International Journal of Mathematics And its Applications

Counting Homomorphisms From Quasi-dihedral Group into Some Finite Groups

Research Article

R. Rajkumar ${ }^{1 *}$, M. Gayathri ${ }^{1}$ and T. Anitha ${ }^{1}$

1 Department of Mathematics, The Gandhigram Rural Institute-Deemed University, Gandhigram, Tamil Nadu, India.

[^0]Keywords: Finite groups, homomorphisms.
(C) JS Publication.

1. Introduction

Counting homomorphisms between two groups or rings is a basic problem in group thoery. In [2], Gallian and Buskirk enumerated the homomorphisms between two specified cyclic groups by using only elementary group theory. Also by using the elementary techniques, in [3] Gallian and Jungreis provided a method for counting homomorphisms between some specific rings. In [5], Matei et al present a method for computing the number of epimorphisms from a finitely presented group to a finite solvable group. But this needs advanced tools of algebra; see, also in [1]. In [4] Jeremiah Johnson, described a method of enumerating homomorphisms between two specified dihedral groups by using only elementary methods. Now we consider dihedral group, quaternion group, quasi-dihedral group and modular group. In [6], [7] and [8] authors give the enumeration of homomorphisms, monomorphisms and epimorphisms from each of dihedral group, quaternion group and modular group into each of these four groups respectively by using elementary techniques. In this paper, we consider the problem of enumerating the homomorphisms, monomorphisms and epimorphisms from a quasi-dihedral group into each of these four groups by using elementary methods.

We use the following notations: for a positive integer $n>1, D_{n}$ denotes the dihedral group generated by two generators x_{n} and y_{n} subject to the relations $x_{n}^{n}=e=y_{n}^{2}$ and $x_{n} y_{n}=y_{n} x_{n}^{-1}$; and for a positive integer $m>1, Q_{m}$ denotes the quaternion group generated by two generators a_{m} and b_{m} subject to the relations $a_{m}^{2 m}=e=b_{m}^{4}$ and $a_{m} b_{m}=b_{m} a_{m}^{-1}$; and for a positive integer $\alpha>3, Q D_{2^{\alpha}}$ denotes the quasi-dihedral group generated by two generators s_{α} and t_{α} subject to the relations $s_{\alpha}^{2^{\alpha-1}}=e=t_{\alpha}^{2}$ and $t_{\alpha} s_{\alpha}=s_{\alpha}^{2^{\alpha-2}-1} t_{\alpha}$; and for a positive integer $\beta>2, M_{p^{\beta}}$ denotes the modular group generated by two generators r_{β} and f_{β} subject to the relations $r_{\beta}^{p^{\beta-1}}=e=f_{\beta}^{p}$ and $f_{\beta} r_{\beta}=r_{\beta}^{p^{\beta-2}+1} f_{\beta}$.

[^1]
2. The Number of Homomorphisms From $Q D_{2^{\alpha}}$ into $Q D_{2^{\beta}}$

