Volume 3, Issue 2 (2015), 115-120.

ISSN: 2347-1557

Available Online: http://ijmaa.in/

International Journal of Mathematics And its Applications

\star - $A_{\mathcal{I}}^{\star}$ -sets and Decompositions of \star - $A_{\mathcal{I}}^{\star}$ -continuity

Research Article

O.Ravi^{1*}, G.Selvi², S.Murugesan³ and S.Vijaya⁴

- 1 Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai District, Tamil Nadu, India.
- 2 Department of Mathematics, Vickram College of Engineering, Enathi, Sivagangai District, Tamil Nadu, India.
- 3 Department of Mathematics, Sri S. Ramasamy Naidu Memorial College, Sattur, Tamil Nadu, India.
- 4 Department of Mathematics, Sethu Institute of Technology, Kariapatti, Virudhunagar District, Tamil Nadu, India.

Abstract: The aim of this paper is to introduce and study the notions of \star - $A_{\mathcal{T}}^{\star}$ -sets and \star - $C_{\mathcal{T}}$ -sets in ideal topological spaces.

Properties of \star - $A_{\mathcal{T}}^{\star}$ -sets and \star - $C_{\mathcal{I}}$ -sets are investigated. Moreover, decompositions of \star - $A_{\mathcal{T}}^{\star}$ -continuous functions via \star - $A_{\mathcal{T}}^{\star}$ -

sets and \star -C_{\mathcal{I}}-sets in ideal topological spaces are established.

MSC: 54A05, 54A10, 54C08, 54C10.

Keywords: \star - A_{τ}^{\star} -set, \star - $C_{\mathcal{I}}$ -set, C_{τ}^{\star} -set, pre- \mathcal{I} -regular set, ideal topological space, decomposition.

© JS Publication.

1. Introduction and Preliminaries

In this paper, \star - $A_{\mathcal{I}}^{\star}$ -sets and \star - $C_{\mathcal{I}}$ -sets in ideal topological spaces are introduced and studied. The relationships and properties of \star - $A_{\mathcal{I}}^{\star}$ -sets and \star - $C_{\mathcal{I}}$ -sets are investigated. Furthermore, decompositions of \star - $A_{\mathcal{I}}^{\star}$ -continuous functions via \star - $A_{\mathcal{I}}^{\star}$ -sets and \star - $C_{\mathcal{I}}$ -sets in ideal topological spaces are provided.

Throughout this paper (X, τ) , (Y, σ) (or simply X, Y) denote topological spaces on which no separation axioms are assumed unless explicitly stated. For a subset A of a space X, the closure and interior of A with respect to τ are denoted by cl(A) and int(A) respectively.

An ideal \mathcal{I} on a topological space (X, τ) is a nonempty collection of subsets of X which satisfies

- (1) $A \in \mathcal{I}$ and $B \subseteq A \Rightarrow B \in \mathcal{I}$ and
- (2) $A \in \mathcal{I}$ and $B \in \mathcal{I} \Rightarrow A \cup B \in \mathcal{I}$ [9].

If \mathcal{I} is an ideal on X and $X \notin \mathcal{I}$, then $\mathcal{F} = \{X \setminus G : G \in \mathcal{I}\}$ is a filter [8]. Given a topological space (X, τ) with an ideal \mathcal{I} on X and if $\wp(X)$ is the set of all subsets of X, a set operator $(.)^* : \wp(X) \to \wp(X)$, called a local function [9] of A with respect to τ and \mathcal{I} is defined as follows: for $A \subseteq X$, $A^*(\mathcal{I}, \tau) = \{x \in X \mid U \cap A \notin \mathcal{I} \text{ for every } U \in \tau(x)\}$ where $\tau(x) = \{U \in \tau \mid x \in U\}$. A Kuratowski

 $^{^*}$ E-mail: siingam@yahoo.com

closure operator $cl^*(.)$ for a topology $\tau^*(\mathcal{I},\tau)$, called the *-topology, finer than τ is defined by $cl^*(A)=A\cup A^*(\mathcal{I},\tau)$ [8]. When there is no chance for confusion, we will simply write A^* for $A^*(\mathcal{I},\tau)$ and τ^* for $\tau^*(\mathcal{I},\tau)$. int^{*}(A) will denote the interior of A in (X,τ^*,\mathcal{I}) .

