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1. Introduction

Counting homomorphisms between two groups or rings is a basic problem in group thoery. In [2], Gallian and Buskirk
enumerated the homomorphisms between two specified cyclic groups by using only elementary group theory. Also by using
the elementary techniques, in [3] Gallian and Jungreis provided a method for counting homomorphisms between some specific
rings. In [5], Matei et al present a method for computing the number of epimorphisms from a finitely presented group to
a finite solvable group. But this needs advanced tools of algebra; see, also in [1]. In [4] Jeremiah Johnson, described a
method of enumerating homomorphisms between two specified dihedral groups by using only elementary methods. Now
we consider dihedral group, quaternion group, quasi-dihedral group and modular group. In [6], [7] and [8] authors give the
enumeration of homomorphisms, monomorphisms and epimorphisms from each of dihedral group, quaternion group and
modular group into each of these four groups respectively by using elementary techniques. In this paper, we consider the
problem of enumerating the homomorphisms, monomorphisms and epimorphisms from a quasi-dihedral group into each of
these four groups by using elementary methods.

We use the following notations: for a positive integer n > 1, D,, denotes the dihedral group generated by two generators
zn and y, subject to the relations 2" = e = y2 and Tp,yn = ynz,'; and for a positive integer m > 1, Q., denotes the
quaternion group generated by two generators a,, and b,, subject to the relations a2™ = e = b}, and ambm = bma,;; and
for a positive integer o« > 3, QD2a denotes the quasi-dihedral group generated by two generators s, and t, subject to the

relations sgkl =e=1t2 and ta54 = siaiz_lta; and for a positive integer 8 > 2, M, s denotes the modular group generated

B—1 B—2
by two generators 75 and fg subject to the relations 7 =e = f§ and fsrg =1} s

* E-mail: rrajmaths@yahoo.co.in


http://ijmaa.in/

Counting Homomorphisms From Quasi-dihedral Group into Some Finite Groups

2. The Number of Homomorphisms From ()Ds. into ()Dys

Theorem 2.1. Let a > 3 and > 3 be any two positive integers. Then the number of group homomorphisms from @Dz«
into QDyp is 4+ 27 4 2772 > o(k)

k|ged(20—1,268-1)
Proof.  Suppose p is a group homomorphism from Q Dz into QD,s. Then |p(s4)| divides |sa| = 2%7* and |p(ta)| divides
|ta| = 2. Therefore, p(sa) is either s§1t57 0 < ki < 277! or sj, where |sj'| divides both 2>~ and 2°~'; and p(ta) is one of
e or 8%1372 or 522755, 0< ko < 2% ' and ko is even.
Suppose p(sa) = sgltg, 0 < ki < 2°7" and p(ta) = e. Then p is well defined only when ki is even since p(sa)Tk2 =e=
p(sata)? . Then p(shts) = (Sgltﬁ)l, 0 <1< 2! Forevery ki, 0 < k1 < 2°7% and k; is even, |s§1tg| = 2. Therefore,
|(sf§1t3)l| =1or 2, for every I, 0 <1 < 2°"*. Then |(sglt5)l| divides |s4ta|. Thus we have 2°~2 homomorphisms.
Similarly suppose p(sq) = Sglt,@, 0 <k <2°7! and p(ta) = 5%672, then p is well defined only when ki is even. Then
p(shta) = (sglt/;)lséﬁﬁ. If [ is even, p(shta) = 3%372 and if [ is odd, p(shta) = sgl+2ﬂ72t5. Thus in both cases |p(shta)]
divides |s4ta|. Thus we have 2°~2 homomorphisms.
Suppose p(sa) = Sgltg, 0 <k <27 and p(t,) = 522755, 0 < k2 < 2°71 and ks is even. Then p(shts) = (sgltg)lsgztg. It
is even, p(shta) = sf,?t/g or 52121372""@275[3. Since k2 is even, |p(shta)| = 2 which divides |sta|. If I is odd, p(shts) = sgl_IW

k1—ko+k12P—2 202

or sy . Then p is a homomorphism only when |p(shts)| divides 2 since p(sq) = e. This is possible when

k1 — k2 must be either 0 or 2°72. Thus there are 2 x 272 = 2°~! homomorphisms.

