

International Journal of Mathematics And its Applications

Weakly
$$(1,2)^*$$
-g*-closed Sets

Research Article

K.M.Dharmalingam¹, G.Thanavalli² and O.Ravi^{3*}

1 Department of Mathematics, The Madura College, Madurai, Tamil Nadu, India.

- 2 Department of Mathematics, SBM College of Engineering & Technology, Thamaraipadi, Dindigul, Tamil Nadu, India.
- 3 Department of Mathematics, P.M.Thevar College, Usilampatti, Tamil Nadu, India.

Abstract: The aim of this paper is to introduce a new class of $(1,2)^*$ -generalized closed sets called weakly $(1,2)^*$ - g^* -closed sets. MSC: 54E55.

Keywords: (1,2)*-g*-closed set, (1,2)*-wg*-closed set, (1,2)*-g*-continuous map, (1,2)*-g*-irresolute map, weakly (1,2)*-g*-continuous map.
(c) JS Publication.

1. Introduction

Thamilisai [21] studied and investigated the properties of the notion of $(1,2)^*-g^*$ -closed sets. In this paper, we introduce a new class of $(1,2)^*$ -generalized closed sets called weakly $(1,2)^*-g^*$ -closed sets which contains the above mentioned class. Also, we investigate the relationships among the related $(1,2)^*$ -generalized closed sets.

2. Preliminaries

Throughout this paper, X, Y and Z denote bitopological spaces (X, τ_1, τ_2) , (Y, σ_1, σ_2) and (Z, η_1, η_2) respectively.

Definition 2.1. Let A be a subset of a bitopological space X. Then A is called $\tau_{1,2}$ -open [16] if $A = P \cup Q$, for some $P \in \tau_1$ and $Q \in \tau_2$. The complement of $\tau_{1,2}$ -open set is called $\tau_{1,2}$ -closed. The family of all $\tau_{1,2}$ -open (resp. $\tau_{1,2}$ -closed) sets of X is denoted by $(1,2)^*$ -O(X) (resp. $(1,2)^*$ -C(X)).

Definition 2.2 ([16]). Let A be a subset of a bitopological space X. Then

- 1. the $\tau_{1,2}$ -interior of A, denoted by $\tau_{1,2}$ -int(A), is defined by $\cup \{ U : U \subseteq A \text{ and } U \text{ is } \tau_{1,2}\text{-open} \};$
- 2. the $\tau_{1,2}$ -closure of A, denoted by $\tau_{1,2}$ -cl(A), is defined by $\cap \{ U : A \subseteq U \text{ and } U \text{ is } \tau_{1,2}\text{-closed} \}.$

Remark 2.3 ([16]). Notice that $\tau_{1,2}$ -open subsets of X need not necessarily form a topology.

Definition 2.4. Let A be a subset of a bitopological space X. Then A is called

^{*} E-mail: siingam@yahoo.com

- 1. $(1,2)^*$ - α -open set [16] if $A \subseteq \tau_{1,2}$ -int $(\tau_{1,2}$ -cl $(\tau_{1,2}$ -int(A))). The complement of $(1,2)^*$ - α -open set is $(1,2)^*$ - α -closed. The $(1,2)^*$ - α -closure [18] of a subset A of X, denoted by $(1,2)^*$ - α cl(A), is defined to be the intersection of all $(1,2)^*$ - α -closed sets of X containing A. It is known that $(1,2)^*$ - α cl(A) is $(1,2)^*$ - α -closed set.
- 2. regular $(1,2)^*$ -open set [19] if $A = \tau_{1,2}$ -int $(\tau_{1,2}$ -cl(A)). The complement of regular $(1,2)^*$ -open set is regular $(1,2)^*$ -closed.
- 3. $(1,2)^*$ - π -open [12] if the finite union of regular $(1,2)^*$ -open sets.
- 4. $(1,2)^*$ -semi-closed [16] if $\tau_{1,2}$ -int $(\tau_{1,2}$ -cl $(A)) \subseteq A$.
- 5. $(1,2)^*$ -semi-open [16] if $A \subseteq \tau_{1,2}$ -cl $(\tau_{1,2}$ -int(A)).

Definition 2.5. Let A be a subset of a bitopological space X. Then A is called

- 1. a $(1,2)^*$ -generalized closed (briefly, $(1,2)^*$ -g-closed) set [17] if $\tau_{1,2}$ -cl(A) $\subseteq U$ whenever $A \subseteq U$ and U is $\tau_{1,2}$ -open in X. The complement of $(1,2)^*$ -g-closed set is called $(1,2)^*$ -g-open set.
- 2. $(1,2)^*$ - g^* -closed set [21] if $\tau_{1,2}$ -cl(A) \subseteq U whenever $A \subseteq$ U and U is $(1,2)^*$ -g-open in X. The complement of $(1,2)^*$ - g^* -closed set is called $(1,2)^*$ - g^* -open set. The family of all $(1,2)^*$ - g^* -open sets of X is denoted by $(1,2)^*$ - $G^*O(X)$.

