

International Journal of Mathematics And its Applications

Another Generalized Closed Sets in Ideal Topological Spaces

Research Article

O.Ravi^{1*}, R.Asokan² and A.Thiripuram³

1 Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai, Tamil Nadu, India.

2 School of Mathematics, Madurai Kamaraj University, Madurai, Tamil Nadu, India.

3 Department of Mathematics, Jeppiaar Engineering College, Chennai, Tamil Nadu, India.

Abstract:Characterizations and properties of $\mathcal{I}_{g\delta}$ -closed sets and $\mathcal{I}_{g\delta}$ -open sets are given. A characterization of δ -*-normal spaces
is given in terms of $\mathcal{I}_{g\delta}$ -open sets.MSC:54A05, Secondary 54D15, 54D30.Keywords: $g\delta$ -closed set, $\mathcal{I}_{g\delta}$ -closed set, *-closed set, $\mathcal{I}_{\pi g}$ -closed set.

C JS Publication.

1. Introduction and Preliminaries

An ideal \mathcal{I} on a topological space (X, τ) is a nonempty collection of subsets of X which satisfies

(1) $A \in \mathcal{I}$ and $B \subseteq A$ imply $B \in \mathcal{I}$ and

(2) $A \in \mathcal{I}$ and $B \in \mathcal{I}$ imply $A \cup B \in \mathcal{I}$.

Given a topological space (X, τ) with an ideal \mathcal{I} on X and if $\wp(X)$ is the set of all subsets of X, a set operator $(.)^* : \wp(X) \to \wp(X)$, called a local function [10] of A with respect to τ and \mathcal{I} is defined as follows: for $A \subseteq X$, $A^*(\mathcal{I}, \tau) = \{x \in X \mid U \cap A \notin \mathcal{I} \text{ for every } U \in \tau(x)\}$ where $\tau(x) = \{U \in \tau \mid x \in U\}$. We will make use of the basic facts about the local functions [[9], Theorem 2.3] without mentioning it explicitly.

A Kuratowski closure operator $cl^*(.)$ for a topology $\tau^*(\mathcal{I},\tau)$, called the *-topology and finer than τ , is defined by $cl^*(A) = A \cup A^*(\mathcal{I},\tau)$ [27]. When there is no chance for confusion, we will simply write A^* for $A^*(\mathcal{I},\tau)$ and τ^* for $\tau^*(\mathcal{I},\tau)$. If \mathcal{I} is an ideal on X, then (X, τ, \mathcal{I}) is called an ideal space. \mathcal{N} is the ideal of all nowhere dense subsets in (X, τ) . A subset A of an ideal space (X, τ, \mathcal{I}) is called *-closed [9] (resp. *-dense in itself [8], *-perfect [9]) if $A^* \subseteq A$ (resp. $A \subseteq A^*$, $A = A^*$).

By a space, we always mean a topological space (X, τ) with no separation properties assumed. If $A \subseteq X$, cl(A) and int(A) will, respectively, denote the closure and interior of A in (X, τ) and $int^*(A)$ will denote the interior of A in (X, τ^*) .

^{*} E-mail: siingam@yahoo.com

A subset A of a topological space (X, τ) is called an α -open [19] (resp. semi-open [11], preopen [14]) if A \subseteq int(cl(int(A))) (resp. A \subseteq cl(int(A)), $A \subset int(cl(A))$). The family of all α -open sets in (X, τ) , denoted by τ^{α} , is a topology on X finer than τ . The closure of A in (X, τ^{α}) is denoted by $cl_{\alpha}(A)$.

A subset A of a topological space (X, τ) is called regular open [26] if A = int(cl(A)). A subset A of a topological space (X, τ) is called δ -open [28] if for each $x \in A$, there exists a regular open set V such that $x \in V \subseteq A$ and is called δ -closed if X - A is δ -open. A point $x \in X$ is called a δ -cluster point of A [28] if $A \cap int(cl(U)) \neq \emptyset$ for each open set U containing x. The set of all δ -cluster points of A is called the δ -closure of A and is denoted by $\delta cl(A)$. Finite union of regular open sets in (X, τ) is π -open [29] in (X, τ) .

Definition 1.1. A subset A of a topological space (X, τ) is said to be

- 1. g-closed [12] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) ,
- 2. $g\delta$ -closed [15] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is δ -open in (X, τ) ,
- 3. $g\delta$ -open [15] if X A is $g\delta$ -closed,
- 4. rg-closed [22] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in (X, τ) ,
- 5. πg -closed [4] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is π -open in (X, τ) ,
- 6. αg -closed [13] if $cl_{\alpha}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .

The complement of αg -closed set is αg -open.

Definition 1.2. A subset A of an ideal space (X, τ, \mathcal{I}) is said to be

- 1. \mathcal{I}_g -closed [16] if $A^* \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ, \mathcal{I}) . The complement of \mathcal{I}_g -closed set is \mathcal{I}_g -open,
- 2. \mathcal{I}_{rg} -closed [17] if $A^* \subseteq U$ whenever $A \subseteq U$ and U is regular open in (X, τ, \mathcal{I}) ,
- 3. $\mathcal{I}_{\pi g}$ -closed [23] if $A^* \subseteq U$ whenever $A \subseteq U$ and U is π -open in (X, τ, \mathcal{I}) .

