ISSN: 2347-1557

Available Online: http://ijmaa.in/

International Journal of Mathematics And its Applications

$\tilde{g}(1,2)^*$ -closed Sets in Bitopological Spaces

Research Article

K.M.Dharmalingam¹, A.Thamilisai¹ and O.Ravi^{2*}

- 1 Department of Mathematics, The Madura College, Madurai, Tamil Nadu, India.
- 2 Department of Mathematics, P.M.Thevar College, Usilampatti, Tamil Nadu, India.

Abstract: In this paper, we offer a new class of sets called $\tilde{g}(1,2)^*$ -closed sets in bitopological spaces and we study some of its basic

properties. It turns out that this class lies between the class of $\tau_{1,2}$ -closed sets and the class of $(1,2)^*$ - αg -closed sets.

MSC: 54E55

Keywords: Bitopological space, $(1,2)^*$ - \hat{g} -closed set, $(1,2)^*$ - \hat{g} -closed set, $(1,2)^*$ - \hat{g} -closed set.

© JS Publication.

1. Introduction

Levine [3] introduced generalized closed sets in general topology as a generalization of closed sets. This concept was found to be useful and many results in general topology were improved. Many researchers like Veerakumar [19] introduced \hat{g} -closed sets in topological spaces. Sheik John [17] introduced ω -closed sets in topological spaces. After the advent of these notions, many topologists introduced various types of generalized closed sets and studied their fundamental properties. Quite Recently, Ravi and Ganesan [4] introduced and studied \ddot{g} -closed sets in general topology as another generalization of closed sets and proved that the class of \ddot{g} -closed sets properly lies between the class of closed sets and the class of ω -closed sets. Ravi et al [10, 11] and Ravi and Thivagar [6] introduced $(1,2)^*$ - αg -closed sets, $(1,2)^*$ -g-closed sets, $(1,2)^*$ -sg-closed sets and $(1,2)^*$ - \ddot{g} -closed sets respectively. Ravi and Ganesan [5] introduced $(1,2)^*$ - \ddot{g} -closed sets in bitopological spaces. In this paper, we introduce a new class of sets namely $\ddot{g}(1,2)^*$ -closed sets in bitopological spaces. This class lies between the class of $(1,2)^*$ - \ddot{g} -closed sets and the class of $(1,2)^*$ - αg -closed sets. Properties of $\ddot{g}(1,2)^*$ -closed sets are studied.

2. Preliminaries

Throughout this paper, (X, τ_1, τ_2) (briefly, X) will denote bitopological space.

Definition 2.1. Let S be a subset of X. Then S is said to be $\tau_{1,2}$ -open [7] if $S = A \cup B$ where $A \in \tau_1$ and $B \in \tau_2$. The complement of $\tau_{1,2}$ -open set is called $\tau_{1,2}$ -closed. Notice that $\tau_{1,2}$ -open sets need not necessarily form a topology.

Definition 2.2 ([7]). Let S be a subset of a bitopological space X. Then

1. the $\tau_{1,2}$ -interior of S, denoted by $\tau_{1,2}$ -int(S), is defined as $\cup \{F : F \subseteq S \text{ and } F \text{ is } \tau_{1,2}\text{-open}\}$.

^{*} E-mail: siingam@yahoo.com

2. the $\tau_{1,2}$ -closure of S, denoted by $\tau_{1,2}$ -cl(S), is defined as $\cap \{F: S \subseteq F \text{ and } F \text{ is } \tau_{1,2}\text{-closed}\}$.

Definition 2.3. A subset A of a bitopological space X is called

- 1. $(1,2)^*$ -semi-open set [6] if $A \subseteq \tau_{1,2}$ -cl $(\tau_{1,2}$ -int(A));
- 2. $(1,2)^*$ - α -open set [7] if $A \subseteq \tau_{1,2}$ -int $(\tau_{1,2}$ -cl $(\tau_{1,2}$ -int(A));
- 3. $(1,2)^*$ - β -open set [11] if $A \subseteq \tau_{1,2}$ - $cl(\tau_{1,2}$ - $int(\tau_{1,2}$ -cl(A))).

The complements of the above mentioned open sets are called their respective closed sets. The $(1,2)^*$ -semi-closure [6] (resp. $(1,2)^*$ - α -closure [9], $(1,2)^*$ - β -closure [11]) of a subset A of X, denoted by $(1,2)^*$ -scl(A) (resp. $(1,2)^*$ - α -closed, $(1,2)^*$ - α -closed, subsets of (X, τ_1 , τ_2) containing A. It is known that $(1,2)^*$ -scl(A) (resp. $(1,2)^*$ - α -closed, $(1,2)^*$ - β -closed) set. (1,2)*- α -closed, $(1,2)^*$ - β -closed) set.