Definition 2.6. A function $f : X \to Y$ is called:

- 1. $(1,2)^*$ -continuous [16] if $f^{-1}(V)$ is a $\tau_{1,2}$ -closed set in X for every $\sigma_{1,2}$ -closed set V of Y.
- 2. perfectly $(1,2)^*$ -continuous [20] if $f^{-1}(V)$ is $\tau_{1,2}$ -clopen in X for every regular $(1,2)^*$ -open set V of Y.
- 3. $(1,2)^*$ -R-map [17] if $f^{-1}(V)$ is regular $(1,2)^*$ -open in X for every regular $(1,2)^*$ -open set V of Y.
- 4. $(1,2)^*$ -open [16] if f(V) is $\sigma_{1,2}$ -open in Y for every $\tau_{1,2}$ -open set V of X.
- 5. $(1,2)^*$ -closed [16] if f(V) is $\sigma_{1,2}$ -closed in Y for every $\tau_{1,2}$ -closed set V of X.

Definition 2.7 ([15]). A subset A of a bitopological space X is called:

- 1. a weakly $(1,2)^*$ -g-closed (briefly, $(1,2)^*$ -wg-closed) set if $\tau_{1,2}$ -cl $(\tau_{1,2}$ -int $(A)) \subseteq U$ whenever $A \subseteq U$ and U is $\tau_{1,2}$ -open in X.
- 2. a weakly $(1,2)^*$ - πg -closed (briefly, $(1,2)^*$ - $w\pi g$ -closed) set if $\tau_{1,2}$ -cl $(\tau_{1,2}$ -int $(A)) \subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^*$ - π -open in X.
- 3. a regular $(1,2)^*$ -weakly generalized closed (briefly, $(1,2)^*$ -rwg-closed) set if $\tau_{1,2}$ -cl $(\tau_{1,2}$ -int $(A)) \subseteq U$ whenever $A \subseteq U$ and U is regular $(1,2)^*$ -open in X.

3. Weakly $(1,2)^*$ -g*-closed Sets

We introduce the definition of weakly $(1,2)^*$ -g*-closed sets in bitopological spaces and study the relationships of such sets.

Definition 3.1. A subset A of a bitopological space X is called a weakly $(1,2)^*-g^*$ -closed (briefly, $(1,2)^*-wg^*$ -closed) set if $\tau_{1,2}$ -cl $(\tau_{1,2}$ -int $(A)) \subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^*-g$ -open in X.

Theorem 3.2. Every $(1,2)^*-g^*$ -closed set is $(1,2)^*-wg^*$ -closed but not conversely.

Example 3.3. Let $X = \{a, b, c\}, \tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, \{a, b\}, X\}$. Then the sets in $\{\phi, \{a, b\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{c\}, X\}$ are called $\tau_{1,2}$ -closed. Then the set $\{a\}$ is $(1,2)^*$ -wg*-closed set but it is not a $(1,2)^*$ -g*-closed in X.

Theorem 3.4. Every $(1,2)^*$ -wg * -closed set is $(1,2)^*$ -wg-closed but not conversely.

Proof. Let A be any $(1,2)^*$ -wg*-closed set and U be any $\tau_{1,2}$ -open set containing A. Then U is a $(1,2)^*$ -g-open set containing A. We have $\tau_{1,2}$ -cl $(\tau_{1,2}$ -int(A)) \subseteq U. Thus, A is $(1,2)^*$ -wg-closed.

Example 3.5. Let $X = \{a, b, c\}, \tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, \{a\}, X\}$. Then the sets in $\{\phi, \{a\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{b, c\}, X\}$ are called $\tau_{1,2}$ -closed. Then the set $\{a, b\}$ is $(1,2)^*$ -wg-closed but it is not a $(1,2)^*$ -wg*-closed.

Theorem 3.6. Every $(1,2)^*$ -wg*-closed set is $(1,2)^*$ -w π g-closed but not conversely.

Proof. Let A be any $(1,2)^*$ -wg^{*}-closed set and U be any $(1,2)^*$ - π -open set containing A. Then U is a $(1,2)^*$ -g-open set containing A. We have $\tau_{1,2}$ -cl $(\tau_{1,2}$ -int(A)) \subseteq U. Thus, A is $(1,2)^*$ -w π g-closed.

Example 3.7. In Example 3.5, the set $\{a, c\}$ is $(1,2)^*$ - $w\pi g$ -closed but it is not a $(1,2)^*$ - wg^* -closed.

Theorem 3.8. Every $(1,2)^*$ -wg*-closed set is $(1,2)^*$ -rwg-closed but not conversely.

Proof. Let A be any $(1,2)^*$ -wg*-closed set and U be any regular $(1,2)^*$ -open set containing A. Then U is a $(1,2)^*$ -g-open set containing A. We have $\tau_{1,2}$ -cl $(\tau_{1,2}$ -int $(A)) \subseteq U$. Thus, A is $(1,2)^*$ -rwg-closed.

Example 3.9. In Example 3.5, the set $\{a\}$ is $(1,2)^*$ -rwg-closed but it is not a $(1,2)^*$ -wg*-closed.

Theorem 3.10. If a subset A of a bitopological space X is both $\tau_{1,2}$ -closed and $(1,2)^*$ -g-closed, then it is $(1,2)^*$ -wg*-closed in X.

Proof. Let A be a $(1,2)^*$ -g-closed set in X and U be any $\tau_{1,2}$ -open set containing A. Then $U \supseteq \tau_{1,2}$ -cl(A) $\supseteq \tau_{1,2}$ -cl($\tau_{1,2}$ -int($\tau_{1,2}$ -cl(A))). Since A is $\tau_{1,2}$ -closed, $U \supseteq \tau_{1,2}$ -cl($\tau_{1,2}$ -int(A)) and hence $(1,2)^*$ -wg*-closed in X.