Suppose p(sa) = s, where |s7'| divides both 2*~" and 2°7', and p(ta) = SZth, 0 < k2 < 2°7" and ks is even. Then

p(shta) = slﬁm+k2t5. If [ is even, |shta| = 2 and since k2 is even, \slﬁm+k2t5| =2. If lis odd, |shta| = 4 and \sfgm+k2t5| =2or

4. Thus in both cases |p(shta)| divides |shtq|. Since p(sq) has Z ¢(k) | choices and p(ts) has 2°~2 choices,
k| ged(20—1,28-1)

in this case we have 2°72 Z ¢(k) | homomorphisms.

k| ged(20—1,28-1)
Suppose p(sa) = s, where |s7'| divides both 27! and 2°7!, and p(ta) = e. Then p(shta) = s§™. Suppose [ is even, p is a
homomorphism when |sg”| divides |s4ta| = 2. Therefore, m is one of 0, 2872, 2673 or 3 2°~3, Suppose [ is odd and p(sa)
is one of e, 3%372, SEIFS or s 2"7% and p(ta) = e, then |p(shts)| must divide 2, since p(sa)QM2 = e. Thus we have 2 choices
for m that are 0 and 2°72. Thus we have 2 homomorphisms.
Similarly if p(so) = sj', where |s5'| divides both 27" and 2°7', and p(ts) = s%ﬁ_Q. Then p is a homomorphism only when

m is either 0 or 2°72. Thus we have 2 homomorphisms. Hence we get the result. O

Corollary 2.1. Let o, 8 > 3. Then the number of monomorphisms from QDaa into QDys is 2274, if a = B; 0, otherwise.

Also the number of automorphisms on QDaa is 22974,

Proof. Suppose a > (3, then there is no monomorphism from Q D2« into QD,s since there is no element in Q D2o has order
2%, So, assume that a < . If p is a group monomorphism from QDaa into QDys. Then p(ss) = sp', where |s3'| = 2ot
and p(ta) = ngtg7 0 < ko < 2°7! and ks is even. Then p(shts) = sgm+k2t5. If [ is even, |sht| = 2 and since k2 is even,
s 2ts| = 2. If Lis odd, |shta| = 4 and |s]]""*2t5| = 4 only when m is odd. Thus if o = 3, we have 2°?¢(2°~") = 2%*~*

monomorphisms from QDse into QDys; and if a # 3, there is no monomorphism from QDae into QDo O

Corollary 2.2. Let o, 3 > 3. Then the number of epimorphisms from QDaa onto QDys is 22P~%, if a > B; 0, otherwise.

Proof. Suppose a < f3, then clearly there is no epimorphism epimorphisms from QDso onto QDys. So, assume that

a > B. If p(sa) = s7, where |s7'| = 2°7! and p(ta) = 31;32255, 0 < k2 < 2°7! and ks is even. Then p(so) and p(t.) generate

9284

the group QDys. Then p is a epimorphism. Thus we have epimorphisms, if a > 3; 0, otherwise. O
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3. The Number of Homomorphisms From ()Ds. into D,

Theorem 3.1. Let n be a positive odd integer and o > 3, then the number of group homomorphisms from QDze into D,

is 3n+ 1.

Proof. Let p: QDsa — D,, be a group homomorphism. Then |p(s,)| divides |so| = 27!, and since n is odd, p(s4) must
be either e or zh1y,,0 < k1 < n. Also since |p(tq)| divides [to| = 2, p(ta) = € or p(ta) = zF2yn,0 < ko < n.

Suppose p(sa) = e and p(ta) = 72y,,0 < ko < n, then p(sTt,) = zF2y, and |zF2y,| = 2 divides |sT't,| for every
0 < m < 2°7'. Thus we have n such homomorphisms. Suppose p(sa) = z¥'y,,0 < k1 < n and p(ta) = e, then
p(sTta) = (xh2y,)™. If m is even, then |p(sTts)] = 1 and |sT'4| = 2; and if m is odd, then |p(sT'ta)| = 2 and [Tt | = 4.

Therefore, in both cases |p(sy'ta)| divides |sg'to|. Thus we have n homomorphisms in this case.

m, ko

Suppose p(sa) = ¥y,,0 < k1 < n and p(ta) = 2¥2y,,0 < ko < n, then p(sTts) = (zFy,)"zF2y,. If m is even,

k1—k2

p(sTty) = xRy, and if m is odd, p(sTts) = xh Therefore, p is a homomorphism if |21 72| divides |s7'to| = 4.