Theorem 2.1. Let $\alpha>3$ and $\beta>3$ be any two positive integers. Then the number of group homomorphisms from $Q D_{2^{\alpha}}$ into $Q D_{2^{\beta}}$ is $4+2^{\beta}+2^{\beta-2}\left(\sum_{k \mid \operatorname{gcd}\left(2^{\alpha-1}, 2^{\beta-1}\right)} \phi(k)\right)$.
Proof. Suppose ρ is a group homomorphism from $Q D_{2^{\alpha}}$ into $Q D_{2^{\beta}}$. Then $\left|\rho\left(s_{\alpha}\right)\right|$ divides $\left|s_{\alpha}\right|=2^{\alpha-1}$ and $\left|\rho\left(t_{\alpha}\right)\right|$ divides $\left|t_{\alpha}\right|=2$. Therefore, $\rho\left(s_{\alpha}\right)$ is either $s_{\beta}^{k_{1}} t_{\beta}, 0 \leq k_{1}<2^{\beta-1}$ or s_{β}^{m}, where $\left|s_{\beta}^{m}\right|$ divides both $2^{\alpha-1}$ and $2^{\beta-1}$; and $\rho\left(t_{\alpha}\right)$ is one of e or $s_{\beta}^{2^{\beta-2}}$ or $s_{\beta}^{k_{2}} t_{\beta}, 0 \leq k_{2}<2^{\beta-1}$ and k_{2} is even.
Suppose $\rho\left(s_{\alpha}\right)=s_{\beta}^{k_{1}} t_{\beta}, 0 \leq k_{1}<2^{\beta-1}$ and $\rho\left(t_{\alpha}\right)=e$. Then ρ is well defined only when k_{1} is even since $\rho\left(s_{\alpha}\right)^{2^{\alpha-2}}=e=$ $\rho\left(s_{\alpha} t_{\alpha}\right)^{2}$. Then $\rho\left(s_{\alpha}^{l} t_{\alpha}\right)=\left(s_{\beta}^{k_{1}} t_{\beta}\right)^{l}, 0 \leq l<2^{\alpha-1}$. For every $k_{1}, 0 \leq k_{1}<2^{\beta-1}$ and k_{1} is even, $\left|s_{\beta}^{k_{1}} t_{\beta}\right|=2$. Therefore, $\left|\left(s_{\beta}^{k_{1}} t_{\beta}\right)^{l}\right|=1$ or 2 , for every $l, 0 \leq l<2^{\alpha-1}$. Then $\left|\left(s_{\beta}^{k_{1}} t_{\beta}\right)^{l}\right|$ divides $\left|s_{\alpha}^{l} t_{\alpha}\right|$. Thus we have $2^{\beta-2}$ homomorphisms.
Similarly suppose $\rho\left(s_{\alpha}\right)=s_{\beta}^{k_{1}} t_{\beta}, 0 \leq k_{1}<2^{\beta-1}$ and $\rho\left(t_{\alpha}\right)=s_{\beta}^{2^{\beta-2}}$, then ρ is well defined only when k_{1} is even. Then $\rho\left(s_{\alpha}^{l} t_{\alpha}\right)=\left(s_{\beta}^{k_{1}} t_{\beta}\right)^{l} s_{\beta}^{2^{\beta-2}}$. If l is even, $\rho\left(s_{\alpha}^{l} t_{\alpha}\right)=s_{\beta}^{2^{\beta-2}}$ and if l is odd, $\rho\left(s_{\alpha}^{l} t_{\alpha}\right)=s_{\beta}^{k_{1}+2^{\beta-2}} t_{\beta}$. Thus in both cases $\left|\rho\left(s_{\alpha}^{l} t_{\alpha}\right)\right|$ divides $\left|s_{\alpha}^{l} t_{\alpha}\right|$. Thus we have $2^{\beta-2}$ homomorphisms.
Suppose $\rho\left(s_{\alpha}\right)=s_{\beta}^{k_{1}} t_{\beta}, 0 \leq k_{1}<2^{\beta-1}$ and $\rho\left(t_{\alpha}\right)=s_{\beta}^{k_{2}} t_{\beta}, 0 \leq k_{2}<2^{\beta-1}$ and k_{2} is even. Then $\rho\left(s_{\alpha}^{l} t_{\alpha}\right)=\left(s_{\beta}^{k_{1}} t_{\beta}\right)^{l} s_{\beta}^{k_{2}} t_{\beta}$. If l is even, $\rho\left(s_{\alpha}^{l} t_{\alpha}\right)=s_{\beta}^{k_{2}} t_{\beta}$ or $s_{\beta}^{k_{1} 2^{\beta-2}+k_{2}} t_{\beta}$. Since k_{2} is even, $\left|\rho\left(s_{\alpha}^{l} t_{\alpha}\right)\right|=2$ which divides $\left|s_{\alpha}^{l} t_{\alpha}\right|$. If l is odd, $\rho\left(s_{\alpha}^{l} t_{\alpha}\right)=s_{\beta}^{k_{1}-k_{2}}$ or $s_{\beta}^{k_{1}-k_{2}+k_{1} 2^{\beta-2}}$. Then ρ is a homomorphism only when $\left|\rho\left(s_{\alpha}^{l} t_{\alpha}\right)\right|$ divides 2 since $\rho\left(s_{\alpha}\right)^{2^{\alpha-2}}=e$. This is possible when $k_{1}-k_{2}$ must be either 0 or $2^{\beta-2}$. Thus there are $2 \times 2^{\beta-2}=2^{\beta-1}$ homomorphisms.
Suppose $\rho\left(s_{\alpha}\right)=s_{\beta}^{m}$, where $\left|s_{\beta}^{m}\right|$ divides both $2^{\alpha-1}$ and $2^{\beta-1}$, and $\rho\left(t_{\alpha}\right)=s_{\beta}^{k_{2}} t_{\beta}, 0 \leq k_{2}<2^{\beta-1}$ and k_{2} is even. Then $\rho\left(s_{\alpha}^{l} t_{\alpha}\right)=s_{\beta}^{l m+k_{2}} t_{\beta}$. If l is even, $\left|s_{\alpha}^{l} t_{\alpha}\right|=2$ and since k_{2} is even, $\left|s_{\beta}^{l m+k_{2}} t_{\beta}\right|=2$. If l is odd, $\left|s_{\alpha}^{l} t_{\alpha}\right|=4$ and $\left|s_{\beta}^{l m+k_{2}} t_{\beta}\right|=2$ or 4. Thus in both cases $\left|\rho\left(s_{\alpha}^{l} t_{\alpha}\right)\right|$ divides $\left|s_{\alpha}^{l} t_{\alpha}\right|$. Since $\rho\left(s_{\alpha}\right)$ has $\left(\sum_{k \mid \operatorname{gcd}\left(2^{\alpha-1}, 2^{\beta-1}\right)} \phi(k)\right)$ choices and $\rho\left(t_{\alpha}\right)$ has $2^{\beta-2}$ choices, in this case we have $2^{\beta-2}\left(\sum_{k \mid \operatorname{gcd}\left(2^{\alpha-1}, 2^{\beta-1}\right)} \phi(k)\right)$ homomorphisms.
Suppose $\rho\left(s_{\alpha}\right)=s_{\beta}^{m}$, where $\left|s_{\beta}^{m}\right|$ divides both $2^{\alpha-1}$ and $2^{\beta-1}$, and $\rho\left(t_{\alpha}\right)=e$. Then $\rho\left(s_{\alpha}^{l} t_{\alpha}\right)=s_{\beta}^{l m}$. Suppose l is even, ρ is a homomorphism when $\left|s_{\beta}^{l m}\right|$ divides $\left|s_{\alpha}^{l} t_{\alpha}\right|=2$. Therefore, m is one of $0,2^{\beta-2}, 2^{\beta-3}$ or $32^{\beta-3}$. Suppose l is odd and $\rho\left(s_{\alpha}\right)$ is one of $e, s_{\beta}^{2^{\beta-2}}, s_{\beta}^{2^{\beta-3}}$ or $s_{\beta}^{3} 2^{2^{\beta-3}}$ and $\rho\left(t_{\alpha}\right)=e$, then $\left|\rho\left(s_{\alpha}^{l} t_{\alpha}\right)\right|$ must divide 2 , since $\rho\left(s_{\alpha}\right)^{2^{\alpha-2}}=e$. Thus we have 2 choices for m that are 0 and $2^{\beta-2}$. Thus we have 2 homomorphisms.