Theorem 3.11. If a subset A of a bitopological space X is both $\tau_{1,2}$ -open and $(1,2)^*$ -wg*-closed, then it is $\tau_{1,2}$ -closed.

Proof. Since A is both $\tau_{1,2}$ -open and $(1,2)^*$ -wg*-closed, $A \supseteq \tau_{1,2}$ -cl $(\tau_{1,2}$ -int $(A)) = \tau_{1,2}$ -cl(A) and hence A is $\tau_{1,2}$ -closed in X.

Corollary 3.12. If a subset A of a bitopological space X is both $\tau_{1,2}$ -open and $(1,2)^*$ -wg*-closed, then it is both regular $(1,2)^*$ -open and regular $(1,2)^*$ -closed in X.

Theorem 3.13. Let X be a bitopological space and $A \subseteq X$ be $\tau_{1,2}$ -open. Then, A is $(1,2)^*$ -wg^{*}-closed if and only if A is $(1,2)^*$ -g^{*}-closed.

Proof. Let A be $(1,2)^*-g^*$ -closed. By Theorem 3.2, it is $(1,2)^*-wg^*$ -closed. Conversely, let A be $(1,2)^*-wg^*$ -closed. Since A is $\tau_{1,2}$ -open, by Theorem 3.11, A is $\tau_{1,2}$ -closed. Hence A is $(1,2)^*-g^*$ -closed.

Theorem 3.14. If a set A of X is $(1,2)^*$ -wg*-closed, then $\tau_{1,2}$ -cl $(\tau_{1,2}$ -int(A)) – A contains no non-empty $(1,2)^*$ -g-closed set.

Proof. Let F be a $(1,2)^*$ -g-closed set such that $F \subseteq \tau_{1,2}$ -cl $(\tau_{1,2}$ -int(A)) – A. Since F^c is $(1,2)^*$ -g-open and $A \subseteq F^c$, from the definition of $(1,2)^*$ -wg*-closedness it follows that $\tau_{1,2}$ -cl $(\tau_{1,2}$ -int(A)) $\subseteq F^c$. i.e., $F \subseteq (\tau_{1,2}$ -cl $(\tau_{1,2}$ -int $(A)))^c$. This implies that $F \subseteq (\tau_{1,2}$ -cl $(\tau_{1,2}$ -int $(A))) \cap (\tau_{1,2}$ -cl $(\tau_{1,2}$ -int $(A)))^c = \phi$.

77

Theorem 3.15. If a subset A of a bitopological space X is $(1,2)^*$ -nowhere dense, then it is $(1,2)^*$ -wg*-closed.

Proof. We know that a subset A of X is $(1,2)^*$ -nowhere dense if $\tau_{1,2}$ -int $(\tau_{1,2}$ -cl(A)) = \emptyset . Since $\tau_{1,2}$ -int(A) $\subseteq \tau_{1,2}$ -int $(\tau_{1,2}$ -cl(A)) and A is $(1,2)^*$ -nowhere dense, $\tau_{1,2}$ -int(A) = ϕ . Therefore $\tau_{1,2}$ -cl $(\tau_{1,2}$ -int(A)) = ϕ and hence A is $(1,2)^*$ -wg*-closed in X.

The converse of Theorem 3.15 need not be true as seen in the following example.

Example 3.16. Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, X\}$ and $\tau_2 = \{\phi, \{b, c\}, X\}$. Then the sets in $\{\phi, \{a\}, \{b, c\}, X\}$ are called $\tau_{1,2}$ -open and $\tau_{1,2}$ -closed. Then the set $\{a\}$ is $(1,2)^*$ -wg*-closed set but not $(1,2)^*$ -nowhere dense in X.

Remark 3.17. The following examples show that $(1,2)^*$ -wg*-closedness and $(1,2)^*$ -semi-closedness are independent.

Example 3.18. In Example 3.3, we have the set $\{a, c\}$ is $(1,2)^*$ -wg*-closed set but not $(1,2)^*$ -semi-closed in X.

Example 3.19. Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, X\}$ and $\tau_2 = \{\phi, \{b\}, X\}$. Then the sets in $\{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}$ are called $\tau_{1,2}$ -closed. Then the set $\{a\}$ is $(1,2)^*$ -semi-closed set but not $(1,2)^*$ -wg*-closed in X.

Remark 3.20. From the above discussions and known results, we obtain the following diagram for a subset of a bitopological space, where $A \rightarrow B$ represents A implies B but not conversely.

 $\begin{array}{c} \textit{Diagram} \\ \tau_{1,2}\text{-}closed \Rightarrow (1,2)^*\text{-}wg^*\text{-}closed \Rightarrow (1,2)^*\text{-}wg\text{-}closed \Rightarrow (1,2)^*\text{-}w\pi g\text{-}closed \Rightarrow (1,2)^*\text{-}rwg\text{-}closed \Rightarrow (1,2)^*$

Definition 3.21. A subset A of a bitopological space X is called $(1,2)^*$ -wg*-open set if A^c is $(1,2)^*$ -wg*-closed in X.

Proposition 3.22. Every $(1,2)^*$ - g^* -open set is $(1,2)^*$ - wg^* -open but not conversely.

Theorem 3.23. A subset A of a bitopological space X is $(1,2)^*$ -wg*-open if $G \subseteq \tau_{1,2}$ -int $(\tau_{1,2}$ -cl(A)) whenever $G \subseteq A$ and G is $(1,2)^*$ -g-closed.