Since n is odd, this is possible only when k1 = k2. Thus there are n such homomorphisms. Thus in addition to the trivial

homomorphism, totally there are 3n + 1 homomorphisms. O

Theorem 3.2. Let n be a positive even integer and o > 3. Then the number of group homomorphisms from QDaze into D,

isd+4dn+n Z o(k)

k| ged(n,22—2)
Proof.  Let p be a group homomorphism from QDsa into D,. Since n is even, p(s.) can be of the form zf, where |27 |

divides both 2*7! and n, or p(sa) = 2Py, 0 < k1 < n; and p(ta) is one of e, mg, or 2y, 0 < ks < n.

Suppose p(ta) = e and p(sa) = @2, where |z£| divides both 2°~! and n. Then p(sTta) = ap?™* ™ and |z #med ™|

divides [s5'ta|. Suppose n = 2(mod 4), this is possible when § = 0 or %; and if n = 0(mod 4), then the possible values of 3

are 0, 7, %, %. But if 8 = 7 or 37n7 p is not well defined since p(sa)2a_2 = e but p(sata)2 # e. As in the proof of Theorem
3.1, p(ta) = e and p(sa) = 2Py, 0 < k1 < n, is a homomorphism. So, there are n + 2 homomorphisms send ¢, to e.
Similarly, there are n+2 homomorphisms send t, to .2 . Suppose p(sq) = 2 y,,0 < k1 < n, and p(te) = 2r2y,,0 < ka2 < n,

then p(sTte) = (2Flym) "z 2y,. If m is even, p(sTta) = z¥2y,, and if m is odd, p(sTt) = zF17F2

. Therefore, p is a
homomorphism if |xﬁ17k2| divides 2 since p(sia_2) = e. Then this is possible when ki = k2 or k1 — k2 = 5. Thus there are

2n such homomorphisms.

Suppose p(sa) = x4, where |z2| divides both 27! and n, and p(te) = ©%2y,,0 < k2 < n, then p(sTts) = gmPtka(med ),
Then p(sT'ts)? = e = p(siﬂﬁ), |p(s4)] must divide both 22 and n. Thus there are n Z ¢(k) | homomorphisms.

k| ged(n,2=2)
Hence we obtain the result.
Corollary 3.1. Let n be a positive integer and o > 3. Then there is no monomorphism from QDsze into D, ; and the

number of epimorphism from QDo onto Dy is n ¢(n), if n divides 2972, otherwise.

Proof. The group QD2o contains 2+2%~2 elements having order 4 while the group D,, contains at most 2 elements having
order 4. Thus there is no monomorphism from @ Daza into D,,.

Suppose n does not divide 2!, then there is no epimorphism from QDz« onto D,,. So, assume that n divides 2*~!. Then
by the Theorem 3.2, p(sa) = 5, where |22 = n # 2°7! and p(ta) = £%2y,,0 < k2 < n is a homomorphism. Since p(sa)
and p(to) generate the group D,, these homomorphisms are epimorphisms. Thus we have n ¢(n) epimorphism from QD2e

onto D,,, if n divides 2%~2%; 0, otherwise. O
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4. The Number of Homomorphisms From ()Ds. into @),

Theorem 4.1. Let a > 3 be a positive integer and n be positive even integer. Then the number of group homomorphisms

from QDao into @y is 8.

Proof.  Suppose that p : QD2o — Q,, is a group homomorphism, where o > 3 is a positive integer and n is positive even
integer. Since |p(sa)| divides |s«[, it must be the case that p(sa) = anbn,0 < < 2n or p(sa) = ajy, where af, is an element
of @, whose order divides both 2*7! and 2n, and since |p(to)| divides |to|, either p(t,) = a? or e. But not all of these
choices for p(sa) yield homomorphisms, as can be seen when we consider where p sends the remaining elements in Q Dz« of
the form sl ta, where 0 <1 < 2971,

If p(ta) = e and p(sq) = a¥, where |a¥| divides both 2°~! and 2n, then p(sats) = a¥ and |a%| divides |sata| = 4, then p(sa)

3n n 3n

must be one of e,a, a7 or a,;? , there are 4 homomorphisms exist such that p(to) = e and p(sa) = e,alr,a? or a, .
Suppose p(ta) = e and p(sa) = anbn,0 < < 2n, then p(siad) = e. Since siai2 = (Sata)?, |Sata| must divide 2. But in
this case p(sata) = a5bn. Therefore, this p is not a homomorphism. Similarly, if p(ta) = an and p(sa) = apbn,0 < z < 2n,

then p is not a homomorphism.

