Enumeration of Homomorphisms From Modular Group into Some Finite Groups

Research Article

R. Rajkumar ${ }^{1 *}$, M. Gayathri ${ }^{1}$ and T. Anitha ${ }^{1}$

1 Department of Mathematics, The Gandhigram Rural Institute-Deemed University, Gandhigram, Tamil Nadu, India.

[^0]Keywords: Finite groups, homomorphisms.
(C) JS Publication.

1. Introduction

Enumeration of homomorphisms between two groups or rings is a basic problem in abstract algebra. For instance, in [2] and [3], this problem was settled in the case of finite cyclic groups and specific type of rings respectively by using only elementary methods. But in general counting homomorphisms between groups needs advanced tools of algebra; see, for instance [1, 5]. So in [4] Jeremiah Johnson, described a method of enumerating homomorphisms between two specified dihedral groups by using only elementary methods. Now we consider dihedral group, quaternion group, quasi-dihedral group and modular group. In [6], [7] and [8] authors give the enumeration of homomorphisms, monomorphisms and epimorphisms from each of dihedral group, quaternion group and quasi-dihedral group into each of these four groups respectively by using elementary techniques. In this paper, we consider the problem of enumerating the homomorphisms, monomorphisms and epimorphisms from a modular group into each of these four groups by using elementary methods.

We use the following notations in this paper: for a positive integer $n>1$, the dihedral group $D_{n}:=\left\langle x_{n}, y_{n}\right| x_{n}^{n}=e=$ $\left.y_{n}^{2}, x_{n} y_{n}=y_{n} x_{n}^{-1}\right\rangle$; and for a positive integer $m>1$, the quarternion group $Q_{m}:=\left\langle a_{m}, b_{m} \mid a_{m}^{2 m}=e=b_{m}^{4}, a_{m} b_{m}=b_{m} a_{m}^{-1}\right\rangle$; and for a positive integer $\alpha>3$, the quasi-dihedral group $Q D_{2^{\alpha}}:=\left\langle s_{\alpha}, t_{\alpha} \mid s_{\alpha}^{2^{\alpha-1}}=e=t_{\alpha}^{2}, t_{\alpha} s_{\alpha}=s_{\alpha}^{2^{\alpha-2}-1} t_{\alpha}\right\rangle$; and for a positive integer $\beta>2$, the modular group $M_{p^{\beta}}:=\left\langle r_{\beta}, f_{\beta} \mid r_{\beta}^{p^{\beta-1}}=e=f_{\beta}^{p}, f_{\beta} r_{\beta}=r_{\beta}^{p^{\beta-2}+1} f_{\beta}\right\rangle$.

2. The Number of Homomorphisms From $M_{p^{\alpha}}$ into $M_{q^{\beta}}$

Theorem 2.1. Let $\alpha, \beta>3$ be any two positive integers. Then the number of homomorphisms from $M_{p^{\alpha}}$ into $M_{q^{\beta}}$ is $p^{3}\left(\sum_{k \mid \operatorname{gcd}\left(p^{\alpha-1}, p^{\beta-1}\right)} \phi(k)\right)$, if $p=q$; 1, if $p \neq q$.

[^1]Proof. Suppose $\rho: M_{p^{\alpha}} \rightarrow M_{q^{\beta}}$ is a group homomorphism. Then $\left|\rho\left(r_{\alpha}\right)\right|$ must divide $\left|r_{\alpha}\right|=p^{\alpha-1}$ and $\left|\rho\left(f_{\alpha}\right)\right|$ must divide $\left|f_{\alpha}\right|=p$.
Suppose $p \neq q$, this is possible only when $\rho\left(r_{\alpha}\right)=e$ and $\rho\left(f_{\alpha}\right)=e$ which gives the trivial homomorphism. Suppose $p=q$, then $\rho\left(r_{\alpha}\right)$ must be of the form $r_{\beta}^{k_{1}} f_{\beta}^{k_{2}}$, where $\left|r_{\beta}^{k_{1}}\right|$ divides both $p^{\alpha-1}$ and $p^{\beta-1}$ and $0 \leq k_{2}<p$ and $\rho\left(f_{\alpha}\right)$ must be of the form $r_{\beta}^{m_{1}} f_{\beta}^{m_{2}}$, where $\left|r_{\beta}^{m_{1}}\right|$ divides p and $0 \leq m_{2}<p$. Then by simple calculation, we can verify that $\left|\rho\left(r_{\alpha}^{l} f_{\alpha}\right)\right|$ divides $\left|r_{\alpha}^{l} f_{\alpha}\right|$. Since $\rho\left(r_{\alpha}\right)$ has $p\left(\sum_{k \mid \operatorname{gcd}\left(p^{\alpha-1}, p^{\beta-1}\right)} \phi(k)\right)$ choices and $\rho\left(f_{\alpha}\right)$ has p^{2} choices, we get the result.