Remark 1.1 ([8]). The \star -topology is generated by τ and by the filter F. Also the family $\{H \cap G : H \in \tau, G \in F\}$ is a basis for this topology.

Definition 1.2. A subset A of an ideal topological space (X, τ, \mathcal{I}) is said to be

- (1) pre- \mathcal{I} -open [1] if $A \subseteq int(cl^*(A))$.
- (2) semi- \mathcal{I} -open [7] if $A \subseteq cl^*(int(A))$.
- (3) α - \mathcal{I} -open [7] if $A \subseteq int(cl^*(int(A)))$.
- (4) $semi^*$ - \mathcal{I} -open [5, 6] if $A \subseteq cl(int^*(A))$.
- (5) \star -closed [8] if $A^{\star} \subseteq A$ or $A = cl^{\star}(A)$.

The complement of \star -closed set is \star -open.

Definition 1.3. The complement of a pre- \mathcal{I} -open (resp. α - \mathcal{I} -open) set is called pre- \mathcal{I} -closed [1](resp. α - \mathcal{I} -closed [7]).

Definition 1.4 ([6]). The pre- \mathcal{I} -closure of a subset A of an ideal topological space (X, τ, \mathcal{I}) , denoted by $p_{\mathcal{I}}cl(A)$, is defined as the intersection of all pre- \mathcal{I} -closed sets of X containing A.

Lemma 1.5 ([6]). For a subset A of an ideal topological space (X, τ, \mathcal{I}) , $p_{\mathcal{I}}cl(A) = A \cup cl(int^*(A))$.

Definition 1.6 ([3]). A subset A of an ideal topological space (X, τ, \mathcal{I}) is called pre- \mathcal{I} -regular if A is pre- \mathcal{I} -open and pre- \mathcal{I} -closed in (X, τ, \mathcal{I}) .

Definition 1.7 ([2, 3, 10]). A subset A of an ideal topological space (X, τ, \mathcal{I}) is called $A_{\mathcal{I}}^{\star}$ -set if $A = L \cap M$, where L is an open and $M = cl(int^{\star}(M))$.

Remark 1.8 ([4]). In any ideal topological space, every open set is \star -open but not conversely.

Definition 1.9 ([3]). Let (X, τ, \mathcal{I}) be an ideal topological space and $A \subseteq X$. A is said to be an $C_{\mathcal{I}}^*$ -set if $A = L \cap M$, where L is an open and M is a pre- \mathcal{I} -regular set in X.

Theorem 1.10 ([3]). Let (X, τ, \mathcal{I}) be an ideal topological space. Then

- (1) Each $C_{\mathcal{I}}^{\star}$ -set in X is a pre- \mathcal{I} -open but not conversely.
- (2) Every pre- \mathcal{I} -open set is $C_{\mathcal{I}}^{\star}$ -set but not conversely.
- (3) Every pre- \mathcal{I} -regular set is $C_{\mathcal{I}}^{\star}$ -set but not conversely.

2. $\star -A_{\mathcal{I}}^{\star}$ -sets and $\star -C_{\mathcal{I}}$ -sets

Definition 2.1. A subset A of an ideal topological space (X, τ, \mathcal{I}) is said to be

- (1) an \star - $C_{\mathcal{I}}$ -set if $A = L \cap M$, where L is an \star -open set and M is a pre- \mathcal{I} -closed set in X.
- (2) an \star - $\eta_{\mathcal{I}}$ -set if $A = L \cap M$, where L is an \star -open set and M is an α - \mathcal{I} -closed set in X.
- (3) an \star - A_{τ}^{\star} -set if $A = L \cap M$, where L is an \star -open set and $M = cl(int^{\star}(M))$.