Suppose p(ta) = a? and p(s.) = a¥, where |a¥%| divides both 2%~ and 2n, then p(sate) = a%™ and |a¥%™| divides |satal,

3n n
2

then p(sa) must be one of e, ay, a2 or ar , there are 4 homomorphisms exist such that p(to) = a7, and p(sa) = e, ay, aZ? or
3n

an? . Hence we get the result. O

Theorem 4.2. Let a > 3 be a positive integer and n be positive odd integer. Then the number of group homomorphisms

from QDa2o into Qn is 4.

Proof. Let as assume that p : QD2o — Q. is a group homomorphism, where « is positive integer and n is positive odd
integer. As in the proof Theorem 4.1, when n is odd, the possible choices for p(s.) are e, ay or apbn,0 < z < 2n and the
possible choices for p(t,) are either e or ay.As in the proof of the Theorem 4.1, if p(to) = e or a and p(sa) = anbp,0 <

x < 2n, then p is not a homomorphism. Thus we have 4 homomorphisms. O

Corollary 4.1. Let a > 3, n be any two positive integers. Then there is no monomorphism and epimorphism from QDaa

mnto Qn.

Proof. The group QD2o contains 1 4+ 2%~2 elements having order 2, while @, contains only one element having order 2.
Thus there is no monomorphism from QDse into Qp.
By the Theorem 4.1, 4.2, we have at most 8 homomorphisms from @ Dze into Q,. We can verify that none of these

homomorphisms are onto. O

5. The Number of Homomorphisms From () Ds- into M

Theorem 5.1. Let p # 2 be a prime number, o > 3 and B > 2. Then there is only the trivial homomorphism from Q Dz«

into Mpg .

Proof.  Suppose p : QD2a — M,s is a group homomorphism. Then |p(sq)| divides [so| = 2%7" and [p(ta)| divides [ta| = 2.

That is the trivial homomorphism is the only homomorphism exist from QD2 into M,s, p # 2. O

Theorem 5.2. Suppose a > 3 and 8 > 2 are two positive integers. Then the number of homomorphisms from QDao into

M, is 16.



R. Rajkumar, M. Gayathri and T. Anitha

Proof.  Suppose p is a group homomorphism from QDse into Mys. Then p(sa) = rg, where \r§| divides both 2%~ ! and

B—2
2°71 or p(sa) = 75 f5, where |rj| divides both 2" and 2°7', and p(ts) = rg”z fz?mi,me =0,1.

B—2

Suppose p(sa) = rlg, where |r;§| divides both 27! and 2°71, and p(t,) = 7';3”12 f;nz, where mq,m2 = 0,1. Then
B—2 B—2 B—2

p(shta) = rgk+m12 f3"*. Since p is a homomorphism, |7‘gg+m12 f57 = |rg“+m12 | must divide |s,t,|. This is possible

only when |r}| divides 4. Then /)(53&)2&72 = e and 50 |p(shta)| must divide 2. Thus we have 2 choices for p(s4) and 4 choices
for p(ta). Hence we get 8 homomorphisms in this case.

Suppose p(sa) = 7 fs, where |rf| divides both 2*~' and 2071 and p(t,) = r?12B72f;nz, where mi,ma = 0,1. Then
p(shta) = (réfg)l(r;;nﬂﬁdf;"z) = rgk*'lkzﬂizférg”ﬁizfg”. If I is even, |shto| = 2, and p(shts) = rék+lk2‘372+m12372f;"2.
If I is odd |shta| = 4, and p(shts) = rgk“mﬁiz(rg“zad)2072“]”;*"‘2. Then |p(shta)| divides |shta| = 4, only when |rf]

divides 4. Then p(sa)Tk2 = ¢ and so |p(sht)| must divide 2. Thus we have 2 choices for p(sq) and 4 choices for p(ta).

Hence we get 8 homomorphisms in this case. Hence we get the result. O

Corollary 5.1. Suppose a > 3 and 8 > 2 are two positive integers. Then there is no monomorphism and epimorphism

from QD2a into Myps.

Proof. The group QDo contains 1422 elements having order 2. But Mo has only two elements of order 2. Therefore
there is no monomorphism from QDze into Msa. Also we can verify that none of the homomorphisms obtained in the

Theorem 5.2 are epimorphism. O
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