Definition 1.3. An ideal \mathcal{I} is said to be

- 1. codense [7] or τ -boundary [18] if $\tau \cap \mathcal{I} = \{\emptyset\}$,
- 2. completely codense [7] if $PO(X) \cap \mathcal{I} = \{\emptyset\}$, where PO(X) is the family of all preopen sets in (X, τ) .

Lemma 1.4. Every completely codense ideal is codense but not conversely [7].

The following Lemmas will be useful in the sequel.

Lemma 1.5. Let (X, τ, \mathcal{I}) be an ideal space and $A \subseteq X$. If $A \subseteq A^*$, then $A^* = cl(A^*) = cl(A) = cl^*(A)$ [[25], Theorem 5].

Lemma 1.6. Let (X, τ, \mathcal{I}) be an ideal space. Then \mathcal{I} is codense if and only if $G \subseteq G^*$ for every semi-open set G in X [[25], Theorem 3].

Lemma 1.7. Let (X, τ, \mathcal{I}) be an ideal space. If \mathcal{I} is completely codense, then $\tau^* \subseteq \tau^{\alpha}$ [[25], Theorem 6].

Remark 1.8. If (X, τ) is a topological space, then every closed set is $g\delta$ -closed but not conversely [15].

Lemma 1.9. Every g-closed set is \mathcal{I}_g -closed but not conversely [[6], Theorem 2.1].

Remark 1.10 ([4]). The following implications are true in any topological spaces: regular open set $\Rightarrow \pi$ -open set $\Rightarrow \delta$ -open set $\Rightarrow \phi$ open set. None of the above implications is reversible.

Remark 1.11. The following statements are true in any topological spaces:

- 1. Every closed set is g-closed but not conversely [12].
- 2. Every g-closed set is $g\delta$ -closed but not conversely [15].
- 3. Every $g\delta$ -closed set is πg -closed but not conversely [15].
- 4. Every πg -closed set is rg-closed but not conversely [23].

Remark 1.12. The following statements are true in any ideal spaces:

- 1. Every \star -closed set is \mathcal{I}_g -closed but not conversely [16].
- 2. Every $\mathcal{I}_{\pi g}$ -closed set is \mathcal{I}_{rg} -closed but not conversely [23].

Remark 1.13. The following statements are true in any ideal spaces:

- 1. Every closed set is *-closed but not conversely [9].
- 2. Every πg -closed set is $\mathcal{I}_{\pi g}$ -closed but not conversely [23].
- 3. Every rg-closed set is \mathcal{I}_{rg} -closed but not conversely [17].

Lemma 1.14 ([9]). Let (X, τ, \mathcal{I}) be an ideal space and A, B subsets of X. Then the following properties hold:

- 1. If $A \subseteq B$ then $A^* \subseteq B^*$,
- 2. $A^* = cl(A^*) \subseteq cl(A)$,
- 3. $(A^*)^* \subseteq A^*$,
- 4. $(A \cup B)^* = A^* \cup B^*$.

Definition 1.15. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be δ -closed [5, 20] if f(V) is δ -closed in Y for every δ -closed set V of X.

Definition 1.16. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be δ -continuous [20] if $f^{-1}(A)$ is δ -closed in (X, τ) for every closed set A of (Y, σ) .

Definition 1.17. A topological space (X, τ) is said to be δ -normal [24] if for every pair of disjoint δ -closed subsets A, B of X, there exist disjoint open sets U, V of X such that $A \subseteq U$ and $B \subseteq V$.

Definition 1.18. A topological space (X, τ) is said to be \star -normal [23] if for every pair of disjoint closed subsets A, B of X, there exist disjoint \star -open sets U, V of X such that $A \subseteq U$ and $B \subseteq V$.

Theorem 1.19 ([16]). Let (X, τ, \mathcal{I}) be an ideal space and $A \subseteq X$. Then A is \mathcal{I}_g -open if and only if $F \subseteq int^*(A)$ whenever F is closed and $F \subseteq A$.

2. $\mathcal{I}_{a\delta}$ -closed Sets

Definition 2.1. A subset A of an ideal space (X, τ, \mathcal{I}) is said to be

- 1. $\mathcal{I}_{g\delta}$ -closed if $A^* \subseteq U$ whenever $A \subseteq U$ and U is δ -open in (X, τ, \mathcal{I}) ,
- 2. $\mathcal{I}_{g\delta}$ -open if X A is $\mathcal{I}_{g\delta}$ -closed.

Theorem 2.2. If (X, τ, \mathcal{I}) is any ideal space, then every \mathcal{I}_g -closed set is $\mathcal{I}_{g\delta}$ -closed but not conversely.

Example 2.3. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{c\}, \{a, c\}\}$ and $\mathcal{I} = \{\emptyset\}$. Then \mathcal{I}_g -closed sets are \emptyset , $X, \{b\}, \{a, b\}, \{b, c\}$ and $\mathcal{I}_{q\delta}$ -closed sets are P(X). It is clear that $\{a\}$ is $\mathcal{I}_{q\delta}$ -closed set but it is not \mathcal{I}_g -closed.

Theorem 2.4. If (X, τ, \mathcal{I}) is any ideal space and $A \subseteq X$, then the following are equivalent.

- 1. A is $\mathcal{I}_{g\delta}$ -closed,
- 2. $cl^*(A) \subseteq U$ whenever $A \subseteq U$ and U is δ -open in X.