Definition 2.4. A subset A of a bitopological space (X, τ_1, τ_2) is called

- 1. $(1,2)^*$ -g-closed set [10] if $\tau_{1,2}$ -cl(A) \subseteq U whenever $A \subseteq$ U and U is $\tau_{1,2}$ -open in X. The complement of $(1,2)^*$ -g-closed set is called $(1,2)^*$ -g-open set;
- (1,2)*-sg-closed set [13] if (1,2)*-scl(A) ⊆ U whenever A ⊆ U and U is (1,2)*-semi-open in X. The complement of (1,2)*-sg-closed set is called (1,2)*-sg-open set;
- 3. $(1,2)^*$ -gs-closed set [13] if $(1,2)^*$ -scl $(A) \subseteq U$ whenever $A \subseteq U$ and U is $\tau_{1,2}$ -open in X. The complement of $(1,2)^*$ -gs-closed set is called $(1,2)^*$ -gs-open set;
- 4. $(1,2)^*$ - αg -closed set [11] if $(1,2)^*$ - $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $\tau_{1,2}$ -open in X. The complement of $(1,2)^*$ - αg -closed set is called $(1,2)^*$ - αg -open set;
- 5. $(1,2)^*$ - \hat{g} -closed set [2] or $(1,2)^*$ - ω -closed set [2] if $\tau_{1,2}$ -cl(A) $\subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^*$ -semi-open in X. The complement of $(1,2)^*$ - \hat{g} -closed $((1,2)^*$ - ω -closed) set is called $(1,2)^*$ - \hat{g} -open $((1,2)^*$ - ω -open) set;
- 6. $(1,2)^*$ - ψ -closed set [16] if $(1,2)^*$ -scl $(A) \subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^*$ -sg-open in X. The complement of $(1,2)^*$ - ψ -closed set is called $(1,2)^*$ - ψ -open set;
- 7. $(1,2)^*$ - \ddot{g}_{α} -closed set [5] if $(1,2)^*$ - $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^*$ -sg-open in X. The complement of $(1,2)^*$ - \ddot{g}_{α} -closed set is called $(1,2)^*$ - \ddot{g}_{α} -open set;
- 8. $(1,2)^*$ -gsp-closed set [16] if $(1,2)^*$ - β cl $(A) \subseteq U$ whenever $A \subseteq U$ and U is $\tau_{1,2}$ -open in X. The complement of $(1,2)^*$ -gsp-closed set is called $(1,2)^*$ -gsp-open set.

Remark 2.5. The collection of all $(1,2)^*$ - \ddot{g}_{α} -closed (resp. $(1,2)^*$ - \hat{g} -closed, $(1,2)^*$ -g-closed, $(1,2)^*$ -gs-closed, $(1,2)^*$ -gs-closed, $(1,2)^*$ - α -closed, $(1,2)^*$ -semi-closed) sets is denoted by $(1,2)^*$ - $\ddot{G}_{\alpha}C(X)$ (resp. $(1,2)^*$ - $\dot{G}_{\alpha}C(X)$, $(1,2)^*$ - α -C(X), $(1,2)^*$ - α -C(X). We denote the power set of X by P(X).

Remark 2.6.

1. Every $\tau_{1,2}$ -closed set is $(1,2)^*$ -semi-closed but not conversely [6].

- 2. Every $\tau_{1,2}$ -closed set is $(1,2)^*$ - α -closed but not conversely [12].
- 3. Every $(1,2)^*$ -semi-closed set is $(1,2)^*$ - ψ -closed but not conversely [16].
- 4. Every (1,2)*-semi-closed set is (1,2)*-sg-closed but not conversely [13].
- 5. Every $(1,2)^*$ - \hat{g} -closed set is $(1,2)^*$ -g-closed but not conversely [16].
- 6. Every (1,2)*-sg-closed set is (1,2)*-gs-closed but not conversely [13].
- 7. Every $(1,2)^*$ -g-closed set is $(1,2)^*$ - α g-closed but not conversely [13].
- 8. Every $(1,2)^*$ -g-closed set is $(1,2)^*$ -gs-closed but not conversely [10].
- 9. Every $\tau_{1,2}$ -closed set is $(1,2)^*$ - \hat{g} -closed but not conversely [2].
- 10. Every $(1,2)^*$ - \hat{g} -closed set is $(1,2)^*$ -sg-closed but not conversely [2].

3. $\tilde{g}(1,2)$ *-closed Sets

We introduce the following definitions.