Similarly if $\rho\left(s_{\alpha}\right)=s_{\beta}^{m}$, where $\left|s_{\beta}^{m}\right|$ divides both $2^{\alpha-1}$ and $2^{\beta-1}$, and $\rho\left(t_{\alpha}\right)=s_{\beta}^{2^{\beta-2}}$. Then ρ is a homomorphism only when m is either 0 or $2^{\beta-2}$. Thus we have 2 homomorphisms. Hence we get the result.

Corollary 2.1. Let $\alpha, \beta>3$. Then the number of monomorphisms from $Q D_{2^{\alpha}}$ into $Q D_{2^{\beta}}$ is $2^{2 \alpha-4}$, if $\alpha=\beta ; 0$, otherwise. Also the number of automorphisms on $Q D_{2^{\alpha}}$ is $2^{2 \alpha-4}$.

Proof. Suppose $\alpha>\beta$, then there is no monomorphism from $Q D_{2^{\alpha}}$ into $Q D_{2^{\beta}}$ since there is no element in $Q D_{2^{\alpha}}$ has order 2^{β}. So, assume that $\alpha \leq \beta$. If ρ is a group monomorphism from $Q D_{2^{\alpha}}$ into $Q D_{2^{\beta}}$. Then $\rho\left(s_{\alpha}\right)=s_{\beta}^{m}$, where $\left|s_{\beta}^{m}\right|=2^{\alpha-1}$ and $\rho\left(t_{\alpha}\right)=s_{\beta}^{k_{2}} t_{\beta}, 0 \leq k_{2}<2^{\beta-1}$ and k_{2} is even. Then $\rho\left(s_{\alpha}^{l} t_{\alpha}\right)=s_{\beta}^{l m+k_{2}} t_{\beta}$. If l is even, $\left|s_{\alpha}^{l} t_{\alpha}\right|=2$ and since k_{2} is even, $\left|s_{\beta}^{l m+k_{2}} t_{\beta}\right|=2$. If l is odd, $\left|s_{\alpha}^{l} t_{\alpha}\right|=4$ and $\left|s_{\beta}^{l m+k_{2}} t_{\beta}\right|=4$ only when m is odd. Thus if $\alpha=\beta$, we have $2^{\alpha-2} \phi\left(2^{\alpha-1}\right)=2^{2 \alpha-4}$ monomorphisms from $Q D_{2^{\alpha}}$ into $Q D_{2^{\beta}}$; and if $\alpha \neq \beta$, there is no monomorphism from $Q D_{2^{\alpha}}$ into $Q D_{2^{\beta}}$.

Corollary 2.2. Let $\alpha, \beta>3$. Then the number of epimorphisms from $Q D_{2^{\alpha}}$ onto $Q D_{2^{\beta}}$ is $2^{2 \beta-4}$, if $\alpha \geq \beta ; 0$, otherwise.
Proof. Suppose $\alpha<\beta$, then clearly there is no epimorphism epimorphisms from $Q D_{2^{\alpha}}$ onto $Q D_{2^{\beta}}$. So, assume that $\alpha \geq \beta$. If $\rho\left(s_{\alpha}\right)=s_{\beta}^{m}$, where $\left|s_{\beta}^{m}\right|=2^{\beta-1}$ and $\rho\left(t_{\alpha}\right)=s_{\beta}^{k_{2}} t_{\beta}, 0 \leq k_{2}<2^{\beta-1}$ and k_{2} is even. Then $\rho\left(s_{\alpha}\right)$ and $\rho\left(t_{\alpha}\right)$ generate the group $Q D_{2^{\beta}}$. Then ρ is a epimorphism. Thus we have $2^{2 \beta-4}$ epimorphisms, if $\alpha \geq \beta$; 0 , otherwise.