Proof. (1) \Rightarrow (2) If A is $\mathcal{I}_{g\delta}$ -closed, then $A^* \subseteq U$ whenever $A \subseteq U$ and U is δ -open in X and so $cl^*(A) = A \cup A^* \subseteq U$ whenever $A \subseteq U$ and U is δ -open in X. This proves (2).

 $(2) \Rightarrow (1)$ Let $cl^*(A) \subseteq U$ whenever $A \subseteq U$ and U is δ -open in X. Since $A^* \subseteq cl^*(A) \subseteq U$, $A^* \subseteq U$ whenever $A \subseteq U$ and U is δ -open in X. Therefore A is $\mathcal{I}_{g\delta}$ -closed.

Theorem 2.5. If a subset A of (X, τ, \mathcal{I}) is $\mathcal{I}_{g\delta}$ -closed set, then

- 1. $cl^*(A) A$ contains no nonempty δ -closed set,
- 2. $A^* A$ contains no nonempty δ -closed set.

Proof.

- (1) Suppose that A is $\mathcal{I}_{g\delta}$ -closed in (X, τ, \mathcal{I}) and F be a δ -closed subset of $cl^*(A) A$. Then $A \subseteq X F$. Since X F is δ -open and A is $\mathcal{I}_{g\delta}$ -closed, $cl^*(A) \subseteq X F$. Consequently, $F \subseteq X cl^*(A)$. We have $F \subseteq cl^*(A)$. Thus, $F \subseteq cl^*(A) \cap (X cl^*(A)) = \emptyset$ and so $cl^*(A) A$ contains no nonempty δ -closed set.
- (2) The fact is $cl^*(A) A = (A \cup A^*) A = (A \cup A^*) \cap A^c = (A \cap A^c) \cup (A^* \cap A^c) = A^* \cap A^c = A^* A$.

Theorem 2.6. Every \star -closed set is $\mathcal{I}_{g\delta}$ -closed but not conversely.

Proof. Let A be a \star -closed, then A^{*} \subseteq A. Let A \subseteq U where U is δ -open. Hence A^{*} \subseteq U whenever A \subseteq U and U is δ -open. Therefore A is $\mathcal{I}_{g\delta}$ -closed.

Example 2.7. In Example 2.3, $\mathcal{I}_{g\delta}$ -closed sets are P(X) and \star -closed sets are \emptyset , X, $\{b\}$, $\{a, b\}$. It is clear that $\{a\}$ is $\mathcal{I}_{g\delta}$ -closed set but it is not \star -closed.

Theorem 2.8. Let (X, τ, \mathcal{I}) be an ideal space. For every $A \in \mathcal{I}$, A is $\mathcal{I}_{g\delta}$ -closed.

Proof. Let A⊆U where U is δ-open set. Since A^{*}=Ø for every A∈I, then cl^{*}(A)=A∪A^{*} =A⊆U. Therefore, by Theorem 2.4, A is $\mathcal{I}_{g\delta}$ -closed.

Theorem 2.9. If (X, τ, \mathcal{I}) is an ideal space, then A^* is always $\mathcal{I}_{q\delta}$ -closed for every subset A of X.

Proof. Let $A^* \subseteq U$ where U is δ -open. Since $(A^*)^* \subseteq A^*$, we have $(A^*)^* \subseteq U$ whenever $A^* \subseteq U$ and U is δ -open. Hence A^* is $\mathcal{I}_{q\delta}$ -closed.

Theorem 2.10. Let (X, τ, \mathcal{I}) be an ideal space. Then every $\mathcal{I}_{q\delta}$ -closed, δ -open set is \star -closed set.

Proof. Since A is $\mathcal{I}_{g\delta}$ -closed and δ -open. Then $A^* \subseteq A$ whenever $A \subseteq A$ and A is δ -open. Hence A is \star -closed.

Theorem 2.11. Let (X, τ, \mathcal{I}) be an ideal space and A be a $\mathcal{I}_{g\delta}$ -closed set. Then the following are equivalent.

- 1. A is a \star -closed set,
- 2. $cl^*(A) A$ is a δ -closed set,
- 3. A^*-A is a δ -closed set.

Proof. (1)⇔(2) If A is *-closed, then A*⊆A and so cl*(A)−A=(A∪A*)−A=∅. Hence cl*(A)−A is δ-closed set. Conversely, suppose cl*(A)−A is δ-closed set. Since A is $\mathcal{I}_{g\delta}$ -closed set, by Theorem 2.5, cl*(A)−A = ∅ and so A is *-closed. (2)⇔(3) Obvious.

Theorem 2.12. Let (X, τ, \mathcal{I}) be an ideal space. Then every $g\delta$ -closed set is $\mathcal{I}_{g\delta}$ -closed set but not conversely.

Proof. Let A be any $g\delta$ -closed set in (X, τ, \mathcal{I}) . Then $cl(A)\subseteq U$ whenever $A\subseteq U$ and U is δ -open. We have $A^*\subseteq cl^*(A)\subseteq cl(A)\subseteq U$ whenever $A\subseteq U$ and U is δ -open. Hence A is $\mathcal{I}_{q\delta}$ -closed.