Definition 3.1. A subset A of a bitopological space X is called

- 1. $(1,2)^*$ - \ddot{g} -closed set if $\tau_{1,2}$ -cl(A) $\subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^*$ -sg-open in X. The complement of $(1,2)^*$ - \ddot{g} -closed set is called $(1,2)^*$ - \ddot{g} -open set.
- 2. $\tilde{g}(1,2)^*$ -closed if $(1,2)^*$ - $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^*$ - \hat{g} -open in X. The collection of all $(1,2)^*$ - \ddot{g} -closed (resp. $\tilde{g}(1,2)^*$ -closed) sets in X is denoted by $(1,2)^*$ - $\ddot{G}C(X)$ (resp. $(1,2)^*$ - $\tilde{G}C(X)$).

Proposition 3.2. Every $\tau_{1,2}$ -closed set is $(1,2)^*$ - \ddot{g} -closed.

Proof. If A is a $\tau_{1,2}$ -closed subset of X and G is any $(1,2)^*$ -sg-open set containing A, then $G \supseteq A = \tau_{1,2}$ -cl(A). Hence A is $(1,2)^*$ - \ddot{g} -closed in X.

The converse of Proposition 3.2 need not be true as seen from the following example.

Example 3.3. Let $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, X, \{a, b\}\}$ and $\tau_2 = \{\emptyset, X, \{b, c\}\}$. Then the sets in $\{\emptyset, X, \{a, b\}, \{b, c\}\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\emptyset, X, \{a\}, \{c\}\}\}$ are called $\tau_{1,2}$ -closed. Then $(1,2)^*$ - $\ddot{G}C(X) = \{\emptyset, \{a\}, \{c\}, \{a, c\}, X\}$. Clearly, the set $\{a, c\}$ is a $(1,2)^*$ - \ddot{G} -closed but it is not a $\tau_{1,2}$ -closed set in X.

Proposition 3.4. Every $(1,2)^*$ - \ddot{g} -closed set is $(1,2)^*$ - \ddot{g}_{α} -closed.

Proof. If A is a $(1,2)^*$ - \ddot{g} -closed subset of X and G is any $(1,2)^*$ -sg-open set containing A, then $G \supseteq \tau_{1,2}$ -cl(A) $\supseteq (1,2)^*$ - α cl(A). Hence A is $(1,2)^*$ - \ddot{g}_{α} -closed in X.

The converse of Proposition 3.4 need not be true as seen from the following example.

Proposition 3.6. Every $(1,2)^*$ - \ddot{g} -closed set is $(1,2)^*$ - ψ -closed.

Proof. If A is a $(1,2)^*$ - \ddot{g} -closed subset of X and G is any $(1,2)^*$ -sg-open set containing A, then $G \supseteq \tau_{1,2}$ -cl(A) $\supseteq (1,2)^*$ -scl(A). Hence A is $(1,2)^*$ - ψ -closed in X.

The converse of Proposition 3.6 need not be true as seen from the following example.

Example 3.7. Let $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, X, \{a\}\}$ and $\tau_2 = \{\emptyset, X\}$. Then the sets in $\{\emptyset, X, \{a\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\emptyset, X, \{b, c\}\}$ are called $\tau_{1,2}$ -closed. Then $(1,2)^*$ - $\ddot{G}C(X) = \{\emptyset, \{b, c\}, X\}$ and $(1,2)^*$ - $\psi C(X) = \{\emptyset, \{b\}, \{c\}, \{b, c\}, X\}$. Clearly, the set $\{b\}$ is a $(1,2)^*$ - ψ -closed but not a $(1,2)^*$ - \ddot{G} -closed set in X.

Proposition 3.8. Every $(1,2)^*$ - \ddot{g} -closed set is $(1,2)^*$ - \hat{g} -closed.

Proof. Suppose that $A \subseteq G$ and G is $(1,2)^*$ -semi-open in X. Since every $(1,2)^*$ -semi-open set is $(1,2)^*$ -sg-open and A is $(1,2)^*$ - \ddot{g} -closed, therefore $\tau_{1,2}$ -cl $(A) \subseteq G$. Hence A is $(1,2)^*$ - \hat{g} -closed in X.

The converse of Proposition 3.8 need not be true as seen from the following example.

Example 3.9. Let $X = \{a, b, c, d\}$, $\tau_1 = \{\emptyset, X, \{d\}, \{b, c, d\}\}$ and $\tau_2 = \{\emptyset, X, \{b, c\}\}$. Then the sets in $\{\emptyset, X, \{d\}, \{b, c\}\}$ $\{b, c, d\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\emptyset, X, \{a\}, \{a, d\}, \{a, b, c\}\}\}$ are called $\tau_{1,2}$ -closed. Clearly, the set $\{a, c, d\}$ is a $(1,2)^*$ - \hat{g} -closed but not a $(1,2)^*$ - \hat{g} -closed set in X.

Proposition 3.10. Every $(1,2)^*$ - α -closed set is $(1,2)^*$ - \ddot{g}_{α} -closed.