3. The Number of Homomorphisms From $Q D_{2^{\alpha}}$ into D_{n}

Theorem 3.1. Let n be a positive odd integer and $\alpha>3$, then the number of group homomorphisms from $Q D_{2^{\alpha}}$ into D_{n} is $3 n+1$.

Proof. Let $\rho: Q D_{2^{\alpha}} \rightarrow D_{n}$ be a group homomorphism. Then $\left|\rho\left(s_{\alpha}\right)\right|$ divides $\left|s_{\alpha}\right|=2^{\alpha-1}$, and since n is odd, $\rho\left(s_{\alpha}\right)$ must be either e or $x_{n}^{k_{1}} y_{n}, 0 \leq k_{1}<n$. Also since $\left|\rho\left(t_{\alpha}\right)\right|$ divides $\left|t_{\alpha}\right|=2, \rho\left(t_{\alpha}\right)=e$ or $\rho\left(t_{\alpha}\right)=x_{n}^{k_{2}} y_{n}, 0 \leq k_{2}<n$.
Suppose $\rho\left(s_{\alpha}\right)=e$ and $\rho\left(t_{\alpha}\right)=x_{n}^{k_{2}} y_{n}, 0 \leq k_{2}<n$, then $\rho\left(s_{\alpha}^{m} t_{\alpha}\right)=x_{n}^{k_{2}} y_{n}$ and $\left|x_{n}^{k_{2}} y_{n}\right|=2$ divides $\left|s_{\alpha}^{m} t_{\alpha}\right|$ for every $0 \leq m<2^{\alpha-1}$. Thus we have n such homomorphisms. Suppose $\rho\left(s_{\alpha}\right)=x_{n}^{k_{1}} y_{n}, 0 \leq k_{1}<n$ and $\rho\left(t_{\alpha}\right)=e$, then $\rho\left(s_{\alpha}^{m} t_{\alpha}\right)=\left(x_{n}^{k_{2}} y_{n}\right)^{m}$. If m is even, then $\left|\rho\left(s_{\alpha}^{m} t_{\alpha}\right)\right|=1$ and $\left|s_{\alpha}^{m} t_{\alpha}\right|=2$; and if m is odd, then $\left|\rho\left(s_{\alpha}^{m} t_{\alpha}\right)\right|=2$ and $\left|s_{\alpha}^{m} t_{\alpha}\right|=4$. Therefore, in both cases $\left|\rho\left(s_{\alpha}^{m} t_{\alpha}\right)\right|$ divides $\left|s_{\alpha}^{m} t_{\alpha}\right|$. Thus we have n homomorphisms in this case.
Suppose $\rho\left(s_{\alpha}\right)=x_{n}^{k_{1}} y_{n}, 0 \leq k_{1}<n$ and $\rho\left(t_{\alpha}\right)=x_{n}^{k_{2}} y_{n}, 0 \leq k_{2}<n$, then $\rho\left(s_{\alpha}^{m} t_{\alpha}\right)=\left(x_{n}^{k_{1}} y_{m}\right)^{m} x_{n}^{k_{2}} y_{n}$. If m is even, $\rho\left(s_{\alpha}^{m} t_{\alpha}\right)=x_{n}^{k_{2}} y_{n}$, and if m is odd, $\rho\left(s_{\alpha}^{m} t_{\alpha}\right)=x_{n}^{k_{1}-k_{2}}$. Therefore, ρ is a homomorphism if $\left|x_{n}^{k_{1}-k_{2}}\right|$ divides $\left|s_{\alpha}^{m} t_{\alpha}\right|=4$. Since n is odd, this is possible only when $k_{1}=k_{2}$. Thus there are n such homomorphisms. Thus in addition to the trivial homomorphism, totally there are $3 n+1$ homomorphisms.

Theorem 3.2. Let n be a positive even integer and $\alpha>3$. Then the number of group homomorphisms from $Q D_{2^{\alpha}}$ into D_{n} is $4+4 n+n\left(\sum_{k \mid \operatorname{gcd}\left(n, 2^{\alpha-2}\right)} \phi(k)\right)$.