Remark 2.2. Let (X, τ, \mathcal{I}) be an ideal topological space and $A \subseteq X$. The following diagram holds for A.

$$\begin{array}{ccc} C_{\mathcal{I}}^{\star}\text{-}set & \longrightarrow \star\text{-}C_{\mathcal{I}}\text{-}set \\ & \uparrow \\ A_{\mathcal{I}}^{\star}\text{-}set & \longrightarrow \star\text{-}A_{\mathcal{I}}^{\star}\text{-}set & \longrightarrow \star\text{-}\eta_{\mathcal{I}}\text{-}set \end{array}$$

The following Examples show that these implications are not reversible in general.

Example 2.3. Let $X = \{a, b, c, d, e\}$, $\tau = \{\emptyset, \{b\}, \{e\}, \{b, e\}, \{c, d\}, \{b, c, d\}, \{c, d, e\}, \{b, c, d, e\}, \{a, c, d, e\}, X\}$ and $\mathcal{I} = \{\emptyset, \{b\}, \{e\}, \{b, e\}\}$. Then $A = \{a\}$ is $\star -A_{\mathcal{I}}^{\star}$ -set but not an $A_{\mathcal{I}}^{\star}$ -set.

Example 2.4. Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X\}$ and $\mathcal{I} = \{\emptyset\}$. Then $A = \{c\}$ is \star - $\eta_{\mathcal{I}}$ -set but not an \star - $A_{\mathcal{I}}^{\star}$ -set.

Example 2.5. In Example 2.4, $A = \{c\}$ is \star - $C_{\mathcal{I}}$ -set but not an $C_{\mathcal{I}}^{\star}$ -set.

Example 2.6. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, \{a\}, X\}$ and $\mathcal{I} = \{\emptyset, \{a\}\}$. Then $A = \{c\}$ is \star - $C_{\mathcal{I}}$ -set but not an \star - $\eta_{\mathcal{I}}$ -set.

Theorem 2.7. For a subset A of an ideal topological space (X, τ, \mathcal{I}) , the following properties are equivalent.

- (1) A is an \star - $C_{\mathcal{I}}$ -set and a semi * - \mathcal{I} -open set in X.
- (2) $A = L \cap cl(int^*(A))$ for an *-open set L.

Proof. (1) \Rightarrow (2): Suppose that A is an \star -C_{\(\mathcal{I}\)}-set and a semi * -\(\mathcal{I}\)-open set in X. Since A is \star -C_{\(\mathcal{I}\)}-set, then we have A = L \cap M, where L is an \star -open set and M is a pre-\(\mathcal{I}\)-closed set in X. We have A \(\sum \text{M}\), so cl(int * (A)) \(\sum \text{cl(int}\(^{\dagger}(\text{M})\)). Since M is a pre-\(\mathcal{I}\)-closed set in X, we have cl(int * (M)) \(\sum \text{M}\) \(\sum \text{M}\). Since A is a semi * -\(\mathcal{I}\)-open set in X, We have A \(\sum \text{cl(int}\(^{\dagger}(\text{A})\)). It follows that A = A \(\cap \text{cl(int}\(^{\dagger}(\text{A})) = \text{L} \cap \text{M} \cap \text{cl(int}\(^{\dagger}(\text{A})).

(2) \Rightarrow (1): Let $A = L \cap cl(int^*(A))$ for an \star -open set L. We have $A \subseteq cl(int^*(A))$. It follows that A is a semi*- \mathcal{I} -open set in X. Since $cl(int^*(A))$ is a closed set, then $cl(int^*(A))$ is a pre- \mathcal{I} -closed set in X. Hence, A is an \star - $C_{\mathcal{I}}$ -set in X.

Theorem 2.8. For a subset A of an ideal topological space (X, τ, \mathcal{I}) , the following properties are equivalent.

- (1) A is an \star -A_{\mathcal{I}}-set in X.
- (2) A is an \star - $\eta_{\mathcal{I}}$ -set and a semi * - \mathcal{I} -open set in X.
- (3) A is an \star - $C_{\mathcal{I}}$ -set and a semi * - \mathcal{I} -open set in X.