Example 2.13. Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, X, \{b\}, \{c, d\}, \{b, c, d\}\}$ and $\mathcal{I} = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$. Then $\mathcal{I}_{g\delta}$ -closed sets are \emptyset , X, $\{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}$ and $g\delta$ -closed sets are \emptyset , X, $\{a\}, \{a, b\}, \{a, c\}, \{a, c\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}$ and $g\delta$ -closed sets are \emptyset , X, $\{a\}, \{a, b\}, \{a, c\}, \{a, c\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}$. It is clear that $\{b\}$ is $\mathcal{I}_{g\delta}$ -closed set but it is not $g\delta$ -closed.

Theorem 2.14. If (X, τ, \mathcal{I}) is an ideal space and A is a \star -dense in itself, $\mathcal{I}_{g\delta}$ -closed subset of X, then A is $g\delta$ -closed.

Proof. Suppose A is a \star -dense in itself, $\mathcal{I}_{g\delta}$ -closed subset of X. Let A \subseteq U where U is δ -open. Then, by Theorem 2.4, $cl^*(A)\subseteq U$ whenever A \subseteq U and U is δ -open. Since A is \star -dense in itself, by Lemma 1.5, $cl(A)=cl^*(A)$. Therefore $cl(A)\subseteq U$ whenever A \subseteq U and U is δ -open. Hence A is $g\delta$ -closed.

Definition 2.15. A subset A of a topological space (X, τ) is said to be $g\delta\alpha$ -closed if $cl_{\alpha}(A) \subseteq U$ whenever $A \subseteq U$ and U is δ -open in (X, τ) . The complement of $g\delta\alpha$ -closed set is $g\delta\alpha$ -open.

Theorem 2.16. If (X, τ, \mathcal{I}) is any ideal space, then the following hold:

1. If $\mathcal{I} = \{\emptyset\}$, then A is $\mathcal{I}_{g\delta}$ -closed if and only if A is $g\delta$ -closed.

2. If $\mathcal{I}=\mathcal{N}$, then A is $\mathcal{I}_{g\delta}$ -closed if and only if A is $g\delta\alpha$ -closed.

Proof.

(1) From the fact that for $\mathcal{I}=\{\emptyset\}$, $A^*=cl(A)\supseteq A$. Therefore A is \star -dense in itself. Since A is $\mathcal{I}_{g\delta}$ -closed, by Theorem 2.14, A is $g\delta$ -closed.

Conversely, by Theorem 2.12, every $g\delta$ -closed set is $\mathcal{I}_{g\delta}$ -closed set.

(2) If $\mathcal{I}=\mathcal{N}$, then $A^*=cl(int(cl(A)))$ for every subset A of X and $cl_{\alpha}(A) = A \cup cl(int(cl(A)))$. Let A be a $\mathcal{I}_{g\delta}$ -closed set. Then $A^*\subseteq U$ whenever $A\subseteq U$ and U is δ -open in X. It implies that $cl(int(cl(A)))\subseteq U$ whenever $A\subseteq U$ and U is δ -open in X and $A \cup cl(int(cl(A)))\subseteq A \cup U$. It shows that $cl_{\alpha}(A)\subseteq U$ whenever $A\subseteq U$ and U is δ -open in X. Therefore A is $g\delta\alpha$ -closed. Converse is clear.

Corollary 2.17. If (X, τ, \mathcal{I}) is any ideal space where \mathcal{I} is codense and A is a semi-open, $\mathcal{I}_{g\delta}$ -closed subset of X, then A is $g\delta$ -closed.

Proof. By Lemma 1.6, A is \star -dense in itself. By Theorem 2.14, A is $g\delta$ -closed.

Theorem 2.18. Let (X, τ, \mathcal{I}) be an ideal space and $A \subseteq X$. If $A \subseteq B \subseteq A^*$, then $A^* = B^*$ and B is \star -dense in itself.

Proof. Since $A \subseteq B$, then $A^* \subseteq B^*$ and since $B \subseteq A^*$, then $B^* \subseteq (A^*)^* \subseteq A^*$. Therefore $A^* = B^*$ and $B \subseteq A^* \subseteq B^*$. Hence proved.

Theorem 2.19. Let (X, τ, \mathcal{I}) be an ideal space. If A and B are subsets of X such that $A \subseteq B \subseteq A^*$ and A is $\mathcal{I}_{g\delta}$ -closed, then B is $\mathcal{I}_{g\delta}$ -closed.

Proof. Let U be any δ -open set of (X, τ, \mathcal{I}) such that $B \subseteq U$. Then $A \subseteq U$. Since A is $\mathcal{I}_{g\delta}$ -closed, we have $A^* \subseteq U$. Now $B^* \subseteq (A^*)^* \subseteq A^* \subseteq U$. Therefore B is $\mathcal{I}_{g\delta}$ -closed.

Corollary 2.20. Let (X, τ, \mathcal{I}) be an ideal space. If A and B are subsets of X such that $A \subseteq B \subseteq A^*$ and A is $\mathcal{I}_{g\delta}$ -closed, then A and B are $g\delta$ -closed sets.

Proof. Let A and B be subsets of X such that $A \subseteq B \subseteq A^*$ and A is $\mathcal{I}_{g\delta}$ -closed. By Theorem 2.19, B is $\mathcal{I}_{g\delta}$ -closed. Since $A \subseteq B \subseteq A^*$, then $A^* = B^*$ and so A and B are \star -dense in itself. By Theorem 2.14, A and B are $g\delta$ -closed.

The following theorem gives a characterization of $\mathcal{I}_{g\delta}$ -open sets.

