# Fractional Complex Variables: Strong Local Fractional Complex Derivatives (LFCDs) of Non-Integer Rational Order 

Review Article

## Steve Anglin ${ }^{1 *}$

1 Fmr. Visiting Lecturer of Case Western Reserve University.


#### Abstract

Fractional complex variables focus on the fractional or non-integer order differential calculus of a complex variable. In fractional calculus, locality can narrow down pieces of a function where there may be better behavior in order to model in an analytic sense, as well as obtain more meaningful physical and/or geometric information. That's where we introduce the concepts of Strong Local Fractional Complex Derivatives or LFCDs. Strong LFCDs can "maximize" the opportunity that the piece of the function in a localized or local enough area is "well-behaved" (enough). We prove a theorem that shows where Strong LFCDs exist. Applications include index of stability in Complex or Real Fractional Advection Dispersion Equation (FADE).

MSC: 26A33


Keywords: Fractional derivatives, complex variables, differential calculus, fractional order, FADE, advection, dispersion, equation, calculus.
(C) JS Publication.

## 1. Introduction to Fractional Complex Derivatives

We start by looking at derivatives of fractional or non-integer order s.t $\alpha \in \mathbb{Q}$

$$
\frac{d^{\alpha} y}{d x^{\alpha}} \text { or } \frac{d^{\alpha} f(x)}{d x^{\alpha}}, \frac{d^{\frac{1}{2}} f(x)}{d x^{\frac{1}{2}}}
$$

Definition 1.1. If for a function $f:[0,1] \rightarrow \mathbb{R}$, then $\exists$ the limit defining the derivative, where $\alpha$ is $0<\alpha<1$

$$
D^{\alpha} f(y)=\lim _{x \rightarrow y} \frac{d^{\alpha}(f(x)-f(y))}{d(x-y)^{\alpha}}
$$

This is the Local Fractional Derivative (LFD) form: If for a function $f:[0,1] \rightarrow \mathbb{R}$, then $\exists$ a finite limit, where N is the largest integer for which Nth derivative of $f(x)$ at $y$ exists and is finite, then we say that the LFD of order $\alpha: 1 \leq \alpha \leq N$ at $x=y$ exists.

[^0]$$
D^{\alpha} f(y)=\lim _{x \rightarrow y}\left[\frac{d^{\alpha}\left[f(x)-\sum_{n=0}^{N} \frac{f^{(n)}(y)}{\Gamma(n+1)} f(x-y)^{n}\right]}{d[x-y]^{n}}\right]
$$

Generally, fractional derivatives are not local in nature; however, if we localize some function f , we can use LDF to solve some physical models that integer order derivatives cannot really solve or explain.

Now, recall $W=f(z)$ :

$$
\begin{gathered}
z=x+i y, \operatorname{Re}(z)=x, \operatorname{Im}(z)=y \\
w=u(x, y)+i v(x, y)=f(z) \\
\Rightarrow \lim _{z \rightarrow a+b i} f(z)=\lim _{(x, y) \rightarrow(a, b)} u(x, y)+i \lim _{(x, y) \rightarrow(a, b)} v(x, y)
\end{gathered}
$$

where $z \in \mathbb{C}, u, v \in \mathbb{R}$
$\Rightarrow$ Let $z \in R$, then we have $z^{\alpha} \in R^{\alpha} \subseteq \mathbb{C}$.
And if $z^{\alpha} \exists \Rightarrow w^{\alpha}$.

$$
\Rightarrow w^{\alpha}=f(z)=u(x, y)+i^{\alpha} v(x, y)
$$

Let $f: F \rightarrow R^{\alpha}$ local function defined on a fractal set F of fractal dimension $\alpha, 0 \leq \alpha \leq 1$. If $\forall \varepsilon>0, \exists$ some $\delta>0$ s.t.

$$
|f(z)-L|<\varepsilon^{\alpha} \Rightarrow 0<\left|z-z_{0}\right|<\delta
$$

The limit of $f(z)$ as $z \rightarrow z_{0}$ is $L$

$$
\Rightarrow \lim _{z \rightarrow z_{0}} f(z)=L
$$

The function $f(z)$ is said to be local fractional continuous at $z_{0}$ if $f\left(z_{0}\right)$ is defined, and

$$
\lim _{z \rightarrow z_{0}} f(z)=f\left(z_{0}\right)
$$

A function $f(z)$ is deemed local fractional cont. on $R^{\alpha}$ if it is local fractional continuous $\forall$ point of its domain $\mathbb{C}_{\alpha}(R)$.

