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Abstract: Fractional complex variables focus on the fractional or non-integer order differential calculus of a complex variable. In
fractional calculus, locality can narrow down pieces of a function where there may be better behavior in order to model in
an analytic sense, as well as obtain more meaningful physical and/or geometric information. That’s where we introduce the
concepts of Strong Local Fractional Complex Derivatives or LEFCDs. Strong LFCDs can ”maximize” the opportunity that
the piece of the function in a localized or local enough area is ”well-behaved” (enough). We prove a theorem that shows
where Strong LFCDs exist. Applications include index of stability in Complex or Real Fractional Advection Dispersion
Equation (FADE).
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1. Introduction to Fractional Complex Derivatives

We start by looking at derivatives of fractional or non-integer order s.t o € Q

dy  df(z) d?f(x)

dze dz™ ' gr3

Definition 1.1. If for a function f:[0,1] — R, then 3 the limit defining the derivative, where o is 0 < a < 1

o L dY(f(@) = f(y)
D = lim — =22
fly) = lim Az —)°
This is the Local Fractional Derivative (LFD) form: If for a function f : [0,1] — R, then 3 a finite limit, where N is the
largest integer for which Nth derivative of f(z) at y exists and is finite, then we say that the LFD of order «: 1 < a < N

at x = y exists.
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D% f(y) = lim a [f(m) - Yoo ?(nilgf(m ) ]

z—y dlz — y]"

Generally, fractional derivatives are not local in nature; however, if we localize some function f, we can use LDF to solve
some physical models that integer order derivatives cannot really solve or explain.

Now, recall W = f(z):

z=x+1y,Re(z) =x,Im(z) =y
w = u(z,y) + iz, y) = f(z)
= lim z)= lim wu(x,y)+i lim o(z,
z~>a+bif( ) (z,y)—(a,b) ( y) (z,y)—(a,b) ( y)

where z € C, u,v € R

= Let z € R, then we have z* € R* C C.

And if 2% 3 = w®.

o

= w” = f(2) = u(z,y) +i"v(z,y)

Let f: F — R® local function defined on a fractal set F of fractal dimension «,0 < o < 1. If Ve > 0,3 some 6 > 0 s.t.

[fz)—Ll<e*=0<]z—20| <9

The limit of f(z) as z — 29 is L
= lim f(z) = L.
zZ— 20
The function f(z) is said to be local fractional continuous at zo if f(20) is defined, and
Jim f(z) = f(z0)-

A function f(z) is deemed local fractional cont. on R if it is local fractional continuous V point of its domain Cq(R).

Let the complex function f(z) be defined in a neighborhood of a point zo. The local fractional complex derivative of f(z)

at zo denoted by

Df(2), g or £ (z0),

z=z(

— lim 1+ o)[f(z) — f(20)]

2=20 (z —20)®

O0<axl1 (1)
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If this limit exists, then the function f(z) is said to be local fractional analytic at zo. If this limit exists Vzo € R, then the

function f(z) is deemed to be local fractional analytic in R®.

If 3 a function

f(2) = u(z,y) +iv(z,y) (2)

The local fractional equations
0%u(z,y)  0%v(z,y)

oz oy~ =0 (3)
0%u(z,y) | 0%v(z,y) _
Byo + 9pe = 0 (4)

are local fractional Cauchy-Riemann Equations.

2. Strong (or Weak) Local Fractional Complex Derivatives

Theorem 2.1 (from Yang). Suppose that (2) is local fractional analytic in a region R*. Then we have (3) and (4).

Proof. Local fractional C-R Equations are sufficient equations/conditions that f(z) be local functional analytic in region

R® = R! where a is 1. The local fractional partial equations

o ule,y) | O ula.y)
812(1 ayQa

=0 (5)

o u(e,y) | OPv(,y)
an(x 8y2a

=0 (6)

are deemed local fractional Laplace Equations, denoted by
Veu(z,y) = 0,V(z,y) =0 (—a,b)

= va _ 62a/6$2a 4 a2a/ay2a

82(1 62o¢

Ve = a:EQa + ay2a (7)

This is a local fractional Laplace operator. Suppose V%u(z,y) = 0, then u(z,y) is a local fractional harmonic function in R.
When local may not be good enough, there may be cases where physically, geometrically - a strong local fractional complex

derivative or strong LFCD may be needed. Hence, we have maybe the following: O

Theorem 2.2 (Theorem Proposition (Strong LFCDs)). If 3 LFCDs of non-integer order « € Q s.t. a: 1 < a < 2, then

these are Strong LFCDs.
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Proof. 1If a function f(z0) € C domain is sufficiently smooth, and it meets Cauchy-Riemann conditions then D*(f(z)) at
least exists Va € Q s.t. 1 < a < co. See previous Theorem.