Theorem 2.21. Let (X, τ, \mathcal{I}) be an ideal space and $A \subseteq X$. Then A is $\mathcal{I}_{g\delta}$ -open if and only if $F \subseteq int^*(A)$ whenever F is δ -closed and $F \subseteq A$.

Proof. Suppose A is $\mathcal{I}_{g\delta}$ -open. If F is δ -closed and F \subseteq A, then X-A \subseteq X-F and so cl^{*}(X-A) \subseteq X-F by Theorem 2.4. Therefore F \subseteq X-cl^{*}(X-A)=int^{*}(A). Hence F \subseteq int^{*}(A).

Conversely, suppose the condition holds. Let U be a δ -open set such that $X-A\subseteq U$. Then $X-U\subseteq A$ and so $X-U\subseteq int^*(A)$. Therefore $cl^*(X-A)\subseteq U$. By Theorem 2.4, X-A is $\mathcal{I}_{g\delta}$ -closed. Hence A is $\mathcal{I}_{g\delta}$ -open.

The following theorem gives a characterization of $\mathcal{I}_{g\delta}$ -closed sets in terms of $\mathcal{I}_{g\delta}$ -open sets.

Theorem 2.22. Let (X, τ, \mathcal{I}) be an ideal space and $A \subseteq X$. Consider the following statements.

- 1. A is $\mathcal{I}_{g\delta}$ -closed,
- 2. $A \cup (X A^*)$ is $\mathcal{I}_{g\delta}$ -closed,
- 3. $A^* A$ is $\mathcal{I}_{g\delta}$ -open.

Then we have $(1) \Rightarrow (2) \Leftrightarrow (3)$.

Proof. (1)⇒(2) Suppose A is $\mathcal{I}_{g\delta}$ -closed. If U is any δ-open set such that $A \cup (X-A^*) \subseteq U$, then $X-U \subseteq X-(A \cup (X-A^*))=X \cap (A \cup (A^*)^c)^c=A^* \cap A^c=A^*-A$. Since A is $\mathcal{I}_{g\delta}$ -closed, by Theorem 2.5, it follows that $X-U=\emptyset$ and so X=U. Therefore $A \cup (X-A^*) \subseteq U$ which implies that $A \cup (X-A^*) \subseteq X$ and so $(A \cup (X-A^*))^* \subseteq X^* \subseteq X=U$. Hence $A \cup (X-A^*)$ is $\mathcal{I}_{g\delta}$ -closed.

 $(2) \Leftrightarrow (3) \text{ Since } \mathbf{X} - (\mathbf{A}^* - \mathbf{A}) = \mathbf{X} \cap (\mathbf{A}^* \cap \mathbf{A}^c)^c = \mathbf{X} \cap ((\mathbf{A}^*)^c \cup \mathbf{A}) = (\mathbf{X} \cap (\mathbf{A}^*)^c) \cup (\mathbf{X} \cap \mathbf{A}) = \mathbf{A} \cup (\mathbf{X} - \mathbf{A}^*) \text{ is } \mathcal{I}_{g\delta} \text{-closed. Hence } \mathbf{A}^* - \mathbf{A} \text{ is } \mathcal{I}_{g\delta} \text{-open.}$

Theorem 2.23. Let (X, τ, \mathcal{I}) be an ideal space. Then every subset of X is $\mathcal{I}_{g\delta}$ -closed if and only if every δ -open set is \star -closed.

Proof. Suppose every subset of X is $\mathcal{I}_{g\delta}$ -closed. If U \subseteq X is δ -open, then by hypothesis, U is $\mathcal{I}_{g\delta}$ -closed and so U^{*} \subseteq U. Hence U is \star -closed.

Conversely, suppose that every δ -open set is \star -closed. Let A be a subset of X. If U is δ -open set such that A \subseteq U, then $A^* \subseteq U^* \subseteq U$ and so A is $\mathcal{I}_{g\delta}$ -closed.

Theorem 2.24. The union of two $\mathcal{I}_{g\delta}$ -closed sets is again $\mathcal{I}_{g\delta}$ -closed.

Proof. Suppose that $(A \cup B) \subseteq U$ and U is δ -open in (X, τ, \mathcal{I}) , than $A \subseteq U$ and $B \subseteq U$. Since A and B are $\mathcal{I}_{g\delta}$ -closed sets, $A^* \subseteq U$ and $B^* \subseteq U$. $(A \cup B)^* = A^* \cup B^* \subseteq U$. Thus, $A \cup B$ is $\mathcal{I}_{g\delta}$ -closed.

Theorem 2.25. For each $x \in (X, \tau, \mathcal{I})$, either $\{x\}$ is δ -closed or $\{x\}^c$ is $\mathcal{I}_{g\delta}$ -closed in (X, τ, \mathcal{I}) .

Proof. Suppose that $\{x\}$ is not δ -closed, then $\{x\}^c$ is not δ -open and the only δ -open set containing $\{x\}^c$ is the space (X, τ, \mathcal{I}) itself. Therefore $cl^*(\{x\}^c) \subseteq X$ and so $\{x\}^c$ is $\mathcal{I}_{g\delta}$ -closed.

Definition 2.26. A subset A of an ideal topological space (X, τ, \mathcal{I}) is said to be

1. a $\mathcal{X}_{\mathcal{I}}$ -set if $A = U \cap V$, where U is a δ -open set and V is a \star -perfect set.