Proof. If A is an $(1,2)^*$ - α -closed subset of X and G is any $(1,2)^*$ -sg-open set containing A, we have $(1,2)^*$ - α cl(A) = A \subseteq G. Hence A is $(1,2)^*$ - $\ddot{\sigma}_{\alpha}$ -closed in X.

The converse of Proposition 3.10 need not be true as seen from the following example.

Example 3.11. Let $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, X, \{a, b\}\}$ and $\tau_2 = \{\emptyset, X\}$. Then the sets in $\{\emptyset, X, \{a, b\}\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\emptyset, X, \{c\}\}\}$ are called $\tau_{1,2}$ -closed. Then $(1,2)^*$ - $\alpha C(X) = \{\emptyset, \{c\}, X\}$ and $(1,2)^*$ - $\ddot{G}_{\alpha}C(X) = \{\emptyset, \{c\}, \{a, c\}, \{b, c\}, X\}$. Clearly, the set $\{a, c\}$ is an $(1,2)^*$ - \ddot{G}_{α} -closed but not an $(1,2)^*$ - α -closed set in X.

Remark 3.12. $(1,2)^*$ - \hat{g} -closed set is different from $\tilde{g}(1,2)^*$ -closed.

Example 3.13.

1.) Let $X = \{a, b, c\}, \tau_1 = \{\emptyset, X, \{a\}\} \text{ and } \tau_2 = \{\emptyset, \{a, b\}, X\}.$ Then $\{b\}$ is $\tilde{g}(1,2)^*$ -closed set but not $(1,2)^*$ - \hat{g} -closed.

2. Let $X = \{a, b, c\}, \tau_1 = \{\emptyset, X, \{a\}\} \text{ and } \tau_2 = \{\emptyset, \{b, c\}, X\}.$ Then $\{b\}$ is $(1,2)^*$ - \hat{g} -closed set but not $\tilde{g}(1,2)^*$ -closed.

Proposition 3.14. Every $(1,2)^*$ - \ddot{g} -closed set is $(1,2)^*$ -g-closed.

Proof. If A is a $(1,2)^*$ - \ddot{g} -closed subset of X and G is any $\tau_{1,2}$ -open set containing A, since every $\tau_{1,2}$ -open set is $(1,2)^*$ -sg-open, we have $G \supseteq \tau_{1,2}$ -cl(A). Hence A is $(1,2)^*$ -g-closed in X.

The converse of Proposition 3.14 need not be true as seen from the following example.

Example 3.15. Let $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, X, \{a\}\}$ and $\tau_2 = \{\emptyset, X, \{b, c\}\}$. Then the sets in $\{\emptyset, X, \{a\}, \{b, c\}\}$ are called both $\tau_{1,2}$ -open and $\tau_{1,2}$ -closed. Then $(1,2)^*$ - $\ddot{G}C(X) = \{\emptyset, \{a\}, \{b, c\}, X\}$ and $(1,2)^*$ -GC(X) = P(X). Clearly, the set $\{a, b\}$ is a $(1,2)^*$ -g-closed but not a $(1,2)^*$ - \ddot{g} -closed set in X.

Proposition 3.16. Every $\tilde{g}(1,2)^*$ -closed set is $(1,2)^*$ - αg -closed.

Proof. If A is a $\tilde{g}(1,2)^*$ -closed subset of X and G is any $\tau_{1,2}$ -open set containing A, since every $\tau_{1,2}$ -open set is $(1,2)^*$ - \hat{g} -open, we have $(1,2)^*$ - α cl(A) \subseteq U. Hence A is $(1,2)^*$ - α closed in X.

The converse of Proposition 3.16 need not be true as seen from the following example.

Example 3.17. Let $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, X, \{a\}\}$ and $\tau_2 = \{\emptyset, \{b, c\}, X\}$. Then $\{a, c\}$ is $(1,2)^*$ -ag-closed set but not $\tilde{q}(1,2)^*$ -closed.

Proposition 3.18. Every $(1,2)^*$ - \ddot{g} -closed set is $(1,2)^*$ - αg -closed.

Proof. If A is a $(1,2)^*$ - \ddot{g} -closed subset of X and G is any $\tau_{1,2}$ -open set containing A, since every $\tau_{1,2}$ -open set is $(1,2)^*$ -sg-open, we have $G \supseteq \tau_{1,2}$ -cl(A) $\supseteq (1,2)^*$ - α cl(A). Hence A is $(1,2)^*$ - α g-closed in X.

The converse of Proposition 3.18 need not be true as seen from the following example.

Example 3.19. Let $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, X, \{a, b\}\}$ and $\tau_2 = \{\emptyset, X, \{c\}\}$. Then the sets in $\{\emptyset, X, \{c\}, \{a, b\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\emptyset, X, \{c\}, \{a, b\}\}$ are called $\tau_{1,2}$ -closed. Then $(1,2)^*$ - $\ddot{G}C(X) = \{\emptyset, \{c\}, \{a, b\}, X\}$. and $(1,2)^*$ - $\alpha GC(X) = P(X)$. Clearly, the set $\{a, c\}$ is an $(1,2)^*$ - αg -closed but not a $(1,2)^*$ - \ddot{g} -closed set in X.