Proof. Let ρ be a group homomorphism from $Q D_{2^{\alpha}}$ into D_{n}. Since n is even, $\rho\left(s_{\alpha}\right)$ can be of the form x_{n}^{β}, where $\left|x_{n}^{\beta}\right|$ divides both $2^{\alpha-1}$ and n, or $\rho\left(s_{\alpha}\right)=x_{n}^{k_{1}} y_{n}, 0 \leq k_{1}<n$; and $\rho\left(t_{\alpha}\right)$ is one of $e, x_{n}^{\frac{n}{2}}$, or $x_{n}^{k_{2}} y_{n}, 0 \leq k_{2}<n$.
Suppose $\rho\left(t_{\alpha}\right)=e$ and $\rho\left(s_{\alpha}\right)=x_{n}^{\beta}$, where $\left|x_{n}^{\beta}\right|$ divides both $2^{\alpha-1}$ and n. Then $\rho\left(s_{\alpha}^{m} t_{\alpha}\right)=x_{n}^{m \beta(\bmod n)}$ and $\left|x_{n}^{m \beta(\bmod n)}\right|$ divides $\left|s_{\alpha}^{m} t_{\alpha}\right|$. Suppose $n \equiv 2(\bmod 4)$, this is possible when $\beta=0$ or $\frac{n}{2}$; and if $n \equiv 0(\bmod 4)$, then the possible values of β are $0, \frac{n}{4}, \frac{n}{2}, \frac{3 n}{4}$. But if $\beta=\frac{n}{4}$ or $\frac{3 n}{4}, \rho$ is not well defined since $\rho\left(s_{\alpha}\right)^{2^{\alpha-2}}=e$ but $\rho\left(s_{\alpha} t_{\alpha}\right)^{2} \neq e$. As in the proof of Theorem 3.1, $\rho\left(t_{\alpha}\right)=e$ and $\rho\left(s_{\alpha}\right)=x_{n}^{k_{1}} y_{n}, 0 \leq k_{1}<n$, is a homomorphism. So, there are $n+2$ homomorphisms send t_{α} to e.

Similarly, there are $n+2$ homomorphisms send t_{α} to $x_{n}^{\frac{n}{2}}$. Suppose $\rho\left(s_{\alpha}\right)=x_{n}^{k_{1}} y_{n}, 0 \leq k_{1}<n$, and $\rho\left(t_{\alpha}\right)=x_{n}^{k_{2}} y_{n}, 0 \leq k_{2}<n$, then $\rho\left(s_{\alpha}^{m} t_{\alpha}\right)=\left(x_{n}^{k_{1}} y_{m}\right)^{m} x_{n}^{k_{2}} y_{n}$. If m is even, $\rho\left(s_{\alpha}^{m} t_{\alpha}\right)=x_{n}^{k_{2}} y_{n}$, and if m is odd, $\rho\left(s_{\alpha}^{m} t_{\alpha}\right)=x_{n}^{k_{1}-k_{2}}$. Therefore, ρ is a homomorphism if $\left|x_{n}^{k_{1}-k_{2}}\right|$ divides 2 since $\rho\left(s_{\alpha}^{\alpha^{\alpha-2}}\right)=e$. Then this is possible when $k_{1}=k_{2}$ or $k_{1}-k_{2}=\frac{n}{2}$. Thus there are $2 n$ such homomorphisms.
Suppose $\rho\left(s_{\alpha}\right)=x_{n}^{\beta}$, where $\left|x_{n}^{\beta}\right|$ divides both $2^{\alpha-1}$ and n, and $\rho\left(t_{\alpha}\right)=x_{n}^{k_{2}} y_{n}, 0 \leq k_{2}<n$, then $\rho\left(s_{\alpha}^{m} t_{\alpha}\right)=x_{n}^{m \beta+k_{2}(\bmod n)} y_{n}$. Then $\rho\left(s_{\alpha}^{m} t_{\alpha}\right)^{2}=e=\rho\left(s_{\alpha}^{s^{\alpha-2}}\right),\left|\rho\left(s_{\alpha}\right)\right|$ must divide both $2^{\alpha-2}$ and n. Thus there are $n\left(\sum_{k \mid \operatorname{gcd}\left(n, 2^{\alpha-2}\right)} \phi(k)\right)$ homomorphisms. Hence we obtain the result.

Corollary 3.1. Let n be a positive integer and $\alpha>3$. Then there is no monomorphism from $Q D_{2^{\alpha}}$ into D_{n}; and the number of epimorphism from $Q D_{2^{\alpha}}$ onto D_{n} is $n \phi(n)$, if n divides $2^{\alpha-2} ; 0$, otherwise.