2. a $\mathcal{Y}_{\mathcal{I}}$ -set if $A = U \cap V$, where U is a δ -open set and V is a \star -closed set.

Theorem 2.27. A subset A of an ideal topological space (X, τ, \mathcal{I}) is a $\mathcal{X}_{\mathcal{I}}$ -set and a $\mathcal{I}_{g\delta}$ -closed set, then A is a \star -closed set. *Proof.* Let A be a $\mathcal{X}_{\mathcal{I}}$ -set and a $\mathcal{I}_{g\delta}$ -closed set. Since A is a $\mathcal{X}_{\mathcal{I}}$ -set, A = U \cap V, where U is a δ -open set and V is a \star -perfect set. Now, A = U \cap V \subseteq U and A is a $\mathcal{I}_{g\delta}$ -closed set implies that A $^{*}\subseteq$ U. Also, A = U \cap V \subseteq V and V is \star -perfect set implies that A $^{*}\subseteq$ V. Thus, A $^{*}\subseteq$ U \cap V = A. Hence, A is a \star -closed set.

Theorem 2.28. For a subset A of an ideal topological space (X, τ, \mathcal{I}) , the following are equivalent.

- 1. A is a \star -closed set.
- 2. A is a $\mathcal{Y}_{\mathcal{I}}$ -set and a $\mathcal{I}_{g\delta}$ -closed set.

Proof. (1) \Rightarrow (2): Let A be a *-closed set and A = X \cap A, where X is δ -open set and A is a *-closed set. Hence, A is a $\mathcal{Y}_{\mathcal{I}}$ -set. Assume that A be a *-closed set and U be a δ -open set such that A \subseteq U. Then A* \subseteq U and hence A is a $\mathcal{I}_{g\delta}$ -closed set.

(2) \Rightarrow (1): Let A be a $\mathcal{Y}_{\mathcal{I}}$ -set and a $\mathcal{I}_{g\delta}$ -closed set. Since A is a $\mathcal{Y}_{\mathcal{I}}$ -set, A = U \cap V, where U is a δ -open set and V is a \star -closed set. Now, A \subseteq U and A is a $\mathcal{I}_{g\delta}$ -closed set implies that A $^{*}\subseteq$ U. Also, A \subseteq V and V is a \star -closed set implies that A $^{*}\subseteq$ V. Thus, A $^{*}\subseteq$ U \cap V = A. Hence, A is a \star -closed set.

Remark 2.29. The following Examples show that the concepts of $\mathcal{Y}_{\mathcal{I}}$ -sets and $\mathcal{I}_{g\delta}$ -closed sets are independent.

Example 2.30. In Example 2.13, $\{c, d\}$ is $\mathcal{Y}_{\mathcal{I}}$ -set but not $\mathcal{I}_{g\delta}$ -closed set.

Example 2.31. In Example 2.13, $\{a, b, c\}$ is $\mathcal{I}_{g\delta}$ -closed set but not $\mathcal{Y}_{\mathcal{I}}$ -set.

Proposition 2.32. Every αg -closed set in (X, τ) is $g\delta \alpha$ -closed in (X, τ) but not conversely.

Example 2.33. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$. Then $\{a\}$ is $g\delta\alpha$ -closed set but not αg -closed set.

3. δ -*-normal Spaces

Definition 3.1. A space (X, τ, \mathcal{I}) is said to be δ - \star -normal if for any two disjoint δ -closed sets A and B in (X, τ) , there exist disjoint \star -open sets U, V such that $A \subseteq U$ and $B \subseteq V$.

Theorem 3.2. Let (X, τ, \mathcal{I}) be an ideal space. Then the following are equivalent.

- 1. (X, τ, \mathcal{I}) is δ -*-normal.
- 2. For every pair of disjoint δ -closed sets A and B, there exist disjoint \mathcal{I}_g -open sets U, V such that $A \subseteq U$ and $B \subseteq V$.
- 3. For every pair of disjoint δ -closed sets A and B, there exist disjoint $\mathcal{I}_{q\delta}$ -open sets U, V such that $A \subseteq U$ and $B \subseteq V$.
- 4. For each δ -closed set A and for each δ -open set V containing A, there exists an $\mathcal{I}_{g\delta}$ -open set U such that $A \subseteq U \subseteq cl^*(U) \subseteq V$.
- 5. For each δ -closed set A and for each δ -open set V containing A, there exists an \star -open set U such that $A \subseteq U \subseteq cl^*(U) \subseteq V$.

Proof. It is obvious that $(1) \Rightarrow (2)$ and $(2) \Rightarrow (3)$.

(3) \Rightarrow (4) : Suppose that A is δ -closed and V is a δ -open set containing A. Then $A \cap V^c = \emptyset$. By assumption, there exist $\mathcal{I}_{g\delta}$ -open sets U and W such that $A \subseteq U$, $V^c \subseteq W$. Since V^c is δ -closed and W is $\mathcal{I}_{g\delta}$ -open, by Theorem 2.21, $V^c \subseteq int^*(W)$ and so $(int^*(W))^c \subseteq V$. Again, $U \cap W = \emptyset$ implies that that $U \cap int^*(W) = \emptyset$ and so $cl^*(U) \subseteq (int^*(W))^c \subseteq V$. Hence, U is the required $\mathcal{I}_{g\delta}$ -open set such that $A \subseteq U \subseteq cl^*(U) \subseteq V$.

