International Journal of Mathematics And its Applications

Some Results on Odd Mean Graphs

Research Article

S. Suganthi ${ }^{1}$, R. Vasuki ${ }^{1 *}$ and G. Pooranam ${ }^{1}$
1 Department of Mathematics, Dr. Sivanthi Aditanar College of Engineering, Tiruchendur, Tamil Nadu, India.

Abstract

Let $G=(V, E)$ be a graph with p vertices and q edges. A graph G is said to have an odd mean labeling if there exists a function $f: V(G) \rightarrow\{0,1,2, \ldots, 2 q-1\}$ satisfying f is $1-1$ and the induced map $f^{*}: E(G) \rightarrow\{1,3,5, \ldots, 2 q-1\}$ defined by $$
f^{*}(u v)= \begin{cases}\frac{f(u)+f(v)}{2} & \text { if } f(u)+f(v) \text { is even } \\ \frac{f(u)+f(v)+1}{2} & \text { if } f(u)+f(v) \text { is odd }\end{cases}
$$ is a bijection. A graph that admits an odd mean labeling is called an odd mean graph. In this paper, we prove that the graphs slanting ladder $S L_{n}$ for $n \geq 2, Q_{n} \odot K_{1}$ for $n \geq 1, T W\left(P_{2 n}\right)$ for $n \geq 2, H_{n} \odot m K_{1}$ for all $n \geq 1, m \geq 1$ and $m Q_{3}$ for $m \geq 1$ are odd mean graphs.

MSC: 05C78.

Keywords: Labeling, odd mean labeling, odd mean graph.
(C) JS Publication.

1. Introduction

Throughout this paper, by a graph we mean a finite, undirected and simple graph. Let $G(V, E)$ be a graph with p vertices and q edges. For notations and terminology we follow [3].

Path on n vertices is denoted by P_{n} and a cycle on n vertices is denoted by $C_{n} . K_{1, m}$ is called a star and it is denoted by S_{m}. The bistar $B_{m, n}$ is the graph obtained from K_{2} by identifying the center vertices of $K_{1, m}$ and $K_{1, n}$ at the end vertices of K_{2} respectively. $B_{m, m}$ is often denoted by $B(m)$. The H-graph of a path P_{n}, denoted by H_{n} is the graph obtained from two copies of P_{n} with vertices $v_{1}, v_{2}, \ldots, v_{n}$ and $u_{1}, u_{2}, \ldots, u_{n}$ by joining the vertices $v_{\frac{n+1}{2}}$ and $u_{\frac{n+1}{2}}$ if n is odd and the vertices $v_{\frac{n}{2}+1}$ and $u_{\frac{n}{2}}$ if n is even. If m number of pendant vertices are attached at each vertex of G, then the resultant graph obtained from G is the graph $G \odot m K_{1}$. When $m=1, G \odot K_{1}$ is the corona of G. A Twig $T W\left(P_{n}\right), n \geq 3$ is a graph obtained from a path by attaching exactly two pendant vertices to each internal vertices of the path.

The slanting ladder $S L_{n}$ is a graph obtained from two paths $u_{1}, u_{2}, \ldots, u_{n}$ and $v_{1}, v_{2}, \ldots, v_{n}$ by joining each u_{i} with $v_{i+1}, 1 \leq i \leq n-1$. The graph $K_{2} \times K_{2} \times K_{2}$ is called the cube, and it is denoted by Q_{3}. The union of two graphs G_{1} and G_{2} is the graph $G_{1} \cup G_{2}$ with $V\left(G_{1} \cup G_{2}\right)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and $E\left(G_{1} \cup G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{2}\right)$. The union of m disjoint copies of a graph G is denoted by $m G$.

[^0]The graph $T_{p}^{(n)}$ is a tree formed from n copies of path on p vertices by joining an edge $u u^{0}$ between every pair of consecutive paths where u is a vertex in the $i^{t h}$ copy of the path and u^{0} is the corresponding vertex in the $(i+1)^{t h}$ copy of the path.