Corollary 2.1. Let $\alpha>2$ be any positive integer. Then the number of monomorphism from $M_{p^{\alpha}}$ into $M_{q^{\beta}}$ is $\left(p^{3}-p\right) p^{\alpha-2}$, if $p=q$ and $\alpha \leq \beta ; 0$, otherwise. The number of epimorphisms from $M_{p^{\alpha}}$ onto $M_{q^{\beta}}$ is $\left(p^{3}-p\right) p^{\beta-2}$, if $p=q$ and $\alpha \geq \beta ; 0$, otherwise.

Proof. By the Theorem 2.1, the trivial homomorphism is the only homomorphism from $M_{p^{\alpha}}$ to $M_{q^{\beta}}$, which is neither $1-1$ nor onto. So, assume that $p=q$. If $\alpha>\beta$, then there is no element in $M_{p^{\beta}}$ having order $p^{\alpha-1}$. Thus there is no monomorphisms in this case. Now, assume that $\alpha \leq \beta$. Then the homomorphisms $\rho\left(r_{\alpha}\right)=r_{\beta}^{k_{1}} f_{\beta}^{l_{1}}$, where $\left|r_{\beta}^{k_{1}}\right|=p^{\alpha-1}$ and $0 \leq l_{1}<p$, and $\rho\left(f_{\alpha}\right)=r_{\beta}^{k_{2} p^{\beta-2}} f_{\beta}^{l_{2}}, 0 \leq k_{2}<p$ and $0 \leq l_{2}<p$ obtained in the Theorem 2.1, preserve the order of r_{α} and f_{α}. And also $\left|r_{\alpha}^{k} f_{\alpha}^{l}\right|=\left|\rho\left(r_{\alpha}^{k} f_{\alpha}^{l}\right)\right|$. Hence there are $p\left(p^{2}-1\right) \phi\left(p^{\alpha-1}\right)=\left(p^{3}-p\right) p^{\alpha-2}$ number monomorphisms from $M_{p^{\alpha}}$ into $M_{p^{\beta}}$, if $\alpha \leq \beta$.
Suppose $\alpha<\beta$, then there is no epimorphism from $M_{p^{\alpha}}$ onto $M_{p^{\beta}}$. So, assume that $\alpha \geq \beta$. The the homomorphisms $\rho\left(r_{\alpha}\right)=r_{\beta}^{k_{1}} f_{\beta}^{l_{1}}$, where $\left|r_{\beta}^{k_{1}}\right|=p^{\beta-1}$ and $0 \leq l_{1}<p$, and $\rho\left(f_{\alpha}\right)=r_{\beta}^{k_{2} p^{\beta-2}} f_{\beta}^{l_{2}}, 0 \leq k_{2}<p$ and $0 \leq l_{2}<p$ obtained in the Theorem 2.1, are onto. Hence we get the result.

3. The Number of Homomorphisms From $M_{p^{\alpha}}$ into D_{n}

Theorem 3.1. Let $p \neq 2$ be a prime number and $\alpha>2$ be any positive integer. Then the number of homomorphisms from $M_{p^{\alpha}}$ into D_{n} is $p\left(\sum_{k \mid \operatorname{gcd}\left(n, p^{\alpha-1}\right)} \phi(k)\right)$, if n is a multiple of p; 1 , if n is not a multiple of p.

