say u and v are adjacent. An n-vertex colouring or an n-colouring of a graph G = (V, E)

is a mapping f : V — S, where S is a set of n-colours.

Definition 1.1. A graph G is an ordered pair (V(G), E(G)) consisting of a non-empty set V(G) of vertices and a set E(G),
disjoint from V(G) of edges together with an incidence function g that associates with each edge of G is an unordered pair

of vertices of G.

Definition 1.2. A colouring of a simple connected graph G is colouring the vertices of G such that no two adjacent vertices

of G get the same colour. A graph is properly coloured if it is coloured with the minimum possible number of colours.

Definition 1.3. The chromatic number of a graph G is the minimum number of colours required to colour G properly and

is denoted by x(G).

Definition 1.4. The total graph T (G) of a graph G is the graph whose vertez set is V(G) U E(G) and two vertices are

adjacent in T if and only if they are either adjacent or incident in G.

Definition 1.5. The complement G of a graph G, which has V(G) as it set of points and two points are adjacent in G if

and only if they are not adjacent in G.

Definition 1.6. A wheel graph is a graph formed by connecting a single vertex to all vertices of cycle. A wheel graph with

n-vertices is denoted by Wy, that is, W, = K1 + Cy_1, for every n > 3.
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Definition 1.7. A complete graph is a simple graph in which every pair of distinct vertices are connected by a unique edge.

Definition 1.8. A friendship graph is a simple graph which consists of n-triangles with a common vertex. It is denoted by

F.

In [2] generalized the concept of total graphs to a transformation graph G*¥* with z,y, z; {—, +}, where G is the total
graph of G, and G~~~ is its complement. Also, G~~, G™t~ and G~** are the complement of G, GT~+ and G+~

respectively. Here, we investigate the transformation graph G~~~ of some graphs.

Lemma 1.9. Let G be any simple graph and G~~~ is the transformation of G, then a colour can be given to three vertices

of G~ 7 if and only if either they formed a K2 in G or a pair of edges are incident with a verter in G.

Lemma 1.10. Let G be any path or cycle graph. If its transformation G~~~ has 3k—wvertices, then x (G___) =k.

2. Main Results

Theorem 2.1. Let G be any simple graph and G~~~ is the transformation of G, then a colour can be assign to more than

three vertices of G~~~ if and only if d(v;) > 3, for all v; € G.

Proof. Let G be any simple graph with n-vertices. Let V' (Giff) = {vi,ej/i =1,2,...,n; j =1,2,...} be the vertex
set of G™~7. Assume that, d(v;) > 3, for all v; € G. Suppose v is a vertex in G and {e;; (j =1,2,...,k)} are the edges
incident with v in G. Clearly, {v,e;; (j =1,2,...,k)} are independent vertices in G~~~. Hence, in G~~~ we can give a
single colour to the vertex v and the edges incident with v in G. Therefore, a single colour can be given to more than three
vertices of G~ .

Conversely, assume that, a single colour can be given to more than three vertices of G~ ~.

To prove that, d(v;) > 3, for all v; € G. Suppose, d(v;) = 2, for all v; € G. Then the vertices in G~~~ form a pair of
edges incident with a vertex in G. Then by Lemma 1.9, we can assign a single colour to exactly three vertices which is a

contradiction to our assumption. Therefore, d(v;) > 3, for all v; € G. Hence proved. O

Theorem 2.2. Let G = W,, be any wheel graph with n-vertices, then x (Giff) = [@-‘ + 1.

Proof. Let G = W,, be any path graph with n-vertices, whose vertices {v;/i = 1,2,...,(n — 1)} are linear. Its transfor-
mation G~~~ has (3n —2)-vertices. Let V (G~ ") ={v, v;, ¢;/ i=1,2,...,(n—1); j=1,2,...,2(n — 1)} be the vertex

set of G~ 7. Now, we divide the vertex set of G~~~ into three sets V1, V2 and V3 such that
(1). Vi ={vn/n = 1(mod 3)}
(2). Va ={vn/n =0(mod 3)}
(3). V5 ={vn/n = 2(mod 3)}

Case (1): If n = 1(mod 3), that is n = 3k+1, we have (9k+1)-vertices in G~~~ that is [V (G~ 7)| = 9k+1 = 6k+(3k + 1).

The (6k)-vertices of G~~~ form a cycle C,,—1 with (3k)-vertices in G. By Lemma 1.10, we need (2k)-colours to these (6k)-

vertices of G777 = [%1 = [@—‘ = [@—‘—colours. The independent set of (3k + 1)-vertices in G~~~ are the vertex

v and the edges incident with v in G. Since, these (3k + 1)-vertices are independent and adjacent with the vertices which

2(n—1)
3

are coloured by the [ -‘—colours. Hence, we need a new colour to colour these (3k + 1)-vertices of G~~~ . Therefore,

we need ([@—‘ + 1)—colours to colour the (9k 4 1)-vertices in G~~~
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Case (2): If n = 0(mod 3), that is n = 3k, we have (9k — 2)-vertices in G~~~ , that is |[V(G~~7)| = 9%k —2 = (6k—2)+ (3k).
The (6k — 2)-vertices of G~~~ form a cycle C,_1 with (3k — 1)-vertices in G. By Lemma 1.10, to colour (6k — 3)-vertices,
we need (2k — 1)-colours. The (6k — 2)""-vertex of G~~~ is adjacent with the vertices which are coloured by the existing

(2k — 1)-colours. Hence, we need a new colour to colour the (6k — 2)*"-vertex. Therefore, we need (2k)-colours to colour

these (6k — 2)-vertices of Cp—1 = [%W = [2(3@)—1)—‘ = [2("3_1)-‘-colours.
The independent set of (3k)-vertices in G~~~ are the vertex v and the edges incident with v in G. Since, these (3k)-vertices

2(n—1)
3

are independent and adjacent with the vertices which are coloured by the [ —‘—colours. Hence, we need a new colour

2(n—1)

to colour these (3k)-vertices of G~ ~. Therefore, we need ([ 3

-‘ + 1)-colours to colour the (9k — 2)-vertices in G~ .
Case (3): If n =2 (mod 3), that is n = 3k + 2 and

V(GT77)|=9%k+4

= (6k+2) + (3k +2).