The graceful labelings of graphs was first introduced by Rosa in 1961[1] and R.B. Gnanajothi introduced odd graceful graphs [2]. The concept mean labeling was first introduced by S. Somasundaram and R. Ponraj [7]. Further some more results on mean graphs are discussed in [5, 6, 8, 9]. The concept of odd mean labeling was introduced and studied by K. Manickam and M. Marudai [4]. Also, odd mean property for some graphs are discussed in [10, 11].

A graph G is said to have an odd mean labeling if there exists a function $f: V(G) \rightarrow\{0,1,2, \ldots, 2 q-1\}$ satisfying f is $l-1$ and the induced map $f^{*}: E(G) \rightarrow\{1,3,5, \ldots, 2 q-1\}$ defined by

$$
f^{*}(u v)= \begin{cases}\frac{f(u)+f(v)}{2} & \text { if } f(u)+f(v) \text { is even } \\ \frac{f(u)+f(v)+1}{2} & \text { if } f(u)+f(v) \text { is odd }\end{cases}
$$

is a bijection. A graph that admits an odd mean labeling is called an odd mean graph.
An odd mean labeling of $B_{4,4}$ is given in Figure 1.

Figure 1.

In this paper, we prove that the graphs slanting ladder $S L_{n}$ for $n \geq 2, Q_{n} \odot K_{1}$ for $n \geq 1, T W\left(P_{2 n}\right)$ for $n \geq 2, H_{n} \odot m K_{1}$ for $n \geq 2, H_{n} \odot m K_{1}$ for all $n \geq 1, m \geq 1$ and $m Q_{3}$ for $m \geq 1$ are odd mean graphs.

2. Odd Mean Graphs

Theorem 2.1. The graph slanting ladder $S L_{n}$ is an odd mean graph, $n \geq 2$.
Proof. Let $u_{1}, u_{2}, \ldots, u_{n}$ and $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of the path of length $n-1$. The graph $S L_{n}$ has $2 n$ vertices and $3(n-1)$ edges.
Define $f: V\left(S L_{n}\right) \rightarrow\{0,1,2, \ldots, 2 q-1=6 n-7\}$ as follows:

$$
\begin{aligned}
f\left(u_{i}\right) & =4 n+2 i-6, \quad 1 \leq i \leq n-1 \\
f\left(u_{n}\right) & =6 n-7 \\
f\left(v_{i}\right) & =2 i-2, \quad 1 \leq i \leq n .
\end{aligned}
$$

The induced edge labeling f^{*} is obtained as follows:

$$
\begin{aligned}
f^{*}\left(u_{i} u_{i+1}\right) & =4 n+2 i-5, \quad 1 \leq i \leq n-1 \\
f^{*}\left(v_{i} v_{i+1}\right) & =2 i-1, \quad 1 \leq i \leq n-1 \\
f^{*}\left(u_{i} v_{i+1}\right) & =2 n+2 i-3, \quad 1 \leq i \leq n-1 .
\end{aligned}
$$

Thus, f is an odd mean labeling. Hence, the graph $S L_{n}$ is an odd mean graph for $n \geq 2$.
For example, an odd mean labeling of $S L_{9}$ is shown in Figure 2.

Figure 2.

Theorem 2.2. $Q_{n} \odot K_{1}$ is an odd mean graph, for $n \geq 1$.
Proof. Let Q_{n} be the quadrilateral snake obtained from a path $u_{1}, u_{2}, \ldots, u_{n+1}$ by joining u_{i}, u_{i+1} to new vertices v_{i}, w_{i} respectively and joining v_{i} and $w_{i}, 1 \leq i \leq n$.