Let the complex function $f(z)$ be defined in a neighborhood of a point $z_{0}$. The local fractional complex derivative of $f(z)$ at $z_{0}$ denoted by

$$
\begin{align*}
& D^{\alpha} f(z),\left.\frac{d^{\alpha}}{d z^{\alpha}} f(z)\right|_{z=z_{0}} \text { or } f^{(\alpha)}\left(z_{0}\right), \\
= & \lim _{z \rightarrow z_{0}} \frac{\Gamma(1+\alpha)\left[f(z)-f\left(z_{0}\right)\right]}{\left(z-z_{0}\right)^{\alpha}}, 0<\alpha \leqslant 1 \tag{1}
\end{align*}
$$

If this limit exists, then the function $f(z)$ is said to be local fractional analytic at $z_{0}$. If this limit exists $\forall z_{0} \in R^{\alpha}$, then the function $f(z)$ is deemed to be local fractional analytic in $R^{\alpha}$.

If $\exists$ a function

$$
\begin{equation*}
f(z)=u(x, y)+i^{\alpha} v(x, y) \tag{2}
\end{equation*}
$$

The local fractional equations

$$
\begin{align*}
& \frac{\partial^{\alpha} u(x, y)}{\partial x^{\alpha}}-\frac{\partial^{\alpha} v(x, y)}{\partial y^{\alpha}}=0  \tag{3}\\
& \frac{\partial^{\alpha} u(x, y)}{\partial y^{\alpha}}+\frac{\partial^{\alpha} v(x, y)}{\partial x^{\alpha}}=0 \tag{4}
\end{align*}
$$

are local fractional Cauchy-Riemann Equations.

## 2. Strong (or Weak) Local Fractional Complex Derivatives

Theorem 2.1 (from Yang). Suppose that (2) is local fractional analytic in a region $R^{\alpha}$. Then we have (3) and (4).

Proof. Local fractional C-R Equations are sufficient equations/conditions that $f(z)$ be local functional analytic in region $R^{\alpha} \Rightarrow R^{1}$, where $\alpha$ is 1 . The local fractional partial equations

$$
\begin{align*}
& \frac{\partial^{2 \alpha} u(x, y)}{\partial x^{2 \alpha}}+\frac{\partial^{2 \alpha} u(x, y)}{\partial y^{2 \alpha}}=0  \tag{5}\\
& \frac{\partial^{2 \alpha} v(x, y)}{\partial x^{2 \alpha}}+\frac{\partial^{2 \alpha} v(x, y)}{\partial y^{2 \alpha}}=0 \tag{6}
\end{align*}
$$

are deemed local fractional Laplace Equations, denoted by

$$
\begin{gather*}
\nabla^{\alpha} u(x, y)=0, \nabla^{\alpha} v(x, y)=0(\neg a, b) \\
\Rightarrow \nabla^{\alpha}=\partial^{2 \alpha} / \partial x^{2 \alpha}+\partial^{2 \alpha} / \partial y^{2 \alpha} \\
\nabla^{\alpha}=\frac{\partial^{2 \alpha}}{\partial x^{2 \alpha}}+\frac{\partial^{2 \alpha}}{\partial y^{2 \alpha}} \tag{7}
\end{gather*}
$$

This is a local fractional Laplace operator. Suppose $\nabla^{\alpha} u(x, y)=0$, then $u(x, y)$ is a local fractional harmonic function in $R$. When local may not be good enough, there may be cases where physically, geometrically - a strong local fractional complex derivative or strong LFCD may be needed. Hence, we have maybe the following:

Theorem 2.2 (Theorem Proposition (Strong LFCDs)). If $\exists$ LFCDs of non-integer order $\alpha \in \mathbb{Q}$ s.t. $\alpha: 1 \leq \alpha \leq 2$, then these are Strong LFCDs.

Proof. If a function $f\left(z_{0}\right) \in \mathbb{C}$ domain is sufficiently smooth, and it meets Cauchy-Riemann conditions then $D^{\alpha}(f(z))$ at least exists $\forall \alpha \in \mathbb{Q}$ s.t. $1 \leq \alpha<\infty$. See previous Theorem.