Proposition 3.20. Every $(1,2)^*$ - \ddot{g} -closed set is $(1,2)^*$ -gs-closed.

Proof. If A is a $(1,2)^*$ - \ddot{g} -closed subset of X and G is any $\tau_{1,2}$ -open set containing A, since every $\tau_{1,2}$ -open set is $(1,2)^*$ -sg-open, we have $G \supseteq \tau_{1,2}$ -cl(A) $\supseteq (1,2)^*$ -scl(A). Hence A is $(1,2)^*$ -gs-closed in X.

The converse of Proposition 3.20 need not be true as seen from the following example.

Example 3.21. In Example 3.7, we have $(1,2)^*$ - $\ddot{G}C(X) = \{\emptyset, \{b, c\}, X\}$ and $(1,2)^*$ - $GSC(X) = \{\emptyset, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$. Clearly, the set $\{c\}$ is a $(1,2)^*$ -g-closed but not a $(1,2)^*$ - \ddot{g} -closed set in X.

Proposition 3.22. Every $(1,2)^*$ - \ddot{g} -closed set is $(1,2)^*$ -sg-closed.

Proof. If A is a $(1,2)^*$ - \ddot{g} -closed subset of X and G is any $(1,2)^*$ -semi-open set containing A, since every $(1,2)^*$ -semi-open set is $(1,2)^*$ -sg-open, we have $G \supseteq \tau_{1,2}$ -cl(A) $\supseteq (1,2)^*$ -scl(A). Hence A is $(1,2)^*$ -sg-closed in X.

The converse of Proposition 3.22 need not be true as seen from the following example.

Example 3.23. In Example 3.7, we have $(1,2)^*$ - $\ddot{G}C(X) = \{\emptyset, \{b, c\}, X\}$ and $(1,2)^*$ - $SGC(X) = \{\emptyset, \{b\}, \{c\}, \{b, c\}, X\}$. Clearly, the set $\{b\}$ is a $(1,2)^*$ -sg-closed but not a $(1,2)^*$ - \ddot{G} -closed set in X.

Proposition 3.24. Every $(1,2)^*$ - \ddot{g}_{α} -closed set is $\tilde{g}(1,2)^*$ -closed.

Proof. If A is an $(1,2)^*$ - \ddot{g}_{α} -closed subset of X and G is any $(1,2)^*$ - \hat{g} -open set containing A, since every $(1,2)^*$ - \hat{g} -open set is $(1,2)^*$ -sg-open, we have $(1,2)^*$ - $\alpha cl(A) \subseteq G$. Hence A is $\tilde{g}(1,2)^*$ -closed in X.

The converse of Proposition 3.24 need not be true as seen from the following example.

Example 3.25. Let $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\} \text{ and } \tau_2 = \{\emptyset, \{a\}, \{b, c\}, X\}$. Then $\{c\}$ is $\tilde{g}(1,2)^*$ -closed set but not $(1,2)^*$ - \tilde{g}_{α} -closed.

Proposition 3.26. Every $(1,2)^*$ - α -closed set is $\tilde{g}(1,2)^*$ -closed.

Proof. If A is an $(1,2)^*$ - α -closed subset of X and G is any $(1,2)^*$ - \hat{g} -open set containing A, we have $(1,2)^*$ - α cl(A) = A \subseteq G. Hence A is $\tilde{g}(1,2)^*$ -closed in X.

The converse of Proposition 3.26 need not be true as seen from the following example.

Example 3.27. Let $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, X, \{a, b\}\}$ and $\tau_2 = \{\emptyset, \{a, c\}, X\}$. Then $\{b, c\}$ is $\tilde{g}(1,2)^*$ -closed set but not $(1,2)^*$ - α -closed.

Proposition 3.28. Every $(1,2)^*$ - ψ -closed set is $(1,2)^*$ -sg-closed.

Proof. Suppose that $A \subseteq G$ and G is $(1,2)^*$ -semi-open in X. Since every $(1,2)^*$ -semi-open set is $(1,2)^*$ -sg-open and A is $(1,2)^*$ - ψ -closed, therefore $(1,2)^*$ -scl $(A) \subseteq G$. Hence A is $(1,2)^*$ -sg-closed in X.

The converse of Proposition 3.28 need not be true as seen from the following example.

Example 3.29. In Example 3.15, we have $(1,2)^* - \psi C(X) = \{\emptyset, X, \{a\}, \{b, c\}\}\}$ and $(1,2)^* - SGC(X) = P(X)$. Clearly, the set $\{a, b\}$ is a $(1,2)^* - sg$ -closed but not a $(1,2)^* - \psi$ -closed set in X.