Let $G=Q_{n} \odot K_{1}$ be the graph obtained by joining a pendant edge to each vertex of Q_{n}. Let $u_{i}^{\prime}: 1 \leq i \leq n+1, v_{i}^{\prime}: 1 \leq i \leq n$ and $w_{i}^{\prime}: 1 \leq i \leq n$ be the new vertices made adjacent with u_{i}, v_{i} and w_{i} respectively. The graph G has $6 n+2$ vertices and $7 n+1$ edges.

$$
\begin{aligned}
& \text { Let } V\left(Q_{n} \odot K_{1}\right)=V\left(Q_{n}\right) \cup\left\{u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{n+1}^{\prime}\right\} \cup\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}\right\} \\
& \qquad \cup\left\{w_{1}^{\prime}, w_{2}^{\prime}, \ldots, w_{n}^{\prime}\right\} \\
& \text { and } E\left(Q_{n} \odot K_{1}\right)=E\left(Q_{n}\right) \cup\left\{u_{i} u_{i}^{\prime}: 1 \leq i \leq n+1\right\} \cup\left\{v_{i} v_{i}^{\prime}, w_{i} w_{i}^{\prime}: 1 \leq i \leq n\right\}
\end{aligned}
$$

Define $f: V\left(Q_{n} \odot K_{1}\right) \rightarrow\{0,1,2, \ldots, 2 q-1=14 n+1\}$ as follows:

$$
\begin{aligned}
& f\left(u_{1}\right)=4 \\
& f\left(u_{i}\right)=14 i-14, \quad 2 \leq i \leq n+1 \\
& f\left(v_{1}\right)=2 \\
& f\left(v_{i}\right)=14 i-8, \quad 2 \leq i \leq n \\
& f\left(w_{i}\right)=14 i-2, \quad 1 \leq i \leq n \\
& f\left(u_{1}^{\prime}\right)=6 \\
& f\left(u_{i}^{\prime}\right)=14 i-13, \quad 2 \leq i \leq n+1 \\
& f\left(v_{1}^{\prime}\right)=0 \\
& f\left(v_{i}^{\prime}\right)=14 i-10, \quad 2 \leq i \leq n \\
& f\left(w_{i}^{\prime}\right)=14 i-4, \quad 1 \leq i \leq n .
\end{aligned}
$$

The induced edge labels are given by

$$
\begin{aligned}
f^{*}\left(u_{1} u_{2}\right) & =9 \\
f^{*}\left(u_{i} u_{i+1}\right) & =14 i-7, \quad 2 \leq i \leq n \\
f^{*}\left(u_{1} u_{1}^{\prime}\right) & =5 \\
f^{*}\left(u_{i} u_{i}^{\prime}\right) & =14 i-13, \quad 2 \leq i \leq n+1
\end{aligned}
$$

$$
\begin{array}{rlrl}
f^{*}\left(u_{1} v_{1}\right) & =3 \\
f^{*}\left(u_{i} v_{i}\right) & =14 i-11, \quad 2 \leq i \leq n \\
f^{*}\left(u_{i+1} w_{i}\right) & =14 i-1, \quad 1 \leq i \leq n \\
f^{*}\left(v_{1} v_{1}^{\prime}\right) & =1 \\
f^{*}\left(v_{i} v_{i}^{\prime}\right) & =14 i-9, \quad 2 \leq i \leq n \\
f^{*}\left(w_{i} w_{i}^{\prime}\right) & =14 i-3, \quad 1 \leq i \leq n \\
f^{*}\left(v_{1} w_{1}\right) & =7 & \\
f^{*}\left(v_{i} w_{i}\right) & =14 i-5, \quad 2 \leq i \leq n .
\end{array}
$$

Thus, f is an odd mean labeling and hence $Q_{n} \odot K_{1}$ is an odd mean graph for $n \geq 1$.
For example, an odd mean labeling of $Q_{7} \odot K_{1}$ is shown in Figure 3.

Figure 3.