Proof. The group $Q D_{2^{\alpha}}$ contains $2+2^{\alpha-2}$ elements having order 4 while the group D_{n} contains at most 2 elements having order 4. Thus there is no monomorphism from $Q D_{2^{\alpha}}$ into D_{n}.
Suppose n does not divide $2^{\alpha-1}$, then there is no epimorphism from $Q D_{2^{\alpha}}$ onto D_{n}. So, assume that n divides $2^{\alpha-1}$. Then by the Theorem 3.2, $\rho\left(s_{\alpha}\right)=x_{n}^{\beta}$, where $\left|x_{n}^{\beta}\right|=n \neq 2^{\alpha-1}$ and $\rho\left(t_{\alpha}\right)=x_{n}^{k_{2}} y_{n}, 0 \leq k_{2}<n$ is a homomorphism. Since $\rho\left(s_{\alpha}\right)$ and $\rho\left(t_{\alpha}\right)$ generate the group D_{n}, these homomorphisms are epimorphisms. Thus we have $n \phi(n)$ epimorphism from $Q D_{2^{\alpha}}$ onto D_{n}, if n divides $2^{\alpha-2} ; 0$, otherwise.

4. The Number of Homomorphisms From $Q D_{2^{\alpha}}$ into Q_{n}

Theorem 4.1. Let $\alpha>3$ be a positive integer and n be positive even integer. Then the number of group homomorphisms from $Q D_{2^{\alpha}}$ into Q_{n} is 8 .

Proof. Suppose that $\rho: Q D_{2^{\alpha}} \rightarrow Q_{n}$ is a group homomorphism, where $\alpha>3$ is a positive integer and n is positive even integer. Since $\left|\rho\left(s_{\alpha}\right)\right|$ divides $\left|s_{\alpha}\right|$, it must be the case that $\rho\left(s_{\alpha}\right)=a_{n}^{x} b_{n}, 0 \leq x<2 n$ or $\rho\left(s_{\alpha}\right)=a_{n}^{y}$, where a_{n}^{y} is an element of Q_{n} whose order divides both $2^{\alpha-1}$ and $2 n$, and since $\left|\rho\left(t_{\alpha}\right)\right|$ divides $\left|t_{\alpha}\right|$, either $\rho\left(t_{\alpha}\right)=a_{n}^{n}$ or e. But not all of these choices for $\rho\left(s_{\alpha}\right)$ yield homomorphisms, as can be seen when we consider where ρ sends the remaining elements in $Q D_{2^{\alpha}}$ of the form $s_{\alpha}^{l} t_{\alpha}$, where $0 \leq l<2^{\alpha-1}$.

If $\rho\left(t_{\alpha}\right)=e$ and $\rho\left(s_{\alpha}\right)=a_{n}^{y}$, where $\left|a_{n}^{y}\right|$ divides both $2^{\alpha-1}$ and $2 n$, then $\rho\left(s_{\alpha} t_{\alpha}\right)=a_{n}^{y}$ and $\left|a_{n}^{y}\right|$ divides $\left|s_{\alpha} t_{\alpha}\right|=4$, then $\rho\left(s_{\alpha}\right)$ must be one of $e, a_{n}^{n}, a_{n}^{\frac{n}{2}}$ or $a_{n}^{\frac{3 n}{2}}$, there are 4 homomorphisms exist such that $\rho\left(t_{\alpha}\right)=e$ and $\rho\left(s_{\alpha}\right)=e, a_{n}^{n}, a_{n}^{\frac{n}{2}}$ or $a_{n}^{\frac{3 n}{2}}$. Suppose $\rho\left(t_{\alpha}\right)=e$ and $\rho\left(s_{\alpha}\right)=a_{n}^{x} b_{n}, 0 \leq x<2 n$, then $\rho\left(s_{\alpha}^{2^{\alpha-2}}\right)=e$. Since $s_{\alpha}^{2^{\alpha-2}}=\left(s_{\alpha} t_{\alpha}\right)^{2},\left|s_{\alpha} t_{\alpha}\right|$ must divide 2. But in this case $\rho\left(s_{\alpha} t_{\alpha}\right)=a_{n}^{x} b_{n}$. Therefore, this ρ is not a homomorphism. Similarly, if $\rho\left(t_{\alpha}\right)=a_{n}^{n}$ and $\rho\left(s_{\alpha}\right)=a_{n}^{x} b_{n}, 0 \leq x<2 n$, then ρ is not a homomorphism.

Suppose $\rho\left(t_{\alpha}\right)=a_{n}^{n}$ and $\rho\left(s_{\alpha}\right)=a_{n}^{y}$, where $\left|a_{n}^{y}\right|$ divides both $2^{\alpha-1}$ and $2 n$, then $\rho\left(s_{\alpha} t_{\alpha}\right)=a_{n}^{y+n}$ and $\left|a_{n}^{y+n}\right|$ divides $\left|s_{\alpha} t_{\alpha}\right|$, then $\rho\left(s_{\alpha}\right)$ must be one of $e, a_{n}^{n}, a_{n}^{\frac{n}{2}}$ or $a_{n}^{\frac{3 n}{2}}$, there are 4 homomorphisms exist such that $\rho\left(t_{\alpha}\right)=a_{n}^{n}$ and $\rho\left(s_{\alpha}\right)=e, a_{n}^{n}, a_{n}^{\frac{n}{2}}$ or $a_{n}^{\frac{3 n}{2}}$. Hence we get the result.