Proof. Let A be any $(1,2)^*$ -wg*-open. Then A^c is $(1,2)^*$ -wg*-closed. Let G be a $(1,2)^*$ -g-closed set contained in A. Then G^c is a $(1,2)^*$ -g-open set containing A^c. Since A^c is $(1,2)^*$ -wg*-closed, we have $\tau_{1,2}$ -cl $(\tau_{1,2}$ -int $(A^c)) \subseteq G^c$. Therefore $G \subseteq \tau_{1,2}$ -int $(\tau_{1,2}$ -cl(A)).

Conversely, we suppose that $G \subseteq \tau_{1,2}$ -int $(\tau_{1,2}$ -cl(A)) whenever $G \subseteq A$ and G is $(1,2)^*$ -g-closed. Then G^c is a $(1,2)^*$ -g-open set containing A^c and $G^c \supseteq (\tau_{1,2}$ -int $(\tau_{1,2}$ -cl(A)))^c. It follows that $G^c \supseteq \tau_{1,2}$ -cl $(\tau_{1,2}$ -int (A^c)). Hence A^c is $(1,2)^*$ -wg*-closed and so A is $(1,2)^*$ -wg*-open.

Definition 3.24. Let $f: X \to Y$ be a function. Then f is said to be

1. contra $(1,2)^*$ -g^{*}-continuous if the inverse image of every $\sigma_{1,2}$ -open set in Y is $(1,2)^*$ -g^{*}-closed set in X.

2. $(1,2)^*-g^*$ -irresolute if the inverse image of every $(1,2)^*-g^*$ -closed set in Y is $(1,2)^*-g^*$ -closed set in X.

Theorem 3.25. The following are equivalent for a function $f: X \to Y$:

- 1. f is contra $(1,2)^*-g^*$ -continuous.
- 2. the inverse image of every $\sigma_{1,2}$ -closed set of Y is $(1,2)^*$ -g*-open in X.

Proof. Let U be any $\sigma_{1,2}$ -closed set of Y. Since Y \U is $\sigma_{1,2}$ -open, then by (1), it follows that $f^{-1}(Y \setminus U) = X \setminus f^{-1}(U)$ is $(1,2)^*-g^*$ -closed. This shows that $f^{-1}(U)$ is $(1,2)^*-g^*$ -open in X. Converse is similar.

4. Weakly $(1,2)^*$ -g*-continuous Functions

Definition 4.1. Let X and Y be two bitopological spaces. A function $f: X \to Y$ is called weakly $(1,2)^*-g^*$ -continuous (briefly, $(1,2)^*-wg^*$ -continuous) if $f^{-1}(U)$ is a $(1,2)^*-wg^*$ -open set in X for each $\sigma_{1,2}$ -open set U of Y.

Example 4.2. Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, X\}$ and $\tau_2 = \{\phi, \{b, c\}, X\}$. Then the sets in $\{\phi, \{a\}, \{b, c\}, X\}$ are called $\tau_{1,2}$ -open and $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}, \sigma_1 = \{\phi, Y\}$ and $\sigma_2 = \{\phi, \{a\}, Y\}$. Then the sets in $\{\phi, \{a\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{b, c\}, Y\}$ are called $\sigma_{1,2}$ -closed. The function $f : X \to Y$ defined by f(a) = b, f(b) = c and f(c) = a is $(1,2)^*$ -wg*-continuous, because every $\sigma_{1,2}$ -open subset of Y is $(1,2)^*$ -wg*-closed in X.

Theorem 4.3. Every $(1,2)^*$ -g^{*}-continuous function is $(1,2)^*$ -wg^{*}-continuous.

Proof. It follows from Theorem 3.2.

The converse of Theorem 4.3 need not be true as seen in the following example.

Example 4.4. Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, X\}$ and $\tau_2 = \{\phi, \{b, c\}, X\}$. Then the sets in $\{\phi, \{a\}, \{b, c\}, X\}$ are called $\tau_{1,2}$ -open and $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}, \sigma_1 = \{\phi, Y\}$ and $\sigma_2 = \{\phi, \{b\}, Y\}$. Then the sets in $\{\phi, \{b\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{a, c\}, Y\}$ are called $\sigma_{1,2}$ -closed. Let $f : X \to Y$ be the identity function. Then f is $(1,2)^*$ -wg*-continuous but not $(1,2)^*$ -g*-continuous.

Theorem 4.5. A function $f: X \to Y$ is $(1,2)^*$ -wg*-continuous if and only if $f^{-1}(U)$ is a $(1,2)^*$ -wg*-closed set in X for each $\sigma_{1,2}$ -closed set U of Y.

Proof. Let U be any $\sigma_{1,2}$ -closed set of Y. According to the assumption $f^{-1}(U^c) = X \setminus f^{-1}(U)$ is $(1,2)^* \cdot wg^*$ -open in X, so $f^{-1}(U)$ is $(1,2)^* \cdot wg^*$ -closed in X. The converse can be proved in a similar manner.

Definition 4.6. A bitopological space X is said to be locally $(1,2)^*$ - g^* -indiscrete if every $(1,2)^*$ - g^* -open set of X is $\tau_{1,2}$ -closed in X.

Theorem 4.7. Let $f: X \to Y$ be a function. If f is contra $(1,2)^*-g^*$ -continuous and X is locally $(1,2)^*-g^*$ -indiscrete, then f is $(1,2)^*$ - continuous.