 $(4) \Rightarrow (5)$: Let A be a δ -closed set and V be a δ -open set such that A \subseteq V. By hypothesis, there exist $\mathcal{I}_{g\delta}$ -open set W such that A \subseteq W \subseteq cl^{*}(W) \subseteq V. By Theorem 2.21, A \subseteq int^{*}(W). If U = int^{*}(W), then U is an \star -open set and A \subseteq U \subseteq cl^{*}(U) \subseteq cl^{*}(W) \subseteq V. Therefore, A \subseteq U \subseteq cl^{*}(U) \subseteq V.

 $(5) \Rightarrow (1)$: Let A and B be disjoint δ -closed sets. Then B^c is a δ -open set containing A. By assumption, there exists an \star -open set U such that $A \subseteq U \subseteq cl^*(U) \subseteq B^c$. If $V = (cl^*(U))^c$, then U and V are disjoint \star -open sets such that $A \subseteq U$ and $B \subseteq V$.

Definition 3.3. A function $f: (X, \tau, \mathcal{I}) \to (Y, \sigma, \mathcal{J})$ is said to be $\mathcal{I}_{g\delta}^*$ -continuous if $f^{-1}(A)$ is $\mathcal{I}_{g\delta}$ -closed in (X, τ, \mathcal{I}) for every \star -closed set A of (Y, σ, \mathcal{J}) .

Theorem 3.4. Let $f: (X, \tau, \mathcal{I}) \to (Y, \sigma, \mathcal{J})$ be a $\mathcal{I}^*_{g\delta}$ -continuous δ -closed injection and Y is δ - \star -normal, then X is δ - \star -normal.

Proof. Let A and B are disjoint δ -closed sets of X. Since f is δ -closed injection, f(A) and f(B) are disjoint δ -closed sets of Y. By the δ -*-normality of Y, there exist disjoint *-open sets U and V of Y such that f(A) \subseteq U and f(B) \subseteq V. Since f is $\mathcal{I}_{g\delta}^*$ -continuous, f⁻¹(U) and f⁻¹(V) are disjoint $\mathcal{I}_{g\delta}$ -open sets containing A and B respectively. It follows from Theorem 3.2 that X is δ -*-normal.

Definition 3.5. A function $f: (X, \tau, \mathcal{I}) \to (Y, \sigma, \mathcal{J})$ is said to be \mathcal{J}_g^* -closed if f(A) is \mathcal{J}_g -closed in Y for every \star -closed set A of X.

Theorem 3.6. Let $f : (X, \tau, \mathcal{I}) \to (Y, \sigma, \mathcal{J})$ is a δ -continuous (resp. continuous) \mathcal{J}_g^* -closed surjection and X is a δ - \star -normal (resp. \star -normal), then Y is \star -normal.

Proof. Let A and B be disjoint closed sets of Y. Then $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint δ -closed (resp. closed) sets of X. Since X is δ - \star -normal (resp. \star -normal), there exist disjoint \star -open sets U and V such that $f^{-1}(A) \subseteq U$ and $f^{-1}(B) \subseteq V$. Now, we set K = Y - f(X - U) and L = Y - f(X - V). Then K and L are \mathcal{J}_g -open sets of Y such that $A \subseteq K$, $B \subseteq L$, Since A, B are disjoint closed sets and K and L are \mathcal{J}_g -open. We have $A \subseteq int^*(K)$ and $B \subseteq int^*(L)$ and $int^*(K) \cap int^*(L) = \emptyset$. Hence, Y is \star -normal.

Theorem 3.7. Let (X, τ, \mathcal{I}) be an ideal space and \mathcal{I} is completely codense. Then (X, τ, \mathcal{I}) is δ -normal if and only if it is δ - \star -normal.

Proof. Suppose that A and B are disjoint δ -closed sets. Since X is δ -normal, there exist disjoint open sets U and V such that A \subseteq U and B \subseteq V. But every open set is *-open set and Hence, X is δ -*-normal.

Conversely, suppose that A and B are disjoint δ -closed sets of X. Then there exist disjoint \star -open sets U and V such that A \subseteq U and B \subseteq V. Since \mathcal{I} is completely codense. By Lemma 1.1, $\tau^* \subseteq \tau^{\alpha}$ and so U, V $\in \tau^{\alpha}$. Hence, A \subseteq U \subseteq int(cl(int(U))) = G and B \subseteq V \subseteq int(cl(int(V))) = H. Therefore, G and H are disjoint open sets containing A and B respectively. Therefore, X is δ -normal.

Corollary 3.8. Let (X, τ, \mathcal{I}) be an ideal space, where \mathcal{I} is completely codense. Then the following are equivalent.

- 1. (X, τ, \mathcal{I}) is δ -normal.
- 2. For every pair of disjoint δ -closed sets A and B, there exist disjoint \mathcal{I}_g -open sets U, V such that $A \subseteq U$ and $B \subseteq V$.
- 3. For every pair of disjoint δ -closed sets A and B, there exist disjoint $\mathcal{I}_{g\delta}$ -open sets U, V such that $A \subseteq U$ and $B \subseteq V$.
- 4. For each δ -closed set A and for each δ -open set V containing A, there exists an $\mathcal{I}_{g\delta}$ -open set U such that $A \subseteq U$ $\subseteq cl^*(U) \subseteq V$.
- 5. For each δ -closed set A and for each δ -open set V containing A, there exists an \star -open set U such that $A \subseteq U \subseteq cl^*(U) \subseteq V$.
- 6. For every pair of disjoint δ -closed sets A and B, there exist disjoint \star -open sets U, V such that $A \subseteq U$ and $B \subseteq V$.