Now, recall $w=f(z)=u(x, y)+i v(x, y)$ and $\exists$ partial derivatives for $f$ with $x$ and $y$ so we have the following for $f\left(z_{0}\right)$ :

$$
\begin{gathered}
f^{\prime}\left(z_{0}\right)=\left(\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}\right)_{\left(x_{0}, y_{0}\right)} \\
f^{\prime}\left(z_{0}\right)=\left(-i \frac{\partial u}{\partial y}+\frac{\partial v}{\partial y}\right)_{\left(x_{0}, y_{0}\right)} \\
\Rightarrow\left(\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}\right)_{\left(x_{0}, y_{0}\right)}=\left(-i \frac{\partial u}{\partial y}+\frac{\partial v}{\partial y}\right)_{\left(x_{0}, y_{0}\right)} \\
\Rightarrow \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}
\end{gathered}
$$

These are the C-R Equations with $\alpha=1$. By previous Theorem from Yang, $\exists$ local fractional Laplace equations (5) and (6)

$$
\frac{\partial^{2 \alpha} u}{\partial x^{2 \alpha}}+\frac{\partial^{2 \alpha} u}{\partial y^{2 \alpha}}, \frac{\partial^{2 \alpha} v}{\partial x^{2 \alpha}}+\frac{\partial^{2 \alpha} v}{\partial y^{2 \alpha}}
$$

with $\alpha=1$

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial v}{\partial y}\right)+\frac{\partial}{\partial y}\left(-\frac{\partial v}{\partial x}\right)=0 \\
& \frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}=\frac{\partial}{\partial x}\left(-\frac{\partial u}{\partial y}\right)+\frac{\partial}{\partial y}\left(\frac{\partial u}{\partial x}\right)=0
\end{aligned}
$$

This shows the existence of Laplace's Equation of order $\alpha=2$ is well established and defined for a local enough second order $f(z)$ and we know C-R Equations of order 1 is also well-established and defined for a local first order $f(z)$, then $\Rightarrow$ we may have a strong or strong enough LCFDs which can exist for every $\alpha: 1 \leq \alpha \leq 2 \forall \alpha \in \mathbb{Q}$ and $z_{0}$ in $f\left(z_{0}\right) \in \mathbb{C}$.

Remark 2.3. On the contrary, LFCDs with order $\alpha<1$ and $\alpha>2 \forall \alpha \in \mathbb{Q}$ are not strong (enough) or are even weak. As a consequence of Theorem for strong LFCDs proposition.

For $\alpha=1, \alpha=2$, the strong case seems evident. Using Sobolev Spaces and The Sharp Trace Theorem where $\exists H^{2}$ over some half space in $\mathbb{C}$ called $\Omega$ and some boundary $\partial \Omega$ in $\mathbb{C}$. We have the following for the functions $u, v$ as $\left.u \rightarrow u\right|_{\partial \Omega}$ and $\left.v \rightarrow v\right|_{\partial \Omega}$

$$
H^{2}(\Omega) \rightarrow H^{\frac{3}{2}}(\partial \Omega)
$$

$u \in \mathbb{C}^{\infty}(\Omega) \cap H^{2}(\Omega)$ and similar for $v \in \mathbb{C}^{\infty}(\Omega) \cap H^{2}(\Omega)$. This mapping extends to a unique continuous linear operator. Hence, it is onto.
$\Rightarrow \alpha=\frac{3}{2}$ for functions or the fractional Laplace Equations for $u, v$ exists, and moreover is Regular.
$\Rightarrow$ smooth $u, v$ functions. How smooth? How strong? Recall that if a function $u, v$ or $f$ such as $f\left(z_{0}\right) \in \mathbb{C}$ domain is at least smooth enough and it meets Cauchy-Riemann conditions, then $D^{\alpha} f(z)$ at least exists $\forall \alpha \in \mathbb{Q}$ s.t. $1 \leq \alpha<\infty$. Well, $\alpha=\frac{3}{2} \Rightarrow$ existence and more. How strong? C-R $\Rightarrow$ strong. We use the Sharp Trace Theorem again. This time
$\left.f \rightarrow f\right|_{\partial \Omega}$ and $\exists \Omega$ and $\partial \Omega$ in $\mathbb{C}$.

$$
H^{\frac{3}{2}}(\Omega) \rightarrow H^{\prime}(\partial \Omega)
$$

$f \subset C^{\infty}(\Omega) \cap H^{\frac{3}{2}}(\Omega)$. This mapping is continuous linear operator. Hence, it is onto. $\Rightarrow \alpha=1$ which meets C-R Equations condition.

Hence, $\alpha=\frac{3}{2}$ is strong as $\alpha=1$ is clearly strong. Using similar Sharp-Trace Theorem analysis on other non-integer Rationals in $\alpha$ for $\alpha: 1 \leq \alpha \leq 2$ we would see other rational order $\alpha$ for functions $f$ or $u, v$, to also be strong or at least strong enough.

Applications include the Complex or Real Functional Advection Differential Equations or FADE.