Proof. Let V be a $\sigma_{1,2}$ -closed in Y. Since f is contra $(1,2)^*-g^*$ -continuous, $f^{-1}(V)$ is $(1,2)^*-g^*$ -open in X. Since X is locally $(1,2)^*-g^*$ -indiscrete, $f^{-1}(V)$ is $\tau_{1,2}$ -closed in X. Hence f is $(1,2)^*$ -continuous.

Theorem 4.8. Let $f: X \to Y$ be a function. If f is contra $(1,2)^*-g^*$ -continuous and X is locally $(1,2)^*-g^*$ -indiscrete, then f is $(1,2)^*-wg^*$ -continuous.

Proof. Let $f: X \to Y$ be contra $(1,2)^*-g^*$ -continuous and X is locally $(1,2)^*-g^*$ -indiscrete. By Theorem 4.7, f is $(1,2)^*$ -continuous, then f is $(1,2)^*-wg^*$ -continuous.

Proposition 4.9. If $f: X \to Y$ is perfectly $(1,2)^*$ -continuous and $(1,2)^*$ -wg*-continuous, then it is $(1,2)^*$ -R-map.

Proof. Let V be any regular $(1,2)^*$ -open subset of Y. According to the assumption, $f^{-1}(V)$ is both $\tau_{1,2}$ -open and $\tau_{1,2}$ -closed in X. Since $f^{-1}(V)$ is $\tau_{1,2}$ -closed, it is $(1,2)^*$ -wg*-closed. We have $f^{-1}(V)$ is both $\tau_{1,2}$ -open and $(1,2)^*$ -wg*-closed. Hence, by Corollary 3.12, it is regular $(1,2)^*$ -open in X, so f is $(1,2)^*$ -R-map.

Definition 4.10. A bitopological space X is called $(1,2)^*-g^*$ -compact if every cover of X by $(1,2)^*-g^*$ -open sets has finite subcover.

Definition 4.11. A bitopological space X is called weakly $(1,2)^*$ - g^* -compact (briefly, $(1,2)^*$ - wg^* -compact) if every $(1,2)^*$ - wg^* -open cover of X has a finite subcover.

Remark 4.12. Every $(1,2)^*$ -wg*-compact space is $(1,2)^*$ -g*-compact.

Theorem 4.13. Let $f : X \to Y$ be surjective $(1,2)^*$ -wg*-continuous function. If X is $(1,2)^*$ -wg*-compact, then Y is $(1,2)^*$ -compact.

Proof. Let $\{A_i : i \in I\}$ be an $\sigma_{1,2}$ -open cover of Y. Then $\{f^{-1}(A_i) : i \in I\}$ is a $(1,2)^*$ -wg^{*}-open cover in X. Since X is $(1,2)^*$ -wg^{*}-compact, it has a finite subcover, say $\{f^{-1}(A_1), f^{-1}(A_2), \dots, f^{-1}(A_n)\}$. Since f is surjective $\{A_1, A_2, \dots, A_n\}$ is a finite subcover of Y and hence Y is $(1,2)^*$ -compact.

Definition 4.14. A bitopological space X is called weakly $(1,2)^*$ - g^* -connected (briefly, $(1,2)^*$ - wg^* -connected) if X cannot be written as the disjoint union of two non-empty $(1,2)^*$ - wg^* -open sets.

Definition 4.15. A bitopological space X is called $(1,2)^*-g^*$ -connected if X cannot be written as the disjoint union of two non-empty $(1,2)^*-g^*$ -open sets.

Definition 4.16. A bitopological space X is called almost $(1,2)^*$ -connected if X cannot be written as the disjoint union of two non-empty regular $(1,2)^*$ -open sets.

Theorem 4.17. If a bitopological space X is $(1,2)^*$ -wg*-connected, then X is almost $(1,2)^*$ -connected (resp. $(1,2)^*$ -g*-connected).

Proof. It follows from the fact that each regular $(1,2)^*$ -open set (resp. $(1,2)^*-g^*$ -open set) is $(1,2)^*-wg^*$ -open.

Theorem 4.18. For a bitopological space X, the following statements are equivalent:

- 1. X is $(1,2)^*$ -wg * -connected.
- 2. The empty set ϕ and X are only subsets which are both $(1,2)^*$ -wg*-open and $(1,2)^*$ -wg*-closed.
- 3. Each $(1,2)^*$ -wg^{*}-continuous function from X into a discrete space Y which has at least two points is a constant function.

Proof. (1) \Rightarrow (2). Let $S \subseteq X$ be any proper subset, which is both (1,2)*-wg*-open and (1,2)*-wg*-closed. Its complement X S is also (1,2)*-wg*-open and (1,2)*-wg*-closed. Then $X = S \cup (X \setminus S)$ is a disjoint union of two non-empty (1,2)*-wg*-open sets which is a contradiction with the fact that X is (1,2)*-wg*-connected. Hence, $S = \phi$ or X.

(2) \Rightarrow (1). Let X = A \cup B where A \cap B = ϕ , A $\neq \phi$, B $\neq \phi$ and A, B are (1,2)*-wg*-open. Since A = X \B, A is (1,2)*-wg*-closed. According to the assumption A = ϕ , which is a contradiction.