Proof. Suppose $\rho: M_{p^{\alpha}} \rightarrow D_{n}$ is a group homomorphism, where $p \neq 2$ and n is positive integer. Then $\left|\rho\left(r_{\alpha}\right)\right|$ must divide $\left|r_{\alpha}\right|=p^{\alpha-1}$ and $\left|\rho\left(f_{\alpha}\right)\right|$ must divide $\left|f_{\alpha}\right|=p$.
If n is not a multiple of p, this is possible only when $\rho\left(r_{\alpha}\right)=e$ and $\rho\left(f_{\alpha}\right)=e$ which gives the trivial homomorphism.
Next, we assume that n is a multiple of p. Then $\left|\rho\left(r_{\alpha}\right)\right|$ must be of the form $x_{n}^{k_{1}}$, where $\left|x_{n}^{k_{1}}\right|$ divides both n and $p^{\alpha-1}$ and $\left|\rho\left(f_{\alpha}\right)\right|$ must be of the form $x_{n}^{k_{2}}$, where $\left|x_{n}^{k_{1}}\right|$ divides p. Then $\rho\left(r_{\alpha}^{l} f_{\alpha}^{m}\right)=x_{n}^{l k_{1}+m k_{2}}$. Then $\left|\rho\left(r_{\alpha}^{l} f_{\alpha}^{m}\right)\right|$ divides $\left|r_{\alpha}^{l} f_{\alpha}^{m}\right|$, for every $0 \leq l<p^{\alpha-1}$ and $0 \leq m<p$. For suppose $\left|r_{\alpha}^{l}\right|=p^{\beta}, \beta \geq 1$, then $\left(x_{n}^{l k_{1}+m k_{2}}\right)^{p^{\beta}}=x_{n}^{l k_{1} p^{\beta}+m k_{2} p^{\beta}}=e$. That is $\left|x_{n}^{l k_{1}+m k_{2}}\right|$ divides p^{β}. Thus we have $p\left(\sum_{k \mid \operatorname{gcd}\left(n, p^{\alpha-1}\right)} \phi(k)\right)$ homomorphisms.
Theorem 3.2. Let n be a positive odd integer and $\alpha>3$ be any positive integer. Then the number of homomorphisms from $M_{2^{\alpha}}$ into D_{n} is $3 n+1$.

Proof. Suppose $\rho: M_{2^{\alpha}} \rightarrow D_{n}$ is a group homomorphism. Then $\left|\rho\left(r_{\alpha}\right)\right|$ must divide $\left|r_{\alpha}\right|=2^{\alpha-1}$ and $\left|\rho\left(f_{\alpha}\right)\right|$ must divide $\left|f_{\alpha}\right|=2$. Since n is odd, $\rho\left(r_{\alpha}\right)$ must be either e or $x_{n}^{k_{1}} y_{n}, 0 \leq k_{1}<n$, and $\rho\left(f_{\alpha}\right)$ must be either e or $x_{n}^{k_{2}} y_{n}, 0 \leq k_{2}<n$.
Suppose $\rho\left(r_{\alpha}\right)=e$ and $\rho\left(f_{\alpha}\right)=x_{n}^{k_{2}} y_{n}, 0 \leq k_{2}<n$. Then $\rho\left(r_{\alpha}^{l} f_{\alpha}\right)=x_{n}^{k_{2}} y_{n}$. Since $\left|x_{n}^{k_{2}} y_{n}\right|$ is $2,\left|\rho\left(r_{\alpha}^{l} f_{\alpha}\right)\right|$ divides $\left|r_{\alpha}^{l} f_{\alpha}\right|$. Thus we have n homomorphisms. Suppose $\rho\left(r_{\alpha}\right)=x_{n}^{k_{1}} y_{n}, 0 \leq k_{1}<n$ and $\rho\left(f_{\alpha}\right)=e$. Then $\rho\left(r_{\alpha}^{l} f_{\alpha}\right)=\left(x_{n}^{k_{1}} y_{n}\right)^{l}$. Since $\left|\left(x_{n}^{k_{1}} y_{n}\right)^{l}\right|$ is 1 or $2,\left|\rho\left(r_{\alpha}^{l} f_{\alpha}\right)\right|$ divides $\left|r_{\alpha}^{l} f_{\alpha}\right|$. Thus we have another n homomorphisms.

Suppose $\rho\left(r_{\alpha}\right)=x_{n}^{k_{1}} y_{n}, 0 \leq k_{1}<n$ and $\rho\left(f_{\alpha}\right)=x_{n}^{k_{2}} y_{n}, 0 \leq k_{2}<n$. Then $\rho\left(r_{\alpha}^{l} f_{\alpha}\right)=x_{n}^{k_{2}} y_{n}$ or $x_{n}^{k_{1}-k_{2}}$. Then ρ is a homomorphism only when $\left|x_{n}^{k_{1}-k_{2}}\right|$ divides $\left|r_{\alpha}^{l} f_{\alpha}\right|$. Since n is odd, this is possible only when $k_{1}-k_{2}=0$. Thus we have n such homomorphisms. Therefore, in addition to the trivial homomorphism, we have $3 n+1$ homomorphisms.

Theorem 3.3. Let n be a positive even integer and $\alpha>3$ be any positive integer. Then the number of homomorphisms from $M_{2^{\alpha}}$ into D_{n} is $4 n+(n+2)\left(\sum_{k \mid \operatorname{gcd}\left(n, 2^{\alpha-1}\right)} \phi(k)\right)$.