Theorem 2.3. $T W\left(P_{2 n}\right), n \geq 2$ is an odd mean graph.
Proof. Let $u_{1}, u_{2}, \ldots, u_{2 n}$ be the vertices of the path $P_{2 n}$ and let $v_{1}^{(i)}, v_{2}^{(i)}$ be the pendant vertices at each vertex u_{i} for $2 \leq i \leq 2 n-1$.

$$
\begin{aligned}
& \text { Let } V\left(T W\left(P_{2 n}\right)\right)=V\left(P_{2 n}\right) \cup\left\{v_{1}^{(i)}, v_{2}^{(i)}: 2 \leq i \leq 2 n-1\right\} \\
& \text { and } E\left(T W\left(P_{2 n}\right)\right)=E\left(P_{2 n}\right) \cup\left\{u_{i} v_{1}^{(i)}, u_{i} v_{2}^{(i)}: 2 \leq i \leq 2 n-1\right\} .
\end{aligned}
$$

Define $f: V\left(T W\left(P_{2 n}\right)\right) \rightarrow\{0,1,2, \ldots, 2 q-1=12 n-11\}$ as follows:

$$
\begin{gathered}
f\left(u_{i}\right)= \begin{cases}6 i-6, & 1 \leq i \leq 2 n \text { and } i \text { is odd } \\
2, & i=2 \\
6 i-11, & 4 \leq i \leq 2 n \text { and } i \text { is even }\end{cases} \\
f\left(v_{1}^{(i)}\right)= \begin{cases}6 i-12, & 3 \leq i \leq 2 n-1 \text { and } i \text { is odd } \\
6 i-8, & 2 \leq i \leq 2 n-1 \text { and } i \text { is even }\end{cases} \\
f\left(v_{2}^{(i)}\right)= \begin{cases}6 i-8, & 3 \leq i \leq 2 n-1 \text { and } i \text { is odd } \\
6 i-4, & 2 \leq i \leq 2 n-1 \text { and } i \text { is even }\end{cases}
\end{gathered}
$$

For the vertex labeling f, the induced edge labeling f^{*} is obtained as follows:

$$
\begin{array}{ll}
f^{*}\left(u_{i} u_{i+1}\right)=6 i-5, & 1 \leq i \leq 2 n-1 \\
f^{*}\left(u_{i} v_{1}^{(i)}\right)=6 i-9, & 2 \leq i \leq 2 n-1 \\
f^{*}\left(u_{i} v_{2}^{(i)}\right)=6 i-7, & 2 \leq i \leq 2 n-1
\end{array}
$$

Thus, f is an odd mean labeling of $T W\left(P_{2 n}\right), n \geq 2$. Hence, $T W\left(P_{2 n}\right)$ is an odd mean graph for $n \geq 2$. For example, an odd mean labeling of $T W\left(P_{8}\right)$ is shown in Figure 4.

Figure 4.

Theorem 2.4. The graph $H_{n} \odot m K_{1}$ is an odd mean graph for all positive integers m and n.

Proof. Let $u_{1}, u_{2}, \ldots, u_{n}$ and $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices on the path of length $n-1$. Let $x_{i, k}$ and $y_{i, k}, 1 \leq k \leq m$ be the pendant vertices at u_{i} and v_{i} respectively for $1 \leq i \leq n$. The graph $H_{n} \odot m K_{1}$ has $2 n(m+1)$ vertices and $2 n(m+1)-1$ edges.

Define $f: V\left(H_{n} \odot m K_{1}\right) \rightarrow\{0,1,2,3, \ldots, 2 q-1=4 n(m+1)-3\}$ as follows:
For $1 \leq i \leq n$,

$$
\begin{aligned}
& f\left(u_{i}\right)= \begin{cases}2 i+2 m(i-1), & i \text { is odd } \\
2 i(m+1)-4, & i \text { is even }\end{cases} \\
& f\left(v_{i}\right)= \begin{cases}f\left(u_{i}\right)+2 n(m+1)+2 m-4, & i \text { is odd and } n \text { is odd } \\
f\left(u_{i}\right)+2 n(m+1)-2 m+4, & i \text { is even and } n \text { is odd } \\
f\left(u_{i}\right)+2 n(m+1), & n \text { is even. }\end{cases}
\end{aligned}
$$