(2) \Rightarrow (3). Let $f : X \to Y$ be a (1,2)*-wg*-continuous function where Y is a discrete bitopological space with at least two points. Then $f^{-1}(\{y\})$ is (1,2)*-wg*-closed and (1,2)*-wg*-open for each $y \in Y$ and $X = \bigcup \{f^{-1}(\{y\}) : y \in Y\}$. According to the assumption, $f^{-1}(\{y\}) = \phi$ or $f^{-1}(\{y\}) = X$. If $f^{-1}(\{y\}) = \phi$ for all $y \in Y$, f will not be a function. Also there is no exist more than one $y \in Y$ such that $f^{-1}(\{y\}) = X$. Hence, there exists only one $y \in Y$ such that $f^{-1}(\{y\}) = X$ and $f^{-1}(\{y_1\}) = \phi$ where $y \neq y_1 \in Y$. This shows that f is a constant function.

(3) \Rightarrow (2). Let $S \neq \phi$ be both (1,2)*-wg*-open and (1,2)*-wg*-closed in X. Let $f : X \rightarrow Y$ be a (1,2)*-wg*-continuous function defined by $f(S) = \{a\}$ and $f(X \setminus S) = \{b\}$ where $a \neq b$. Since f is constant function we get S = X.

Theorem 4.19. Let $f: X \to Y$ be a $(1,2)^*$ -wg*-continuous surjective function. If X is $(1,2)^*$ -wg*-connected, then Y is $(1,2)^*$ -connected.

Proof. We suppose that Y is not $(1,2)^*$ -connected. Then $Y = A \cup B$ where $A \cap B = \phi$, $A \neq \phi$, $B \neq \phi$ and A, B are $\sigma_{1,2}$ -open sets in Y. Since f is $(1,2)^*$ -wg^{*}-continuous surjective function, $X = f^{-1}(A) \cup f^{-1}(B)$ are disjoint union of two non-empty $(1,2)^*$ -wg^{*}-open subsets. This is contradiction with the fact that X is $(1,2)^*$ -wg^{*}-connected.

5. Weakly $(1,2)^*$ -g^{*}-open and Weakly $(1,2)^*$ -g^{*}-closed Functions

Definition 5.1. Let X and Y be bitopological spaces. A function $f : X \to Y$ is called weakly $(1,2)^*-g^*$ -open (briefly, $(1,2)^*-wg^*$ -open) if f(V) is a $(1,2)^*-wg^*$ -open set in Y for each $\tau_{1,2}$ -open set V of X.

Remark 5.2. Every $(1,2)^*$ - g^* -open function is $(1,2)^*$ - wg^* -open but not conversely.

Example 5.3. Let $X = \{a, b, c, d\}$, $\tau_1 = \{\phi, \{a\}, X\}$ and $\tau_2 = \{\phi, \{a, b, d\}, X\}$. Then the sets in $\{\phi, \{a\}, \{a, b, d\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{c\}, \{b, c, d\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c, d\}$, $\sigma_1 = \{\phi, \{a\}, Y\}$ and $\sigma_2 = \{\phi, \{b, c\}, \{a, b, c\}, Y\}$. Then the sets in $\{\phi, \{a\}, \{b, c\}, \{a, b, c\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{a\}, \{b, c\}, \{a, b, c\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{a\}, \{b, c\}, \{a, b, c\}, Y\}$ are called $\sigma_{1,2}$ -open but not $(1,2)^*$ -g*-open.

Definition 5.4. Let X and Y be bitopological spaces. A function $f : X \to Y$ is called weakly $(1,2)^*-g^*$ -closed (briefly, $(1,2)^*-wg^*$ -closed) if f(V) is a $(1,2)^*-wg^*$ -closed set in Y for each $\tau_{1,2}$ -closed set V of X. It is clear that an $(1,2)^*$ -open function is $(1,2)^*-wg^*$ -open and a $(1,2)^*$ -closed function is $(1,2)^*-wg^*$ -closed.

Theorem 5.5. Let X and Y be bitopological spaces. A function $f: X \to Y$ is $(1,2)^*$ -wg*-closed if and only if for each subset B of Y and for each $\tau_{1,2}$ -open set G containing $f^{-1}(B)$ there exists a $(1,2)^*$ -wg*-open set F of Y such that $B \subseteq F$ and $f^{-1}(F) \subseteq G$.

Proof. Let B be any subset of Y and let G be an $\tau_{1,2}$ -open subset of X such that $f^{-1}(B) \subseteq G$. Then $F = Y \setminus f(X \setminus G)$ is $(1,2)^*$ -wg^{*}-open set containing B and $f^{-1}(F) \subseteq G$.

Conversely, let U be any $\tau_{1,2}$ -closed subset of X. Then $f^{-1}(Y \setminus f(U)) \subseteq X \setminus U$ and X \U is $\tau_{1,2}$ -open. According to the assumption, there exists a $(1,2)^*$ -wg^{*}-open set F of Y such that $Y \setminus f(U) \subseteq F$ and $f^{-1}(F) \subseteq X \setminus U$. Then $U \subseteq X \setminus f^{-1}(F)$. From $Y \setminus F \subseteq f(U) \subseteq f(X \setminus f^{-1}(F)) \subseteq Y \setminus F$ it follows that $f(U) = Y \setminus F$, so f(U) is $(1,2)^*$ -wg^{*}-closed in Y. Therefore f is a $(1,2)^*$ -wg^{*}-closed function.