If $\mathcal{I} = \mathcal{N}$, from Corollary 3.8, we get the following Corollary 3.9.

Corollary 3.9. Let (X, τ) be a topological space. Then the following are equivalent.

- X is δ-normal.
- 2. For every pair of disjoint δ -closed sets A and B, there exist disjoint αg -open sets U, V such that $A \subseteq U$ and $B \subseteq V$.

- 3. For every pair of disjoint δ -closed sets A and B, there exist disjoint $g\delta\alpha$ -open sets U, V such that $A \subseteq U$ and $B \subseteq V$.
- 4. For each δ -closed set A and for each δ -open set V containing A, there exists an $g\delta\alpha$ -open set U such that $A \subseteq U \subseteq cl_{\alpha}(U) \subseteq V.$
- 5. For each δ -closed set A and for each δ -open set V containing A, there exists an α -open set U such that $A \subseteq U \subseteq cl_{\alpha}(U) \subseteq V$.
- 6. For every pair of disjoint δ -closed sets A and B, there exist disjoint α -open sets U, V such that $A \subseteq U$ and $B \subseteq V$.

References

- A.Acikgoz, T.Noiri and S.Yuksel, On α-I-continuous and α-I-open functions, Acta Math. Hungar., 105(1-2)(2004), 27-37.
- [2] D.Andrijevič, Some properties of the topology of α -sets, Mat. Vesnik, 36(1984), 1-10.
- [3] C.Chattopadhyay, On strongly pre-open sets and a decomposition of continuity, Mat. Vesnik, 57(2005), 121-125.
- [4] J.Dontchev and T.Noiri, Quasi-normal spaces and πg -closed sets, Acta Math. Hungar., 89(3)(2000), 211-219.
- [5] J.Dontchev and M.Ganster, On δ-generalized closed sets and T_{3/4} spaces, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 17(1996), 15-31.
- [6] J.Dontchev, M.Ganster and T.Noiri, Unified operation approach of generalized closed sets via topological ideals, Math. Japonica, 49(1999), 395-401.
- [7] J.Dontchev, M.Ganster and D.Rose, Ideal resolvability, Topology and its Applications, 93(1999), 1-16.
- [8] E.Hayashi, Topologies defined by local properties, Math.Ann., 156(1964), 205-215.
- [9] D.Jankovic and T.R.Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(4)(1990), 295-310.
- [10] K.Kuratowski, Topology, Vol. I, Academic Press, New york, (1966).
- [11] N.Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [12] N.Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 2(19)(1970), 89-96.
- [13] H.Maki, R.Devi and K.Balachandran, Generalized α-closed sets in topology, Bull. Fukuoka Univ. Ed Part III, 42(1993), 13-21.
- [14] A.S.Mashhour, M.E.Abd El-Monsef and S.N.El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys.Soc. Egypt, 53(1982), 47-53.
- [15] A.Muthulakshmi, O.Ravi and S.Vijaya, $g\delta$ -closed sets in topological spaces, submitted.
- [16] M.Navaneethakrishnan and J. Paulraj Joseph, g-closed sets in ideal topological spaces, Acta Math. Hungar., 119(4)(2008), 365-371.
- [17] M.Navaneethakrishnan, J.Paulraj Joseph and D.Sivaraj, \mathcal{I}_g -normal and \mathcal{I}_g -regular spaces, Acta Math. Hungar., 125(4)(2009), 327-340.
- [18] R.L.Newcomb, Topologies which are compact modulo an ideal, Ph.D. Dissertation, Univ. of Cal. at Santa Barbara (1967).
- [19] O.Njastad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.
- [20] T.Noiri, A generalization of perfect functions, J. London Math. Soc., 17(2)(1978), 540-544.
- [21] T.Noiri, K.Viswanathan, M.Rajamani and S.Krishnaprakash, On ω -closed sets in ideal topological spaces, submitted.
- [22] N.Palaniappan and K.C.Rao, Regular generalized closed sets, Kyungpook Math. J., 33(2)(1993), 211-219.
- [23] M.Rajamani, V.Inthumathi and S.Krishnaprakash, $\mathcal{I}_{\pi g}$ -closed sets and $\mathcal{I}_{\pi g}$ -continuity, Journal of Advanced Research in Pure Mathematics, 2(4)(2010), 63-72.
- [24] O.Ravi, V.Rajendran and K.Indirani, Weakly $\mathcal{I}_{q\delta}$ -closed sets, submitted.

72

- [25] V.Renuka Devi, D.Sivaraj and T.Tamizh Chelvam, Codense and Completely codense ideals, Acta Math. Hungar., 108(2005), 197-205.
- [26] M.H.Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41(1937), 375-481.
- [27] R.Vaidyanathaswamy, Set Topology, Chelsea Publishing Company, (1946).
- [28] N.V.Veličko, H-closed topological spaces, Amer. Math. Soc. Transl., (2) 78(1968), 103-118.
- [29] V.Zaitsev, On certian classes of topological spaces and their bicompactifications, Dokl. Akad. Nauk SSSR., 178(1968), 778-779.