Theorem 4.2. Let $\alpha>3$ be a positive integer and n be positive odd integer. Then the number of group homomorphisms from $Q D_{2^{\alpha}}$ into Q_{n} is 4 .

Proof. Let as assume that $\rho: Q D_{2^{\alpha}} \rightarrow Q_{n}$ is a group homomorphism, where α is positive integer and n is positive odd integer. As in the proof Theorem 4.1, when n is odd, the possible choices for $\rho\left(s_{\alpha}\right)$ are e, a_{n}^{n} or $a_{n}^{x} b_{n}, 0 \leq x<2 n$ and the possible choices for $\rho\left(t_{\alpha}\right)$ are either e or a_{n}^{n}. As in the proof of the Theorem 4.1, if $\rho\left(t_{\alpha}\right)=e$ or a_{n}^{n} and $\rho\left(s_{\alpha}\right)=a_{n}^{x} b_{n}, 0 \leq$ $x<2 n$, then ρ is not a homomorphism. Thus we have 4 homomorphisms.

Corollary 4.1. Let $\alpha>3, n$ be any two positive integers. Then there is no monomorphism and epimorphism from $Q D_{2^{\alpha}}$ into Q_{n}.

Proof. The group $Q D_{2^{\alpha}}$ contains $1+2^{\alpha-2}$ elements having order 2 , while Q_{n} contains only one element having order 2 . Thus there is no monomorphism from $Q D_{2^{\alpha}}$ into Q_{n}.

By the Theorem 4.1, 4.2, we have at most 8 homomorphisms from $Q D_{2^{\alpha}}$ into Q_{n}. We can verify that none of these homomorphisms are onto.

5. The Number of Homomorphisms From $Q D_{2^{\alpha}}$ into $M_{p^{\beta}}$

Theorem 5.1. Let $p \neq 2$ be a prime number, $\alpha>3$ and $\beta>2$. Then there is only the trivial homomorphism from $Q D_{2^{\alpha}}$ into $M_{p^{\beta}}$.

Proof. \quad Suppose $\rho: Q D_{2^{\alpha}} \rightarrow M_{p^{\beta}}$ is a group homomorphism. Then $\left|\rho\left(s_{\alpha}\right)\right|$ divides $\left|s_{\alpha}\right|=2^{\alpha-1}$ and $\left|\rho\left(t_{\alpha}\right)\right|$ divides $\left|t_{\alpha}\right|=2$. That is the trivial homomorphism is the only homomorphism exist from $Q D_{2^{\alpha}}$ into $M_{p^{\beta}}, p \neq 2$.

Theorem 5.2. Suppose $\alpha>3$ and $\beta>2$ are two positive integers. Then the number of homomorphisms from $Q D_{2^{\alpha}}$ into $M_{2^{\beta}}$ is 16.