Proposition 3.30. Every $(1,2)^*$ - \ddot{g} -closed set is $(1,2)^*$ -gsp-closed.

Proof. If A is a $(1,2)^*$ - \ddot{g} -closed subset of X and G is any $\tau_{1,2}$ -open set containing A, since every $\tau_{1,2}$ -open set is $(1,2)^*$ -sg-open, we have $G \supseteq \tau_{1,2}$ -cl(A) $\supseteq (1,2)^*$ - β cl(A). Hence A is $(1,2)^*$ -gsp-closed in X.

The converse of Proposition 3.30 need not be true as seen from the following example.

Example 3.31. In Example 3.5, we have $(1,2)^*$ - $\ddot{G}C(X) = \{\emptyset, \{a, c\}, X\}$ and $(1,2)^*$ - $GSPC(X) = \{\emptyset, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$. Clearly, the set $\{c\}$ is a $(1,2)^*$ -gsp-closed but not a $(1,2)^*$ - \ddot{g} -closed set in X.

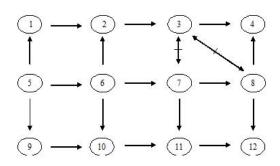
Proposition 3.32. Every $(1,2)^*$ - \hat{g} -closed set is $(1,2)^*$ -sg-closed.

Proof. If A is a $(1,2)^*$ - \hat{g} -closed subset of X and G is any $(1,2)^*$ -semi-open set containing A, then G $\supseteq \tau_{1,2}$ -cl(A) $\supseteq (1,2)^*$ -scl(A). Hence A is $(1,2)^*$ -sg-closed in X.

The converse of Proposition 3.32 need not be true as seen from the following example.

Example 3.33. In Example 3.9, we have $(1,2)^*$ - $\hat{G}C(X) = \{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, c, d\}, \{a, b, d\}\}$ and $(1,2)^*$ - $SGC(X) = \{\emptyset, X, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}\}$. Clearly, the set $\{b\}$ is a $(1,2)^*$ -sg-closed but not a $(1,2)^*$ - \hat{g} -closed set in X.

Remark 3.34. From the above Propositions, Examples and Remark, we obtain the following diagram, where $A \to B$ (resp. $A \leftrightarrow B$) represents A implies B but not conversely (resp. A and B are independent of each other).



where

(1) $(1,2)*-\alpha$ -closed

(7) $(1,2)*-\hat{g}$ -closed

(2) $(1,2)^*$ - \ddot{g}_{α} -closed	(8) $(1,2)^*$ - g-closed
(3) $\tilde{g}(1,2)$ *-closed	(9) (1,2)*-semi-closed
(4) $(1,2)$ *- αg -closed	(10) $(1,2)*-\psi$ -closed
(5) $\tau_{1,2}$ -closed	(11) (1,2)*-sg-closed
(6) $(1,2)^*$ - \ddot{g} -closed	(12) (1,2)*-gs-closed

Remark 3.35. The concepts of $\tilde{q}(1,2)^*$ -closed sets and $(1,2)^*$ -q-closed sets are independent.

Example 3.36.

- 1. Let $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, X, \{b\}, \{b, c\}\}$ and $\tau_2 = \{\emptyset, X, \{b\}, \{a, c\}\}\}$. Then $\{a, b\}$ is $(1, 2)^*$ -g-closed set but it is not $\tilde{g}(1, 2)^*$ -closed set.
- 2. Let $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, X, \{a\}\}$ and $\tau_2 = \{\emptyset, X, \{a, b\}\}$. Then $\{b\}$ is $\tilde{g}(1,2)^*$ -closed set but it is not $(1,2)^*$ -g-closed set.

4. Properties of $\tilde{g}(1,2)^*$ -closed Sets

Definition 4.1. The intersection of all $(1,2)^*$ - \hat{g} -open subsets of X containing A is called the $(1,2)^*$ - \hat{g} -kernel of A and denoted by $(1,2)^*$ - \hat{g} -ker(A).

Lemma 4.2. A subset A of a bitopological space X is $\tilde{g}(1,2)^*$ -closed if and only if $(1,2)^*$ - $\alpha cl(A) \subseteq (1,2)^*$ - \hat{g} -ker(A).

Proof. Suppose that A is $\tilde{g}(1,2)^*$ -closed. Then $(1,2)^*$ - $\alpha \operatorname{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^*$ - \hat{g} -open. Let $x \in (1,2)^*$ - $\alpha \operatorname{cl}(A)$. If $x \notin (1,2)^*$ - \hat{g} -ker(A), then there is a $(1,2)^*$ - \hat{g} -open set U containing A such that $x \notin U$. Since U is a $(1,2)^*$ - \hat{g} -open set containing A, we have $x \notin (1,2)^*$ - $\alpha \operatorname{cl}(A)$ and this is a contradiction.