Proof. (1) ⇒ (2): Suppose that A is an \star - $A_{\mathcal{I}}^{\star}$ -set in X. It follows that A = L ∩ M, where L is an \star -open set and M = cl(int*(M)). This implies A = L ∩ M = L ∩ cl(int*(M)) = int*(L) ∩ cl(int*(M)) ⊆ cl(int*(L)) ∩ cl(int*(M)) ⊆ cl(int*(L)) ∩ cl(int*(M)) ⊆ cl(int*(L)) ∩ cl(int*(M)) = cl(int*(L)) ∩ cl(int*(L)) ∩ cl(int*(M)) = cl(int*(A)). Thus A ⊆ cl(int*(A)) and hence A is a semi*- \mathcal{I} -open set in X. Moreover, Remark 2.2, A is an \star - $\eta_{\mathcal{I}}$ -set in X.

- $(2) \Rightarrow (3)$: It follows from the fact that every $\star -\eta_{\mathcal{I}}$ -set is an $\star -C_{\mathcal{I}}$ -set in X by Remark 2.2.
- (3) \Rightarrow (1): Suppose that A is an \star -C_{\mathcal{I}}-set and a semi * - \mathcal{I} -open set in X. By Theorem 2.7, $A = L \cap cl(int^{\star}(A))$ for an \star -open set L. We have $cl(int^{\star}(cl(int^{\star}(A)))) = cl(int^{\star}(A))$. It follows that A is an \star - $A_{\mathcal{I}}^{\star}$ -set in X.

Remark 2.9.

- (1) The notions of \star - $\eta_{\mathcal{I}}$ -set and semi*- \mathcal{I} -open set are independent of each other.
- (2) The notions of \star - $C_{\mathcal{I}}$ -set and semi * - \mathcal{I} -open set are independent of each other.

Example 2.10.

- (1) In Example 2.4, $A = \{c\}$ is \star - $C_{\mathcal{I}}$ -set as well as \star - $\eta_{\mathcal{I}}$ -set but not semi * - \mathcal{I} -open set.
- (2) In Example 2.6, $A = \{a, b\}$ is a semi*- \mathcal{I} -open set but it is neither \star - $C_{\mathcal{I}}$ -set nor \star - $\eta_{\mathcal{I}}$ -set.

Definition 2.11. A subset A of an ideal topological space (X, τ, \mathcal{I}) is said to be \star - $gp_{\mathcal{I}}$ -open if $N \subseteq p_{\mathcal{I}}int(A)$ whenever $N \subseteq A$ and N is an \star -closed set in X where $p_{\mathcal{I}}int(A) = A \cap int(cl^{\star}(A))$.

Definition 2.12. A subset A of an ideal topological space (X, τ, \mathcal{I}) is said to be \star -generalized pre- \mathcal{I} -closed (\star -gp $_{\mathcal{I}}$ -closed) in X if $X \setminus A$ is \star -gp $_{\mathcal{I}}$ -open.

Theorem 2.13. For a subset A of an ideal topological space (X, τ, \mathcal{I}) , A is \star - $gp_{\mathcal{I}}$ -closed if and only if $p_{\mathcal{I}}cl(A) \subseteq N$ whenever $A \subseteq N$ and N is an \star -open set in (X, τ, \mathcal{I}) .

Proof. Let A be an *-gp_{\mathcal{I}}-closed set in X. Suppose that A ⊆ N and N is an *-open set in (X, τ , \mathcal{I}). Then X \ A is *-gp_{\mathcal{I}}-open and X \ N ⊆ X \ A where X \ N is *-closed. Since X \ A is *-gp_{\mathcal{I}}-open, then we have X \ N ⊆ p_{\mathcal{I}}int(X \ A), where p_{\mathcal{I}}int(X \ A) = (X \ A) \cap int(cl^*(X \ A)). Since (X \ A) \cap int(cl^*(X \ A)) = (X \ A) \cap (X \ Cl(int^*(A))) = X \ (A \cup cl(int^*(A))), then by Lemma 1.5, (X \ A) \cap int(cl^*(X \ A)) = X \ (A \cup cl(int^*(A))) = X \ p_\mathcal{I}cl(A). Thus p_{\mathcal{I}}cl(A) = X \ p_{\mathcal{I}}int(X \ A) ⊆ N and hence p_{\mathcal{I}}cl(A) ⊆ N. The converse is similar.