Remark 5.6. The composition of two $(1,2)^*$ -wg*-closed functions need not be a $(1,2)^*$ -wg*-closed as we can see from the following example.

Example 5.7. Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, X\}$ and $\tau_2 = \{\phi, \{a, b\}, X\}$. Then the sets in $\{\phi, \{a\}, \{a, b\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{c\}, \{b, c\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}, \sigma_1 = \{\phi, \{a\}, Y\}$ and $\sigma_2 = \{\phi, \{b, c\}, Y\}$. Then the sets in $\{\phi, \{a\}, \{b, c\}, Y\}$ are called $\sigma_{1,2}$ -open and $\sigma_{1,2}$ -closed. Let $Z = \{a, b, c\}, \eta_1 = \{\phi, Z\}$ and $\eta_2 = \{\phi, \{a, b\}, Z\}$. Then the sets in $\{\phi, \{a, b\}, Z\}$ are called $\eta_{1,2}$ -open and the sets in $\{\phi, \{c\}, Z\}$ are called $\eta_{1,2}$ -closed. We define $f : X \to Y$ by f(a) = c, f(b) = b and f(c) = a and let $g : Y \to Z$ be the identity function. Hence both f and g are $(1,2)^*$ -wg^*-closed functions. For a $\tau_{1,2}$ -closed set $U = \{b, c\}, (g \circ f)(U) = g(f(U)) = g(\{a, b\}) = \{a, b\}$ which is not $(1,2)^*$ -wg^*-closed in Z. Hence the composition of two $(1,2)^*$ -wg^*-closed functions need not be a $(1,2)^*$ -wg^*-closed.

Theorem 5.8. Let X, Y and Z be bitopological spaces. If $f: X \to Y$ is a $(1,2)^*$ -closed function and $g: Y \to Z$ is a $(1,2)^*$ -wg*-closed function, then $g \circ f: X \to Z$ is a $(1,2)^*$ -wg*-closed function.

Definition 5.9. A function $f: X \to Y$ is called a weakly $(1,2)^*-g^*$ -irresolute (briefly, $(1,2)^*-wg^*$ -irresolute) if $f^{-1}(U)$ is a $(1,2)^*-wg^*$ -open set in X for each $(1,2)^*-wg^*$ -open set U of Y.

Example 5.10. Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{b\}, X\}$ and $\tau_2 = \{\phi, \{a, c\}, X\}$. Then the sets in $\{\phi, \{b\}, \{a, c\}, X\}$ are called $\tau_{1,2}$ -open and $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}, \sigma_1 = \{\phi, Y\}$ and $\sigma_2 = \{\phi, \{b\}, Y\}$. Then the sets in $\{\phi, \{b\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{a, c\}, Y\}$ are called $\sigma_{1,2}$ -closed. Let $f : X \to Y$ be the identity function. Then f is $(1,2)^*$ -wg^{*}-irresolute.

Remark 5.11. Every $(1,2)^*$ - g^* -irresolute function is $(1,2)^*$ - wg^* -continuous but not conversely. Also, the concepts of $(1,2)^*$ - g^* -irresoluteness and $(1,2)^*$ - wg^* -irresoluteness are independent of each other.

Example 5.12. Let $X = \{a, b, c, d\}$, $\tau_1 = \{\phi, \{a\}, X\}$ and $\tau_2 = \{\phi, \{b, c\}, \{a, b, c\}, X\}$. Then the sets in $\{\phi, \{a\}, \{b, c\}, \{a, b, c\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{d\}, \{a, d\}, \{b, c, d\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c, d\}$, $\sigma_1 = \{\phi, \{a\}, Y\}$ and $\sigma_2 = \{\phi, \{a, b, d\}, Y\}$. Then the sets in $\{\phi, \{a\}, \{a, b, d\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{c\}, \{b, c, d\}, Y\}$ are called $\sigma_{1,2}$ -closed. Let $f : X \to Y$ be the identity function. Then f is $(1,2)^*$ -wg^{*}-continuous but not $(1,2)^*$ -g^{*}-irresolute.

Example 5.13. Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, X\}$ and $\tau_2 = \{\phi, \{b, c\}, X\}$. Then the sets in $\{\phi, \{a\}, \{b, c\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{a\}, \{b, c\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}, \sigma_1 = \{\phi, \{a\}, Y\}$ and $\sigma_2 = \{\phi, \{a, b\}, Y\}$. Then the sets in $\{\phi, \{a\}, \{a, b\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{c\}, \{b, c\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{c\}, \{b, c\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{c\}, \{b, c\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{c\}, \{b, c\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{c\}, \{b, c\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{c\}, \{b, c\}, Y\}$ are called $\sigma_{1,2}$ -closed. Let $f: X \to Y$ be the identity function. Then f is $(1,2)^*$ -wg*-irresolute but not $(1,2)^*$ -g*-irresolute.

Example 5.14. Let X, τ_1 and τ_2 be as in Example 3.19. Let Y, σ_1 and σ_2 be as in Example 3.3. Let f be the identity function, then f is $(1,2)^*-g^*$ -irresolute but not $(1,2)^*-wg^*$ -irresolute.

Theorem 5.15. The composition of two $(1,2)^*$ -wg*-irresolute functions is also $(1,2)^*$ -wg*-irresolute.