Conversely, let $(1,2)^*$ - α cl(A) $\subseteq (1,2)^*$ - \hat{g} -ker(A). If U is any $(1,2)^*$ - \hat{g} -open set containing A, then $(1,2)^*$ - α cl(A) $\subseteq (1,2)^*$ - \hat{g} -ker(A) \subseteq U. Therefore, A is $\tilde{g}(1,2)^*$ -closed.

Remark 4.3. Union of any two $\tilde{g}(1,2)^*$ -closed sets in X need not be a $\tilde{g}(1,2)^*$ -closed set as seen from the following example.

Example 4.4. Let $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, X, \{a\}, \{a, c\}\}$ and $\tau_2 = \{\emptyset, X, \{b\}, \{b, c\}\}$. Then the sets in $\{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\emptyset, X, \{a\}, \{b\}, \{c\}, \{a, c\}, \{b, c\}\}\}$ are called $\tau_{1,2}$ -closed. Then $(1,2)^*$ - $\tilde{G}C(X) = \{\emptyset, X, \{a\}, \{b\}, \{c\}, \{a, c\}, \{b, c\}\}\}$. Clearly, the sets $\{a\}$ and $\{b\}$ are $\tilde{g}(1,2)^*$ -closed but their union $\{a, b\}$ is not a $\tilde{g}(1,2)^*$ -closed set in X.

Proposition 4.5. If a set A is $\tilde{g}(1,2)^*$ -closed in X then $(1,2)^*$ - $\alpha cl(A) \setminus A$ contains no nonempty $\tau_{1,2}$ -closed set in X.

Proof. Suppose that A is $\tilde{g}(1,2)^*$ -closed. Let F be a $\tau_{1,2}$ -closed subset of $(1,2)^*$ - α $cl(A)\setminus A$. Then $A\subseteq F^c$. But A is $\tilde{g}(1,2)^*$ -closed, therefore $(1,2)^*$ - α cl(A) $\subseteq F^c$. Consequently, $F\subseteq ((1,2)^*$ - α cl(A)) c . We already have $F\subseteq (1,2)^*$ - α cl(A). Thus $F\subseteq (1,2)^*$ - α cl(A) $\cap ((1,2)^*$ - α cl(A)) c and F is empty.

The converse of Proposition 4.5 need not be true as seen from the following example.

Example 4.6. Let $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, X, \{a\}\}$ and $\tau_2 = \{\emptyset, X, \{b, c\}\}$. If $A = \{b\}$, then $(1,2)^* - \alpha cl(A) \setminus A$ does not contain any nonempty $\tau_{1,2}$ -closed set. But A is not a $\tilde{g}(1,2)^*$ -closed set in X.

Theorem 4.7. If a set A is $\tilde{g}(1,2)^*$ -closed in X then $(1,2)^*$ - $\alpha cl(A) - A$ contains no nonempty $(1,2)^*$ - \hat{g} -closed set.

Proof. Suppose that A is $\tilde{g}(1,2)^*$ -closed. Let S be a $(1,2)^*$ - \hat{g} -closed subset of $(1,2)^*$ - $\alpha cl(A) - A$. Then $A \subseteq S^c$. Since A is $\tilde{g}(1,2)^*$ -closed, we have $(1,2)^*$ - $\alpha cl(A) \subseteq S^c$. Consequently, $S \subseteq ((1,2)^*$ - $\alpha cl(A))^c$. Hence, $S \subseteq (1,2)^*$ - $\alpha cl(A) \cap ((1,2)^*$ - $\alpha cl(A))^c = \emptyset$. Therefore S is empty.

Theorem 4.8. If A is $\tilde{g}(1,2)^*$ -closed in X and $A \subseteq B \subseteq (1,2)^*$ - $\alpha cl(A)$, then B is $\tilde{g}(1,2)^*$ -closed in X.

Proof. Let B ⊆ U where U is $(1,2)^*$ - \hat{g} -open set in X. Then A ⊆ U. Since A is $\tilde{g}(1,2)^*$ -closed, $(1,2)^*$ - $\alpha cl(A)$ ⊆ U. Since B ⊆ $(1,2)^*$ - $\alpha cl(A)$, $(1,2)^*$ - $\alpha cl(B)$ ⊆ $(1,2)^*$ - $\alpha cl(A)$. Therefore $(1,2)^*$ - $\alpha cl(B)$ ⊆ U and B is $\tilde{g}(1,2)^*$ -closed in X.

Proposition 4.9. If A is a $(1,2)^*$ - \hat{g} -open and $\tilde{g}(1,2)^*$ -closed in X, then A is $(1,2)^*$ - α -closed in X.