Theorem 2.14. Let (X, τ, \mathcal{I}) be an ideal topological space and $V \subseteq X$. Then V is an \star - $C_{\mathcal{I}}$ -set in X if and only if V = G $\cap p_{\mathcal{I}}cl(V)$ for an \star -open set G in X.

Proof. If V is an ★-C_{\mathcal{I}}-set, then V = G \cap M for an ★-open set G and a pre-\mathcal{I}-closed set M. But then V \(\) M and so V \(\) $p_{\mathcal{I}}cl(V) \(\)$ M. It follows that V = V \(\) $p_{\mathcal{I}}cl(V) = G \cap M \(\) <math>p_{\mathcal{I}}cl(V) = G \cap p_{\mathcal{I}}cl(V)$. Conversely, it is enough to prove that $p_{\mathcal{I}}cl(V)$ is a pre-\mathcal{I}-closed set. But $p_{\mathcal{I}}cl(V) \subseteq M$, for any pre-\mathcal{I}-closed set M containing V. So, $cl(int^*(p_{\mathcal{I}}cl(V))) \subseteq cl(int^*(M))$ \(\) \(\) M. It follows that $cl(int^*(p_{\mathcal{I}}cl(V))) \subseteq \cap_{V \subseteq M} \int_{M} \int_{M}$

Theorem 2.15. Let (X, τ, \mathcal{I}) be an ideal topological space and $A \subseteq X$. The following properties are equivalent.

(1) A is a pre- \mathcal{I} -closed set in X.

(2) A is an \star - $C_{\mathcal{I}}$ -set and an \star - $gp_{\mathcal{I}}$ -closed set in X.

Proof. (1) \Rightarrow (2): It follows from the fact that any pre- \mathcal{I} -closed set in X is an \star - $C_{\mathcal{I}}$ -set and an \star -gp_{\mathcal{I}}-closed set in X.

(2) \Rightarrow (1): Suppose that A is an \star -C_{\mathcal{I}}-set and an \star -gp_{\mathcal{I}}-closed set in X. Since A is an \star -C_{\mathcal{I}}-set, then by Theorem 2.14, A = G \cap p_{\mathcal{I}}cl(A) for an \star -open set G in (X, τ , \mathcal{I}). Since A \subseteq G and A is \star -gp_{\mathcal{I}}-closed set in X, then p_{\mathcal{I}}cl(A) \subseteq G. It follows that p_{\mathcal{I}}cl(A) \subseteq G \cap p_{\mathcal{I}}cl(A) = A. Thus, A = p_{\mathcal{I}}cl(A) and hence A is pre- \mathcal{I} -closed.

Theorem 2.16. Let (X, τ, \mathcal{I}) be an ideal topological space and $A \subseteq X$. If A is an \star - $C_{\mathcal{I}}$ -set in X, then $p_{\mathcal{I}}cl(A) \setminus A$ is a pre- \mathcal{I} -closed set and $A \cup (X \setminus p_{\mathcal{I}}cl(A))$ is a pre- \mathcal{I} -open set in X.