The (6k + 2)-vertices of G~~~ form a cycle C\,,—1 with (3k + 1)-vertices in G. By Lemma 1.10, we need (2k)-colours to
the (6k)-vertices of G~~~. The (6k + 1) and (6k + 2)"" vertices of G~~~ are independent and adjacent with the vertices

which are coloured by the existing (2k)-colours. Hence, we need a new colour to colour these two vertices. Therefore, we

need (2k + 1)-colours to colour these (6k -+ 2)-vertices of Cp_1 = [$52] = [2(32“)—‘ = [2<"371>—‘—colours. The independent
set of (3k 4 2)-vertices in G~~~ are the vertex v and the edges incident with v in G. Since, these (3k + 2)-vertices

2(n—1
%-‘—colours. Hence, we need a new colour

are independent and adjacent with the vertices which are coloured by the [
to colour these (3k + 2)-vertices of G~ ~. Therefore, we need ([2(%—1)—‘ + 1)—colours to colour the (9k + 4)-vertices in
G~ 7. Hence, in all the above cases we need ([@—‘ + 1)-colours to colour the (3n — 2)-vertices of G~ . Therefore,

X (G***) = [@-‘ + 1. Hence, the theorem is proved. O
Theorem 2.3. Let G = F,, be the friendship graph with (2n + 1)-vertices, then x (Giff) =n+1.

Proof. Let G = F, be the friendship graph with (2n + 1)-vertices. Let v be the vertex adjacent to all the (2n)-vertices
in G. Hence, V (G) = {v,v;; (5=1,2,...,.2n)} be the vertex set of G and E(G) = {ej; (j=1,2,...,3n)} be the edge set of G.
Therefore, V (Giff) ={v, vi, ¢;/i=1,2,...,2n; j=1,2,...,3n} be the vertex set of G™~~ and ’V (Giff)‘ =5n+1.
Fix the vertex v and assign the colour co to it. By the definition of G~~~ and Fy, The (2n)-edges incident with v in G are
independent in G~ 77, so we can assign the same colour ¢g to these (2n)-vertices in G~~~. The remaining (3n)-vertices of
G~~~ form n-independent K%s in G. Therefore, the induced subgraph K> formed by the vertices v2;—1 and vs; are adjacent
with all the vertices and an edge of the remaining (n — 1) — K3s. Also, the induced subgraph in G~~~ form by the elements
of each K> in G are adjacent with at least one vertex of G~~~ which was coloured by the colour c¢y. Hence, we need new
colours to colour these (3n)-vertices of G~~~. By Lemma 1.9, we need n-colours to colour all the n-independent K3s of G

in G™7 7. Therefore, we need (n + 1)-colours to colour all the (5n + 1)-vertices of G~ ~~. Hence the proof. O
Theorem 2.4. Let G = K,, be any complete graph with n-vertices, then x (Giff) =n—1.

Proof. Let G = K,, be any complete graph with n-vertices, whose vertices {v;/i = 1,2,...,n} are linear. Its transformation
G~ 77 has (w)-vertices. Let V (Giff) = {vi, ej/i=1,2,...,n; j=1,2,..., (%)} be the vertex set of G~ .
Fix the vertex v in G~~~ and assign the colour ¢; to it. The (n — 1)-edges incident with v1 at G are independent in G~~~
so we can assign the same colour ¢; to all these vertices in G~ ~. Now, choose the vertex vo. In G~ 7, vs is adjacent to

at least one of the (n — 1)-edges incident with v1 of G, so we can’t give the colour ¢1 to the vertex v2. Hence, we need a
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new colour ¢z to colour the vertex v2 in G~ . All the remaining (n — 2)-edges incident with v2 in G are (except the edge
incident with v; which is already coloured) independent in G~ ~~. Therefore, we can assign the same colour cz to these
(n — 2)-edges incident with vz of G in G~~~

Again, choose the vertex vs. In G~~~ v3 is adjacent to at least one of the (n — 1)-edges incident with v; and v of G,
so we can’t give the colour ¢; and c2 to the vertex vs. Hence, we need a new colour c3 to colour the vertex vs in G~ .
All the remaining (n — 3)-edges incident with vs in G (except the edges incident with v; and ve which is already coloured)
are independent in G~ ~. Therefore, we can assign the same colour cs to these (n — 3)-edges incident with vs of G in
G~ 7. Repeat the above process to the vertices {v4, vs,...,vn—2} and the corresponding edges incident with these vertices
in G. From the above procedure we can conclude that, to colour the (n — 2)-vertices of G~~~ we need (n — 2)-colours. The

remaining two vertices {vn—1, vn} and an edge form a K> in G and they are adjacent with all the (n — 2)-colours (which

are already used) in G~ 7. By Lemma 1.9, we need a new colour ¢,—1 to colour this K>. Hence, we need (n — 1)-colours
to colour all the (%)-vertices Therefore, x (Giff) =n — 1. Hence the theorem is proved. O
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