For $1 \leq i \leq n$ and $1 \leq k \leq m$,

$$
\begin{aligned}
& f\left(x_{i, k}\right)= \begin{cases}2(m+1)(i-1)+4 k-4, & i \text { is odd } \\
2(m+1)(i-2)+4 k+2, & i \text { is even }\end{cases} \\
& f\left(y_{i, k}\right)= \begin{cases}f\left(x_{i, k}\right)+2 n(m+1)-2 m+4, & i \text { is odd, } 1 \leq k \leq m-1 \\
f\left(x_{i, k}\right)+2 n(m+1)+2 m-4, & i \text { is even and } n \text { is odd } \\
f\left(x_{i, k}\right)+2 n(m+1), & n \text { is even, } 1 \leq k \leq m-1\end{cases} \\
& f\left(y_{n, m}\right)= \begin{cases}f\left(x_{n, m}\right)+2 n(m+1)-2 m+3, & n \text { is odd } \\
f\left(x_{n, m}\right)+2 n(m+1)-1, & n \text { is even. }\end{cases}
\end{aligned}
$$

The induced edge labels are obtained as follows:

For $1 \leq i \leq n-1$,

$$
\begin{aligned}
f^{*}\left(u_{i} u_{i+1}\right) & =2 i(m+1)-1 \\
f^{*}\left(v_{i} v_{i+1}\right) & =f^{*}\left(u_{i} u_{i+1}\right)+2 n(m+1)
\end{aligned}
$$

For $1 \leq i \leq n$ and $1 \leq k \leq m$,

$$
\begin{aligned}
f^{*}\left(u_{i} x_{i, k}\right) & =2(m+1)(i-1)+2 k-1 \\
f^{*}\left(v_{i} y_{i, k}\right) & =f^{*}\left(u_{i} x_{i, k}\right)+2 n(m+1) \\
f^{*}\left(u_{\frac{n+1}{2}} v_{\frac{n+1}{2}}\right) & =2 n(m+1)-1, \text { if } n \text { is odd } \\
f^{*}\left(u_{\frac{n}{2}+1} v_{\frac{n}{2}}\right) & =2 n(m+1)-1, \text { if } n \text { is even. }
\end{aligned}
$$

Thus, f is an odd mean labeling. Hence the graph $H_{n} \odot m K_{1}$ is an odd mean graph for all positive integers m and n. For example, an odd mean labeling of $H_{4} \odot 5 K_{1}$ and $H_{5} \odot 4 K_{1}$ are shown in Figure 5.

Figure 5.

Corollary 2.1. For any positive integer m, the bistar graph $B(m)$ is an odd mean graph.

Proof. By taking $n=1$ in Theorem 2.4, the result follows.

Theorem 2.5. The graph $m Q_{3}$ is an odd mean graph, $m \geq 1$.

Proof. For $1 \leq j \leq m$, let $v_{1}^{j}, v_{2}^{j}, \ldots, v_{8}^{j}$ be the vertices in the $j^{t h}$ copy of Q_{3}. The graph $m Q_{3}$ has $8 m$ vertices and $12 m$ edges.

We define $f: V\left(m Q_{3}\right) \rightarrow\{0,1,2, \ldots, 2 q-1=24 m-1\}$ as follows:

For $1 \leq j \leq m$,

$$
\begin{aligned}
& f\left(v_{i}^{j}\right)=24(j-1)+2 i-2, \quad i=1,2,4 \\
& f\left(v_{3}^{j}\right)=24(j-1)+8 \\
& f\left(v_{i}^{j}\right)=24(j-1)+2 i+6, \quad i=5,6,8 \\
& f\left(v_{7}^{j}\right)=24(j-1)+23 .
\end{aligned}
$$

The label of the edges of the graph are $1,3,5, \ldots, 24 m-1$. Thus, f is an odd mean labeling. Hence, the graph $m Q_{3}$ is an odd mean graph for all $m \geq 1$.

For example, an odd mean labeling of $5 Q_{3}$ is shown in Figure 6.

Figure 6.