Proof. Suppose that A is an ★-C_{\(\mathcal{T}\)}-set in X. By Theorem 2.14, we have $A = L \cap p_{\(\mathcal{T}\)}cl(A)$ for an ★-open set L in X. It follows that $p_{\(\mathcal{T}\)}cl(A) \setminus A = p_{\(\mathcal{T}\)}cl(A) \setminus (L \cap p_{\(\mathcal{T}\)}cl(A)) = p_{\(\mathcal{T}\)}cl(A) \cap (X \ \ \ (L \cap p_{\(\mathcal{T}\)}cl(A))) = p_{\(\mathcal{T}\)}cl(A) \cap (X \ \ \ D) \cup (p_{\(\mathcal{T}\)}cl(A) \cap (X \ \ D)) \cup (p_{\(\mathcal{T}\)}cl(A) \cap (X \ \ D)) \cup (p_{\(\mathcal{T}\)}cl(A) \cap (X \ \ D)) \cup (p_{\(\mathcal{T}\)}cl(A) \cap (X \ \ D). Thus <math>p_{\(\mathcal{T}\)}cl(A) \ A = p_{\(\mathcal{T}\)}cl(A) \cap (X \ \ D) \cap (p_{\(\mathcal{T}\)}cl(A) \cap A is a pre-\(\mathcal{T}\)-closed set in X, then <math>X \setminus (p_{\(\mathcal{T}\)}cl(A) \ A) = (X \setminus (p_{\(\mathcal{T}\)}cl(A) \cap A) = (X \ \ p_{\(\mathcal{T}\)}cl(A) \cap A is a pre-\(\mathcal{T}\)-open set. Thus, <math>X \setminus (p_{\(\mathcal{T}\)}cl(A) \ A) = (X \setminus p_{\(\mathcal{T}\)}cl(A)) \cup A is a pre-\(\mathcal{T}\)-open set in X.$

3. Decompositions of \star - $A_{\mathcal{I}}^{\star}$ -continuity

Definition 3.1. A function $f:(X, \tau, \mathcal{I}) \to (Y, \sigma)$ is said to be

- (1) \star - $C_{\mathcal{I}}$ -continuous if $f^{-1}(A)$ is an \star - $C_{\mathcal{I}}$ -set in X for every open set A in Y.
- (2) \star - A_{τ}^{\star} -continuous if $f^{-1}(A)$ is an \star - A_{τ}^{\star} -set in X for every open set A in Y.
- (3) $\star -\eta_{\mathcal{I}}$ -continuous if $f^{-1}(A)$ is an $\star -\eta_{\mathcal{I}}$ -set in X for every open set A in Y.
- (4) $A_{\mathcal{I}}^{\star}$ -continuous [3] if $f^{-1}(A)$ is an $A_{\mathcal{I}}^{\star}$ -set in X for every open set A in Y.

Remark 3.2. For a function $f:(X, \tau, \mathcal{I}) \to (Y, \sigma)$, the following diagram holds. The reverses of these implications are not true in general as shown in the following Examples.

$$\begin{array}{c} \star\text{-}C_{\mathcal{I}}\text{-}continuity \longleftarrow C_{\mathcal{I}}^{\star}\text{-}continuity \\ \\ \uparrow \\ \\ \star\text{-}\eta_{\mathcal{I}}\text{-}continuity \longleftarrow \star\text{-}A_{\mathcal{I}}^{\star}\text{-}continuity \longleftarrow A_{\mathcal{I}}^{\star}\text{-}continuity \end{array}$$

Example 3.3. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}\}$, $Y = \{p, q, r\}$, $\sigma = \{\emptyset, Y, \{q\}, \{r\}, \{q, r\}\}\}$, $\mathcal{I} = \{\emptyset, \{a\}\}$ and $\mathcal{J} = \{\emptyset\}$. Define $f: (X, \tau, \mathcal{I}) \to (Y, \sigma, \mathcal{J})$ by f(a) = p; f(b) = q and f(c) = r. Then f is $\star C_{\mathcal{I}}$ -continuous but not $\star \eta_{\mathcal{I}}$ -continuous.

Example 3.4. Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X\}$, $Y = \{p, q, r, s\}$, $\sigma = \{\emptyset, Y, \{r\}, \{s\}, \{r, s\}\}$, $\mathcal{I} = \{\emptyset\}$ and $\mathcal{I} = \{\emptyset\}$. Define $f : (X, \tau, \mathcal{I}) \to (Y, \sigma, \mathcal{I})$ by f(a) = p, f(b) = q, f(c) = r and f(d) = s. Then f is \star - $C_{\mathcal{I}}$ -continuous but not $C_{\mathcal{I}}^{\star}$ -continuous.