Proof. Since A is $(1,2)^*$ - \hat{g} -open and $\tilde{g}(1,2)^*$ -closed, $(1,2)^*$ - α cl(A) \subseteq A and hence A is $(1,2)^*$ - α -closed in X.

Proposition 4.10. For each $x \in X$, either $\{x\}$ is $(1,2)^*$ - \hat{g} -closed or $\{x\}^c$ is $\tilde{g}(1,2)^*$ -closed in X.

Proof. Suppose that $\{x\}$ is not $(1,2)^*$ - \hat{g} -closed in X. Then $\{x\}^c$ is not $(1,2)^*$ - \hat{g} -open and the only $(1,2)^*$ - \hat{g} -open set containing $\{x\}^c$ is the space X itself. Therefore $(1,2)^*$ - $\alpha \operatorname{cl}(\{x\}^c) \subseteq X$ and so $\{x\}^c$ is $\tilde{g}(1,2)^*$ -closed in X.

References

- [1] P.Bhattacharya and B.K.Lahiri, Semi-generalized closed sets in topology, Indian J. Math., 29(3)(1987), 375-382.
- [2] Z.Duszynski, M.Jeyaraman, M.Sajan Joseph, M.Lellis Thivagar and O.Ravi, A new generalization of closed sets in bitopology, South Asian Journal of Mathematics, 4(5)(2014), 215-224.
- [3] N.Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19(2)(1970), 89-96.
- [4] O.Ravi and S.Ganesan, \ddot{g} -closed sets in topology, International Journal of Computer Science and Emerging Technologies., 2(2011), 330-337.
- [5] O.Ravi and S.Ganesan, $(1,2)^*$ - \ddot{g}_{α} -closed sets in bitopology, (submitted).
- [6] O.Ravi and M.L.Thivagar, A bitopological (1,2)*-semi-generalized continuous maps, Bull. Malaysian Math. Sci. Soc., 2(29)(1)(2006), 76-88.
- [7] O.Ravi and M.Lellis Thivagar, On stronger forms of $(1,2)^*$ -quotient mappings in bitopological spaces, Internat. J. Math. Game Theory and Algebra., 14(6)(2004), 481-492.
- [8] O.Ravi, E.Ekici and M.Lellis Thivagar, On (1,2)*-sets and decompositions of bitopological (1,2)*-continuous mappings, Kochi J. Math., 3(2008), 181-189.
- [9] O.Ravi, M.L.Thivagar and E.Hatir, Decomposition of (1,2)*-continuity and (1,2)*-α-continuity, Miskolc Mathematical Notes., 10(2)(2009), 163-171.
- [10] O.Ravi, M.L.Thivagar and Jinjinli, Remarks on extensions of (1,2)*-g-closed maps, Archimedes J. Math., 1(2)(2011), 177-187.
- [11] O.Ravi, M.L.Thivagar and A.Nagarajan, $(1,2)^*$ - αg -closed sets and $(1,2)^*$ - $g\alpha$ -closed sets, (submitted).
- [12] O.Ravi, M.L.Thivagar and E.Ekici, Decomposition of (1,2)*-continuity and complete (1,2)*-continuity in bitopological spaces, Analele Universitatii Din Oradea. Fasc. Matematica Tom XV(2008), 29-37.
- [13] O.Ravi, S.Pious Missier and T.Salai Parkunan, On bitopological (1,2)*-generalized homeomorphisms, Int J. Contemp. Math. Sciences., 5(11)(2010), 543-557.
- [14] O.Ravi, K.Kayathri, M.L.Thivagar and M.Joseph Israel, Mildly (1,2)*-normal spaces and some bitopological functions, Mathematica Bohemica, 135(1)(2010), 1-15.

- [15] O.Ravi and M.L.Thivagar, Remarks on λ -irresolute functions via $(1,2)^*$ -sets, Advances in App. Math. Analysis, 5(1)(2010), 1-15.
- [16] O.Ravi, M.Kamaraj, A.Pandi and K.Kumaresan, $(1,2)^*$ - \ddot{g} -closed and $(1,2)^*$ - \ddot{g} -open maps in bitopological spaces, International Journal of Mathematical Archive, 3(2)(2012), 586-594.
- [17] M.Sheik John, A study on generalizations of closed sets and continuous maps in topological and bitopological spaces, Ph.D Thesis, Bharathiar University, Coimbatore, September (2002).
- [18] M.L.Thivagar and Nirmala Mariappan, On weak separation axioms associated with (1,2)*-sg-closed sets, Int. Journal of Math. Analysis, 4(13)(2010), 631-644.
- [19] M.K.R.S.Veera kumar, \hat{g} -closed sets in topological spaces, Bull. Allah. Math. Soc., 18 (2003), 99-112.