Theorem 2.6. For all positive integers p and n, the graph $T_{p}^{(n)}$ is an odd mean graph.
Proof. Let $v_{i}^{(j)}, 1 \leq i \leq p$ be the vertices of the $j^{\text {th }}$ copy of the path on p vertices, $1 \leq j \leq n$. The graph $T_{p}^{(n)}$ is formed by adding an edge $v_{i}^{(j)} v_{i}^{(j+1)}$ between $j^{t h}$ and $(j+1)^{t h}$ copy of the path at some $i, 1 \leq i \leq p$.
Define $f: V(G) \rightarrow\{0,1,2,3, \ldots, 2 q-2,2 q-1=2 n p-3\}$ as follows:
For $1 \leq j \leq n-1$,

$$
f\left(v_{i}^{(j)}\right)= \begin{cases}2 p(j-1)+2 i-2, & 1 \leq i \leq p \text { and } j \text { is odd } \\ 2 p j-2 i, & 1 \leq i \leq p \text { and } j \text { is even }\end{cases}
$$

For n is odd,

$$
f\left(v_{i}^{(n)}\right)= \begin{cases}2 p(n-1)+2 i-2, & 1 \leq i \leq p-1 \\ 2 p n-3, & i=p\end{cases}
$$

For n is even,

$$
f\left(v_{i}^{(n)}\right)= \begin{cases}2 p n-3, & i=1 \\ 2 p n-2 i, & 2 \leq i \leq p\end{cases}
$$

For the vertex labeling f, the induced edge labeling f^{*} is given as follows:
For $1 \leq j \leq n$ and $1 \leq i \leq p-1$,

$$
\begin{aligned}
f^{*}\left(v_{i}^{(j)} v_{i+1}^{(j)}\right) & = \begin{cases}2 p(j-1)+2 i-1, & j \text { is odd } \\
2 p j-2 i-1, & j \text { is even }\end{cases} \\
f^{*}\left(v_{i}^{(j)} v_{i}^{(j+1)}\right) & =2 p j-1 .
\end{aligned}
$$

Thus, f is an odd mean labeling of the graph $T_{p}^{(n)}$. Hence, $T_{p}^{(n)}$ is an odd mean graph for all positive integers p and n. For example, an odd mean labeling of $T_{7}^{(5)}$ and $T_{6}^{(4)}$ are shown in Figure 7.

Figure 7.

References

[1] J.A.Gallian, A dynamic survey of graph labeling, Electron. J. Combin., 17(2010), \# DS6.
[2] R.B.Gnanajothi, Topics in Graph Theory, Ph.D. Thesis, Madurai Kamaraj University, India, (1991).
[3] F.Harary, Graph Theory, Addison Wesley, Reading Mass., (1972).
[4] K.Manickam and M.Marudai, Odd mean labelings of graphs, Bulletin of Pure and Applied Sciences, 25E(1)(2006), 149-153.
[5] Selvam Avadayappan and R.Vasuki, Some results on mean graphs, Ultra Scientist of Physical Sciences, 21(1)(2009), 273-284.
[6] Selvam Avadayappan and R.Vasuki, New families of mean graphs, International Journal of Math. Combin., 2(2010), 68-80.
[7] S.Somasundaram and R.Ponraj, Mean labelings of graphs, National Academy Science Letter, 26(2003), 210-213.
[8] R.Vasuki and A.Nagarajan, Meanness of the graphs $P_{a, b}$ and P_{a}^{b}. International Journal of Applied Mathematics, 22(4)(2009), 663-675.
[9] R.Vasuki and A.Nagarajan, Further results on mean graphs, Scientia Magna, 6(3)(2010), 1-14.
[10] R.Vasuki and A.Nagarajan, Odd mean labeling of the graphs $P_{a, b}, P_{a}^{b}$ and $P_{<2 a>}^{b}$, Kragujevac Journal of Mathematics, 36(1)(2012), 141-150.
[11] R.Vasuki and S.Arockiaraj, On odd mean graphs, Journal of Discrete Mathematical Sciences and Cryptography, (To appear).

[^0]: * E-mail: vasukisehar@gmail.com