Proof. Suppose $\rho: M_{2^{\alpha}} \rightarrow D_{n}$ is a group homomorphism. Then $\rho\left(r_{\alpha}\right)$ must be either $x_{n}^{k_{1}} y_{n}, 0 \leq k_{1}<n$ or $x_{n}^{k_{2}}$, where $\left|x_{n}^{k_{2}}\right|$ divides both n and $2^{\alpha-1}$, and $\rho\left(f_{\alpha}\right)$ must be one of $e, x_{n}^{\frac{n}{2}}$ or $x_{n}^{k_{3}} y_{n}, 0 \leq k_{3}<n$.
As in the proof of the Theorem 3.2, $\rho\left(r_{\alpha}\right)=x_{n}^{k_{1}} y_{n}, 0 \leq k_{1}<n$ and $\rho\left(f_{\alpha}\right)=e$ is a homomorphism. Suppose $\rho\left(f_{\alpha}\right)=x_{n}^{\frac{n}{2}}$, then $\rho\left(r_{\alpha}^{l} f_{\alpha}\right)=x_{n}^{k_{1}-\frac{n}{2}} y_{n}$ or $x_{n}^{\frac{n}{2}}$. Then $\left|\rho\left(r_{\alpha}^{l} f_{\alpha}\right)\right|$ divides $\left|r_{\alpha}^{l} f_{\alpha}\right|$. Thus we have $2 n$ homomorphisms.

Suppose $\rho\left(r_{\alpha}\right)=x_{n}^{k_{1}} y_{n}, 0 \leq k_{1}<n$ and $\rho\left(f_{\alpha}\right)=x_{n}^{k_{3}} y_{n}, 0 \leq k_{3}<n$. As in the proof of Theorem 3.2, ρ is a homomorphism only when $\left|x_{n}^{k_{1}-k_{3}}\right|$ divides $\left|r_{\alpha}^{l} f_{\alpha}\right|$. This is possible if $k_{1}-k_{2}=0$ or $\frac{n}{2}$. Thus we have another $2 n$ homomorphisms in this case.

Suppose $\rho\left(r_{\alpha}\right)=x_{n}^{k_{2}}$, where $\left|x_{n}^{k_{2}}\right|$ divides both n and $2^{\alpha-1}$, and $\rho\left(f_{\alpha}\right)=e$. Then $\rho\left(r_{\alpha}^{l} f_{\alpha}\right)=x_{n}^{l k_{2}}$. Since $\left|x_{n}^{k_{2}}\right|$ divides $\left|r_{\alpha}\right|$, $\left|x_{n}^{l k_{2}}\right|$ divides $\left|r_{\alpha}^{l}\right|=\left|r_{\alpha}^{l} f_{\alpha}\right|$. Thus we have $\left(\sum_{k \mid \operatorname{gcd}\left(n, 2^{\alpha-1}\right)} \phi(k)\right)$ homomorphisms. Suppose $\rho\left(r_{\alpha}\right)=x_{n}^{k_{2}}$, where $\left|x_{n}^{k_{2}}\right|$ divides both n and $2^{\alpha-1}$, and $\rho\left(f_{\alpha}\right)=x_{n}^{\frac{n}{2}}$, then $\rho\left(r_{\alpha}^{l} f_{\alpha}\right)=x_{n}^{l k_{2}+\frac{n}{2}}$. This gives another $\left(\sum_{k \mid \operatorname{gcd}\left(n, 2^{\alpha-1}\right)} \phi(k)\right)$ homomorphisms. Suppose $\rho\left(r_{\alpha}\right)=x_{n}^{k_{2}}$, where $\left|x_{n}^{k_{2}}\right|$ divides both n and $2^{\alpha-1}$, and $\rho\left(f_{\alpha}\right)=x_{n}^{k_{3}} y_{n}, 0 \leq k_{3}<n$. Then $\rho\left(r_{\alpha}^{l} f_{\alpha}\right)=x_{n}^{l k_{2}+k_{3}}$. Since $\left|\rho\left(r_{\alpha}^{l} f_{\alpha}\right)\right|$ divides $\left|r_{\alpha}^{l} f_{\alpha}\right|$, we have $n\left(\sum_{k \mid \operatorname{gcd}\left(n, 2^{\alpha-1}\right)} \phi(k)\right)$ homomorphisms. Hence we get the result.

Corollary 3.1. Let n be a positive even integer and $\alpha>2$ be any positive integer. Then there is no monomorphism and epimorphism from $M_{p^{\alpha}}$ into D_{n}.