Now, recall w = f(z) = u(x,y) + iv(x,y) and 3 partial derivatives for f with z and y so we have the following for f(zo):

/ o ou ,61}
/ (ZO) - <% +18x)(10«y0)

() ()
Oz Oz (z0,Y0) %y 9%y (z0,0)

Ju Ov Ov ou

or Oy’ dx 9y

These are the C-R Equations with a = 1. By previous Theorem from Yang, 3 local fractional Laplace equations (5) and (6)

aQau N 82au aQav N 82&,0
Ox2e 8y2a 7 2o ay2a

with a = 1

Fu a0 (o0\ 0 ( v\ _
0x2 ' Oy2 ~ Oz \ Jy Oy ox )

v 0% 1o} ou Jd (ou
—t —=— - )4+ == 1]1=0
or? = 0y? O oy Oy \ Ox

This shows the existence of Laplace’s Equation of order o = 2 is well established and defined for a local enough second order
f(z) and we know C-R Equations of order 1 is also well-established and defined for a local first order f(z), then = we may

have a strong or strong enough LCFDs which can exist for every a: 1 < a <2 Va € Q and 2 in f(20) € C.

Remark 2.3. On the contrary, LFCDs with order o < 1 and o > 2 Yoo € Q are not strong (enough) or are even weak. As

a consequence of Theorem for strong LFCDs proposition.

For « = 1, a = 2, the strong case seems evident. Using Sobolev Spaces and The Sharp Trace Theorem where IH? over
some half space in C called 2 and some boundary 99 in C. We have the following for the functions u,v as u — ulasn and
v — ’UlaQ

H(Q) — H? (9).

u € C®(Q) N H*(Q) and similar for v € C(Q) N H(Q). This mapping extends to a unique continuous linear operator.
Hence, it is onto.

= o= % for functions or the fractional Laplace Equations for u, v exists, and moreover is Regular.

= smooth u,v functions. How smooth? How strong? Recall that if a function u,v or f such as f(z0) € C domain
is at least smooth enough and it meets Cauchy-Riemann conditions, then D f(z) at least exists Vo € Q s.t. 1 < a0 < 0.

Well, a = % = existence and more. How strong? C-R = strong. We use the Sharp Trace Theorem again. This time
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f — floa and 3Q and 09 in C.

e

H2(Q) — H'(09)

fco=@Q)n HE (©2). This mapping is continuous linear operator. Hence, it is onto. = « = 1 which meets C-R Equations

condition.

Hence, a = % is strong as a = 1 is clearly strong. Using similar Sharp-Trace Theorem analysis on other non-integer

Rationals in « for a : 1 < a < 2 we would see other rational order a for functions f or u,v, to also be strong or at least

strong enough. O

Applications include the Complex or Real Functional Advection Differential Equations or FADE.

Example 2.4.
oC (zx,t) vaC(x,t)

0°C(z,t)
oz~

ot oz 7@

« is the stability or indicator of turbulence. Fourier Transforms can be used to solve.
3. Appendix

Theorem 3.1 (Sharp Trace Theorem). 3 a half space Q in R™. 3 a boundary of a half space 98, also in R™. Let a function

u — ugn mapping exists. Using Sobolev space H(Q): we set
H'(Q) — H?(9Q)

This mapping for u — uloq extends a unique continuous linear operator so that it shows the function u is onto. u €

C>(Q) N H'(Q).

Proof. 3 partitions of unity u(z’,z,) s.t. defined z,, > 0

Xy

M
W

Let u € C*°(Q) N H'(Q) be dense.

e zn) = c/ eig/x/u(m',mn)dx', (FT to " only)
Rn
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d 2 . Ol
Y a =9 Ju
. |4 Re <u an>

then integrate over / from 0 to oo or [;°

e i€, 0)2 = 2Re/ a3

; dxnd;tn
> on > 1

el V2 < / A2 Lz,

A€ 0P <e [ A+ | e

Now, choose A = [1 + |¢/|?]2 = (¢/).

1 o X oa |?
@b of < [T el + | 2| ds ®)
o OTn
Also, integrate (8) over ¢, & € R"™!
o, < [ [Tl antd +]2%a
S0y < [0 [T j0= a0k +| G o
This is the || trace of u|| 1 or
H2(8Q)

= onto — by for H'(Q) — H%(@Q)

where T: R — Y, R is in z, and dense(ness) is

(1-A)u=(1-Au= (1-A%u=(1+[¢*"

Next, use Cauchy Sequence. Prove using {Tny} converges in Y, where we define tn = lim Ty, .

Next we prove the onto of function m mapping f. Let f € H2(9Q). Define v(¢,&,) = v(€) = f(£) <<§gl>) .

= ([g'Nv(&) = ()

[N
s
—~
lh\r\
~—
—
m
<
~
[N

= [ 1ol mer

[ eriers ([ g

o (&) + &

/ (E)o(E) 2de = / (€ F2ae’
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(ex) = mI£11% 4

H2(6Q)

Let u(z) be a function s.t. uw € R™. The on a FT (Fourier Transform) is continuous

= Nl < ellfll, 3 0 < 0

where as an example:

a(€',0) = Const.f(€')

Lx, =0

Remark 3.2 (on (*x)).

)
= /,oo @ et

Theorem 3.3 (General Trace Theorem). Let Q be open and the boundary 02 € C* be continuous, s.t.

AN cHRP(Q) — HY?(8Q)
(&)

0 ) 5o

wherel =k —j — % >0 andp:1<p<oo. This mapping is continuous and onto.
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