Proof. Suppose ρ is a group homomorphism from $Q D_{2^{\alpha}}$ into $M_{2^{\beta}}$. Then $\rho\left(s_{\alpha}\right)=r_{\beta}^{k}$, where $\left|r_{\beta}^{k}\right|$ divides both $2^{\alpha-1}$ and $2^{\beta-1}$ or $\rho\left(s_{\alpha}\right)=r_{\beta}^{k} f_{\beta}$, where $\left|r_{\beta}^{k}\right|$ divides both $2^{\alpha-1}$ and $2^{\beta-1}$, and $\rho\left(t_{\alpha}\right)=r_{\beta}^{m_{1} 2^{\beta-2}} f_{\beta}^{m_{2}}, m_{1}, m_{2}=0,1$.
Suppose $\rho\left(s_{\alpha}\right)=r_{\beta}^{k}$, where $\left|r_{\beta}^{k}\right|$ divides both $2^{\alpha-1}$ and $2^{\beta-1}$, and $\rho\left(t_{\alpha}\right)=r_{\beta}^{m_{1} 2^{\beta-2}} f_{\beta}^{m_{2}}$, where $m_{1}, m_{2}=0,1$. Then $\rho\left(s_{\alpha}^{l} t_{\alpha}\right)=r_{\beta}^{l k+m_{1} 2^{\beta-2}} f_{\beta}^{m_{2}}$. Since ρ is a homomorphism, $\left|r_{\beta}^{l k+m_{1} 2^{\beta-2}} f_{\beta}^{m_{2}}\right|=\left|r_{\beta}^{l k+m_{1} 2^{\beta-2}}\right|$ must divide $\left|s_{\alpha}^{l} t_{\alpha}\right|$. This is possible only when $\left|r_{\beta}^{k}\right|$ divides 4. Then $\rho\left(s_{\alpha}\right)^{2^{\alpha-2}}=e$ and so $\left|\rho\left(s_{\alpha}^{l} t_{\alpha}\right)\right|$ must divide 2 . Thus we have 2 choices for $\rho\left(s_{\alpha}\right)$ and 4 choices for $\rho\left(t_{\alpha}\right)$. Hence we get 8 homomorphisms in this case.
Suppose $\rho\left(s_{\alpha}\right)=r_{\beta}^{k} f_{\beta}$, where $\left|r_{\beta}^{k}\right|$ divides both $2^{\alpha-1}$ and $2^{\beta-1}$, and $\rho\left(t_{\alpha}\right)=r_{\beta}^{m_{1} 2^{\beta-2}} f_{\beta}^{m_{2}}$, where $m_{1}, m_{2}=0,1$. Then $\rho\left(s_{\alpha}^{l} t_{\alpha}\right)=\left(r_{\beta}^{k} f_{\beta}\right)^{l}\left(r_{\beta}^{m_{1} 2^{\beta-2}} f_{\beta}^{m_{2}}\right)=r_{\beta}^{l k+l k 2^{\beta-2}} f_{\beta}^{l} r_{\beta}^{m_{1} 2^{\beta-2}} f_{\beta}^{m_{2}}$. If l is even, $\left|s_{\alpha}^{l} t_{\alpha}\right|=2$, and $\rho\left(s_{\alpha}^{l} t_{\alpha}\right)=r_{\beta}^{l k+l k 2^{\beta-2}+m_{1} 2^{\beta-2}} f_{\beta}^{m_{2}}$. If l is odd $\left|s_{\alpha}^{l} t_{\alpha}\right|=4$, and $\rho\left(s_{\alpha}^{l} t_{\alpha}\right)=r_{\beta}^{l k+l k 2^{\beta-2}}\left(r_{\beta}^{m_{1} 2^{\alpha-2}}\right)^{2^{\alpha-2}+1} f_{\beta}^{1+m_{2}}$. Then $\left|\rho\left(s_{\alpha}^{l} t_{\alpha}\right)\right|$ divides $\left|s_{\alpha}^{l} t_{\alpha}\right|=4$, only when $\left|r_{\beta}^{k}\right|$ divides 4. Then $\rho\left(s_{\alpha}\right)^{2^{\alpha-2}}=e$ and so $\left|\rho\left(s_{\alpha}^{l} t_{\alpha}\right)\right|$ must divide 2. Thus we have 2 choices for $\rho\left(s_{\alpha}\right)$ and 4 choices for $\rho\left(t_{\alpha}\right)$. Hence we get 8 homomorphisms in this case. Hence we get the result.

Corollary 5.1. Suppose $\alpha>3$ and $\beta>2$ are two positive integers. Then there is no monomorphism and epimorphism from $Q D_{2^{\alpha}}$ into $M_{2^{\beta}}$.

Proof. The group $Q D_{2^{\alpha}}$ contains $1+2^{\alpha-2}$ elements having order 2. But $M_{2^{\alpha}}$ has only two elements of order 2 . Therefore there is no monomorphism from $Q D_{2^{\alpha}}$ into $M_{2^{\alpha}}$. Also we can verify that none of the homomorphisms obtained in the Theorem 5.2 are epimorphism.

References

[1] M.Bate, The number of homomorphisms from finite groups to classical groups, J. Algebra, 308(2007), 612-628.
[2] J.A.Gallian and J.Van Buskirk, The number of homomorphisms from \mathbb{Z}_{m} into \mathbb{Z}_{n}, Amer. Math. Monthly, 91(1984), 196-197.
[3] J.A.Gallian and D.S.Jungreis, Homomorphisms from $\mathbb{Z}_{m}[i]$ into $\mathbb{Z}_{n}[i]$ and $\mathbb{Z}_{m}[\rho]$ into $\mathbb{Z}_{n}[\rho]$, where $i^{2}+1=0$ and $\rho^{2}+\rho+1=0$, Amer. Math. Monthly, 95(1988), 247-249.
[4] Jeremiah Johnson, The number of group homomorphisms from D_{m} into D_{n}, The College Mathematics Journal, 44(2013), 190-192.
[5] D.Matei and A.Suciu, Counting homomorphisms onto finite solvable groups, J. Algebra, 286(2005), 161-186.
[6] R.Rajkumar, M.Gayathri, T.Anitha, The number of homomorphisms from dihedral group in to some finite groups, Mathematical Sciences International Research Journal, 4 (2015), 161-165.
[7] R.Rajkumar, M.Gayathri, T.Anitha, The number of homomorphisms from quaternion group in to some finite groups, International Journal of Mathematics and its Applications, 3(3-A)(2015), 23-30.
[8] R.Rajkumar, M.Gayathri, T.Anitha, Enumeration of homomorphisms from modular group in to some finite groups, International Journal of Mathematics and its Applications, 3(3-B)(2015), 15-19.

[^0]: Abstract: We derive general formulae for counting the number of homomorphisms from quasi-dihedral group into each of quasidihedral group, quaternion group, dihedral group, and modular group by using only elementary group theory.

 MSC: 20K30.

[^1]: * E-mail: rrajmaths@yahoo.co.in