Example 3.5. In Example 3.4, f is \star - $\eta_{\mathcal{I}}$ -continuous but not \star - $A_{\mathcal{I}}^{\star}$ -continuous.

Example 3.6. Let $X = \{a, b, c, d, e\}$, $\tau = \{\emptyset, \{b\}, \{e\}, \{b, e\}, \{c, d\}, \{b, c, d\}, \{c, d, e\}, \{b, c, d, e\}, \{a, c, d, e\}, X\}$, $Y = \{p, q, r, s, t\}$, $\sigma = \{\emptyset, Y, \{p\}\}$, $\mathcal{I} = \{\emptyset, \{b\}, \{e\}, \{b, e\}\}$ and $\mathcal{I} = \{\emptyset\}$. Define $f : (X, \tau, \mathcal{I}) \to (Y, \sigma, \mathcal{I})$ by f(a) = p, f(b) = q, f(c) = r, f(d) = s and f(e) = t. Then f is $\star A_{\mathcal{I}}^{\star}$ -continuous but not $A_{\mathcal{I}}^{\star}$ -continuous.

Definition 3.7 ([3]). A function $f:(X, \tau, \mathcal{I}) \to (Y, \sigma)$ is said to be semi*- \mathcal{I} -continuous if $f^{-1}(V)$ is a semi*- \mathcal{I} -open set in X for every open set V in Y.

Theorem 3.8. The following properties are equivalent for a function $f:(X, \tau, \mathcal{I}) \to (Y, \sigma)$:

- (1) f is \star - $A_{\mathcal{I}}^{\star}$ -continuous.
- (2) f is \star - $\eta_{\mathcal{I}}$ -continuous and semi * - \mathcal{I} -continuous.
- (3) f is \star - $C_{\mathcal{I}}$ -continuous and $semi^{\star}$ - \mathcal{I} -continuous.

Proof. It follows from Theorem 2.8.

References

- [1] J.Dontchev, Idealization of Ganster-Reilly Decomposition theorems, arxiv:math.GN/9901017vl (1999).
- [2] E.Ekici, On R-I-open sets and $A_{\mathcal{I}}^{\star}$ -sets in ideal topological spaces, Annals Univ. Craiova Math. Comp. Sci. Ser., 38(2)(2011), 26-31.
- [3] E.Ekici, On $A_{\mathcal{I}}^{\star}$ -sets, $C_{\mathcal{I}}$ -sets, $C_{\mathcal{I}}^{\star}$ -sets and decompositions of continuity in ideal topological spaces, Analele Stiintifice ale Universitatii Al. I. Cuza din Iasi (S. N), f.1, LIX(2013), 173-184.
- [4] E.Ekici, On I-Alexandroff and I_g-Alexandroff ideal topological spaces, Filomat, 25(4)(2011), 99-108.
- [5] E.Ekici and T.Noiri, *-extremally disconnected ideal topological spaces, Acta Math. Hungar., 122(1-2)(2009), 81-90.
- [6] E.Ekici and T.Noiri, ★-hyperconnected ideal topological spaces, An. Stiint. Univ." Al. I. Cuza" Iasi. Mat. (N.S), 58(2012), 121-129.
- [7] E.Hatir and T.Noiri, On decompositions of continuity via idealization, Acta Math. Hungar., 96(4)(2002), 341-349.
- [8] D.Jankovic and T.R.Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(4)(1990), 295-310.
- [9] K.Kuratowski, Topology, Vol. I, Academic Press, New York (1966).
- [10] V.Renukadevi, Remarks on R- \mathcal{I} -closed sets and $A_{\mathcal{I}}^{\star}$ -sets, Journal of Advanced Research in Pure Mathematics, 5(3)(2013), 112-120.