## Example 2.4.

$$
\frac{\partial C(x, t)}{\partial t}=-v \frac{\partial C(x, t)}{\partial x}+Q \frac{\partial^{\alpha} C(x, t)}{\partial x^{\alpha}}
$$

$\alpha$ is the stability or indicator of turbulence. Fourier Transforms can be used to solve.

## 3. Appendix

Theorem 3.1 (Sharp Trace Theorem). $\exists$ a half space $\Omega$ in $\mathbb{R}^{n} . \exists$ a boundary of a half space $\partial \Omega$, also in $\mathbb{R}^{n}$. Let a function $u \rightarrow u_{\partial \Omega}$ mapping exists. Using Sobolev space $H(\Omega)$ : we set

$$
H^{\prime}(\Omega) \rightarrow H^{\frac{1}{2}}(\partial \Omega)
$$

This mapping for $\left.u \rightarrow u\right|_{\partial \Omega}$ extends a unique continuous linear operator so that it shows the function $u$ is onto. $u \in$ $C^{\infty}(\Omega) \cap H^{\prime}(\Omega)$.

Proof. $\exists$ partitions of unity $u\left(x^{\prime}, x_{n}\right)$ s.t. defined $x_{n}>0$


Let $u \in C^{\infty}(\bar{\Omega}) \cap H^{\prime}(\bar{\Omega})$ be dense.

$$
\hat{u}\left(\xi^{\prime}, x_{n}\right)=c \int_{\mathbb{R}^{n}} e^{i \xi^{\prime} x^{\prime}} u\left(x^{\prime}, x_{n}\right) d x^{\prime},\left(\text { FT to } x^{\prime} \text { only }\right)
$$

$$
\frac{d}{d x_{n}}|\hat{u}|^{2}=2 \operatorname{Re}\left(\hat{u} \frac{\partial \hat{u}}{\partial x_{n}}\right)
$$

then integrate over / from 0 to $\infty$ or $\int_{0}^{\infty}$

$$
\begin{gathered}
\Rightarrow=-\left|\hat{u}\left(\xi^{\prime}, 0\right)\right|^{2}=2 \operatorname{Re} \int_{0}^{\infty} \hat{u} \frac{d \hat{u}}{d x_{n}} d x_{n} \\
\left|\hat{u}\left(\xi^{\prime}, 0\right)\right|^{2} \leq c \int_{0}^{\infty} A|\hat{u}|^{2}+\left|\frac{\partial \hat{u}}{\partial x_{n}}\right|^{2} \frac{1}{A} d x_{n} .
\end{gathered}
$$

Now, choose $A=\left[1+\left|\xi^{\prime}\right|^{2}\right]^{\frac{1}{2}}=\left\langle\xi^{\prime}\right\rangle$.

$$
\begin{equation*}
\therefore\left\langle\xi^{\prime}\right\rangle^{\frac{1}{2}}\left|\hat{u}\left(\xi^{\prime}, 0\right)\right|^{2} \leq \int_{0}^{\infty}\left\langle K \xi^{\prime}\right\rangle|\hat{u}|^{2}+\left|\frac{\partial \hat{u}}{\partial x_{n}}\right|^{2} d x_{n} \tag{8}
\end{equation*}
$$

Also, integrate (8) over $\xi^{\prime}, \xi^{\prime} \in \mathbb{R}^{n-1}$

$$
\Rightarrow\|u(\cdot, 0)\|_{H^{\frac{1}{2}}}^{2} \leq \int_{0}^{\infty} \int_{0}^{\infty}\left|\left(1-\Delta_{x}\right)^{\frac{1}{2}} u\right|^{2}+\left|\frac{\partial u^{2}}{\partial x_{n}}\right| d x_{n}
$$

This is the $\|$ trace of $u \|_{H^{\frac{1}{2}}(\partial \Omega)}$ or

$$
\begin{gathered}
\left\|u_{T}\right\|_{H^{\frac{1}{2}}(\partial \Omega)} \leq C\|u\|_{H^{\prime} \Omega}^{2} \\
\Rightarrow \text { onto } \rightarrow \text { by for } H^{\prime}(\Omega) \rightarrow H^{\frac{1}{2}}(\partial \Omega)
\end{gathered}
$$

where $T: R \rightarrow Y, R$ is in $x$, and dense(ness) is

$$
\left(1-\Delta_{x}\right) u=\left(1-\Delta^{5}\right) u \Rightarrow\left(1-\Delta^{5}\right) u=\left(1+|\xi|^{2}\right)^{u}
$$

Next, use Cauchy Sequence. Prove using $\left\{T n_{k}\right\}$ converges in Y, where we define $t n=\lim T_{n_{k}}$.