Theorem 5.16. Let $f: X \to Y$ and $g: Y \to Z$ be functions such that $g \circ f: X \to Z$ is $(1,2)^*$ -wg*-closed function. Then the following statements hold:

- 1. if f is $(1,2)^*$ -continuous and injective, then g is $(1,2)^*$ -wg*-closed.
- 2. if g is $(1,2)^*$ -wg^{*}-irresolute and surjective, then f is $(1,2)^*$ -wg^{*}-closed.

Proof.

- 1. Let F be a $\sigma_{1,2}$ -closed set of Y. Since $f^{-1}(F)$ is $\tau_{1,2}$ -closed in X, we can conclude that $(g \circ f)(f^{-1}(F))$ is $(1,2)^*$ -wg*-closed in Z. Hence g(F) is $(1,2)^*$ -wg*-closed in Z. Thus g is a $(1,2)^*$ -wg*-closed function.
- 2. It can be proved in a similar manner as (1).

Theorem 5.17. If $f: X \to Y$ is an $(1,2)^*$ -wg^{*}-irresolute function, then it is $(1,2)^*$ -wg^{*}-continuous.

Remark 5.18. The converse of the above need not be true in general. The function $f: X \to Y$ in the Example 5.14 is $(1,2)^*$ -wg^{*}-continuous but not $(1,2)^*$ -wg^{*}-irresolute.

Theorem 5.19. If $f: X \to Y$ is surjective $(1,2)^*$ -wg*-irresolute function and X is $(1,2)^*$ -wg*-compact, then Y is $(1,2)^*$ -wg*-compact.

Theorem 5.20. If $f: X \to Y$ is surjective $(1,2)^*$ -wg*-irresolute function and X is $(1,2)^*$ -wg*-connected, then Y is $(1,2)^*$ -wg*-connected.

References

- M.E.Abd El-Monsef, S.N. El-Deeb and R.A.Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ., 12(1983), 77-90.
- [2] D.Andrijevic, Semi-preopen sets, Mat. Vesnik, 38(1986), 24-32.
- [3] J.Antony Rex Rodrigo, O.Ravi, A.Pandi and C.M.Santhana, On (1,2)*-s-normal spaces and pre-(1,2)*-gs-closed functions, International Journal of Algorithms, Computing and Mathematics, 4(1) (2011), 29-42.
- [4] I.Arockiarani, K.Balachandran and M.Ganster, Regular-generalized locally closed sets and RGL-continuous functions, Indian J. Pure Appl. Math., 28(1997), 661-669.
- [5] K.Balachandran, P.Sundaram and H.Maki, Generalized locally closed sets and GLC-continuous functions, Indian J. Pure Appl. Math., 27(3)(1996), 235-244.
- [6] K.Balachandran, P.Sundaram and H.Maki, On generalized continuous maps in topological spaces, Mem. Fac. Sci. Kochi Univ. Math., 12(1991), 5-13.
- [7] P.Bhattacharyya and B.K.Lahiri, Semi-generalized closed sets in topology, Indian J. Math., 29(3)(1987), 375-382.
- [8] N.Bourbaki, General topology, Part I, Addison-Wesley, Reading, Mass., (1966).
- [9] M.Caldas, Semi-generalized continuous maps in topological spaces, Portugaliae Mathematica., 52 Fasc. 4(1995), 339-407.
- [10] D.E.Cameron, Topology atlas, http://gozips.uakron. deu/.
- [11] J.Cao, M.Ganster and I.Reilly, On sg-closed sets and gα-closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 20(1999), 1-5.
- [12] Z.Duszynski, M.Jeyaraman, M.Sajan Joseph, M.Lellis Thivagar and O.Ravi, A new generalization of closed sets in bitopology, South Asian Journal of Mathematics, 4(5)(2014), 215-224.
- [13] S.Jafari, M.Lellis Thivagar and Nirmala Mariappan, On (1,2)*-aĝ-closed sets, J. Adv. Math. Studies, 2(2)(2009), 25-34.
- [14] M.Lellis Thivagar and Nirmala Mariappan, On weak separation axioms associated with (1,2)*-sg-closed sets, Int. Journal of Math. Analysis, 4(13)(2010), 631-644.
- [15] O.Ravi, M.L. Thivagar and A.Nagarajan, $(1,2)^*$ - αg -closed sets and $(1,2)^*$ - $g\alpha$ -closed sets, (submitted).
- [16] O.Ravi and M.Lellis Thivagar, On stronger forms of (1,2)*-quotient mappings in bitopological spaces, Internat. J. Math. Game Theory and Algebra., 14(6)(2004), 481-492.
- [17] O.Ravi, M.L.Thivagar and Jinjinli, Remarks on extensions of (1,2)*-g-closed maps, Archimedes J. Math., 1(2)(2011), 177-187.
- [18] O.Ravi, M.L.Thivagar and E.Hatir, Decomposition of (1,2)*-continuity and (1,2)*-α-continuity, Miskolc Mathematical Notes., 10(2)(2009), 163-171.
- [19] O.Ravi, E.Ekici and M.Lellis Thivagar, On (1,2)*-sets and decompositions of bitopological (1,2)*-continuous mappings, Kochi J. Math., 3(2008), 181-189.
- [20] O.Ravi, K.Kayathri, M.L.Thivagar and M.Joseph Israel, Mildly (1,2)*-normal spaces and some bitopological functions, Mathematica Bohemica, 135(1)(2010), 1-15.
- [21] A.Thamilisai, Studies on new bitopological separation axioms, Ph. D Thesis, Madurai Kamaraj University, Madurai,(2015).