Next we prove the onto of function m mapping $f$. Let $f \in H^{\frac{1}{2}}(\partial \Omega)$. Define $v\left(\xi^{\prime}, \xi_{n}\right)=v(\xi)=\hat{f}\left(\xi^{\prime}\right) \frac{\left\langle\xi^{\prime}\right\rangle}{\langle\xi\rangle}$.

$$
\begin{gathered}
\Rightarrow\langle | \xi^{\prime}| \rangle v(\xi)=\left\langle\xi^{\prime}\right\rangle^{\frac{1}{2}} \cdot \hat{f}\left(\xi^{\prime}\right)=\frac{\left\langle\xi^{\prime}\right\rangle^{\frac{1}{2}}}{\langle\xi\rangle} \\
\Rightarrow\langle\xi\rangle^{2}|v(\xi)|^{2} \leq\left|\left\langle\xi^{\prime}\right\rangle^{\frac{1}{2}} \hat{f}(\xi)\right|^{2} \cdot \frac{\left\langle\xi^{\prime}\right\rangle}{\langle\xi\rangle^{2}} \\
\Rightarrow \int|\langle\xi\rangle| \cdot|v(\xi)|^{2}=\int_{\mathbb{R}^{n}}\left|\left\langle\xi^{\prime}\right\rangle^{\frac{1}{2}} \hat{f}\left(\xi^{\prime}\right)\right|^{2} \otimes\left(\int_{-\infty}^{a} \frac{\left\langle\xi^{\prime}\right\rangle}{\left\langle\xi^{\prime}\right\rangle+\xi_{n}^{2}} d \xi_{n} d \xi^{\prime}\right) \\
\int|\langle\xi\rangle v(\xi)|^{2} d \xi=\pi \int\left|\left\langle\xi^{\prime}\right\rangle^{\frac{1}{2}} f\right|^{2} d \xi^{\prime}
\end{gathered}
$$

$$
(* *)=\pi\|f\|_{H^{\frac{1}{2}}(\partial \Omega)}^{2} .
$$

Let $u(x)$ be a function s.t. $u \in \mathbb{R}^{n}$. The on a FT (Fourier Transform) is continuous

$$
\Rightarrow\|u\|_{H^{\prime}(\Omega)} \leq c\|f\|_{H^{\frac{1}{2}}(\partial \Omega)}<\infty
$$

where as an example:

$$
\hat{u}\left(\xi^{\prime}, 0\right)=\text { Const. } \hat{f}\left(\xi^{\prime}\right)
$$

$$
L x_{n}=0
$$

Remark 3.2 (on ( $* *)$ ).

$$
\pi=\int_{-\infty}^{a} \frac{\left\langle\xi^{\prime}\right\rangle}{\left\langle\xi^{\prime}\right\rangle+\xi_{n}^{2}} d \xi_{n}
$$

Theorem 3.3 (General Trace Theorem). Let $\Omega$ be open and the boundary $\partial \Omega \in \mathbb{C}^{\infty}$ be continuous, s.t.

$$
\left(\frac{\partial}{\partial x}\right)_{\partial \Omega}^{j}: H^{k, p}(\Omega) \rightarrow H^{l, p}(\partial \Omega)
$$

where $l=k-j-\frac{1}{p}>0$ and $p: 1<p<\infty$. This mapping is continuous and onto.

## References

[1] Anglin, Analytical PDE Theory, CreateSpace.
[2] Evans, Partial Differential Equations, AMS Press.
[3] Gorenflo and Mainardi, Essentials of Fractional Calculus, PaPhySto Center, January (2000).
[4] Gorenflo and Mainardi, Fractional Calculus and Stable Probability Distributions, Archive of Mechanics(Warszawa), (3)(1998), 377-388.
[5] Kleinz and Osler, A Childs Garden of Fractional Derivatives, The College of Mathematics Journal, 31(2)(2000), 82-87.
[6] Podlubny, The Laplace Transform Method for Linear Differential Equations of the Fractional Order, Slovak Academy of Sciences, Institute of Experimental Physics, 94(2)(1994).
[7] Strauss, Partial Differential Equations: An Introduction, Wiley, (2007).
[8] Wunsch, Complex Variables with Applications, Pearson Addison-Wesley, (2005).
[9] Yang, Local Fractional Functional Analysis and Its Applications, Asian Academic Publisher Limited, (2011).
[10] Zwillinger, Handbook of Differential Equations, Academic Press,(1998).


[^0]:    * E-mail: stevemanglin@gmail.com