Proof. Suppose $p \neq 2$, then the group $M_{p^{\alpha}}$ contains $p(p-1)$ elements having order p but D_{n} contains atmost $p-1$ elements having order p. And $M_{2^{\alpha}}$ contains 4 elements having order 4 but D_{n} contains atmost 2 elements having order 4 . Thus there is no monomorphism from $M_{p^{\alpha}}$ into D_{n}. Also we can verify that the homomorphisms obtained in the Theorem 3.3, are not onto.

4. The Number of Homomorphisms From $M_{p^{\alpha}}$ into Q_{m}

Theorem 4.1. Let $p \neq 2$ be a prime number and $\alpha>2$ be any positive integer. Then the number of homomorphisms from $M_{p^{\alpha}}$ into Q_{m} is $p\left(\sum_{k \mid \operatorname{gcd}\left(n, p^{\alpha-1}\right)} \phi(k)\right)$, if n is a multiple of p; 1, if n is not a multiple of p.
Proof. The proof is similar to the Theorem 3.1

Theorem 4.2. Let m be a positive integer and $\alpha>2$. Then the number of homomorphisms from $M_{2^{\alpha}}$ into Q_{m} is $4 m+2\left(\sum_{k \mid \operatorname{gcd}\left(2 m, 2^{\alpha-1}\right)} \phi(k)\right)$

Proof. Suppose $\rho: M_{2^{\alpha}} \rightarrow Q_{m}$ is a group homomorphism. Then $\left|\rho\left(r_{\alpha}\right)\right|$ divides $\left|r_{\alpha}\right|=2^{\alpha-1}$ and $\left|\rho\left(f_{\alpha}\right)\right|$ divides $\left|f_{\alpha}\right|=2$. Then $\rho\left(r_{\alpha}\right)$ is either $a_{m}^{k_{1}}$, where $\left|a_{m}^{k_{1}}\right|$ divides both $2 m$ and $2^{\alpha-1}$, or $a_{m}^{k_{2}} b_{m}, 0 \leq k_{2}<2 m$ and $\rho\left(f_{\alpha}\right)=e$ or a_{m}^{m}.

Assume that $\rho\left(r_{\alpha}\right)=a_{m}^{k_{1}}$, where $\left|a_{m}^{k_{1}}\right|$ divides both $2 m$ and $2^{\alpha-1}$. Suppose $\rho\left(f_{\alpha}\right)=e$. Then $\rho\left(r_{\alpha}^{l} f_{\alpha}\right)=a_{m}^{l k_{1}}$. Since $\left|a_{m}^{k_{1}}\right|$ divides $\left|r_{\alpha}\right|,\left|a_{m}^{l k_{1}}\right|$ divides $\left|r_{\alpha}^{l}\right|=\left|r_{\alpha}^{l} f_{\alpha}\right|$. Thus we have $\left(\sum_{k \mid \operatorname{gcd}\left(2 m, 2^{\alpha-1}\right)} \phi(k)\right)$ homomorphisms. Suppose $\rho\left(f_{\alpha}\right)=a_{m}^{m}$, then $\rho\left(r_{\alpha}^{l_{1}} f_{\alpha}\right)=a_{m}^{l_{1} k+m}, 0 \leq l_{1}<2^{\alpha-1}$. Thus we have $\left(\sum_{k \mid \operatorname{gcd}\left(2 m, 2^{\alpha-1}\right)} \phi(k)\right)$ homomorphisms.
Suppose $\rho\left(r_{\alpha}\right)=a_{m}^{k_{2}} b_{m}, 0 \leq k_{2}<2 m$ and $\rho\left(f_{\alpha}\right)=e$, then $\rho\left(r_{\alpha}^{l} f_{\alpha}\right)=\left(a_{m}^{k_{2}} b_{m}\right)^{l}$. Since $\left|\left(a_{m}^{k_{2}} b_{m}\right)^{l}\right|=1,2$ or 4 , then $\left|\rho\left(r_{\alpha}^{l} f_{\alpha}\right)\right|$ divides $\left|r_{\alpha}^{l} f_{\alpha}\right|$, for each $l, 0 \leq l<2^{\alpha-1}$. Suppose $\rho\left(f_{\alpha}\right)=a_{m}^{m}$, then $\rho\left(r_{\alpha}^{l} f_{\alpha}\right)=\left(a_{m}^{k_{2}} b_{m}\right)^{l} a_{m}^{m}$ is one of $a_{m}^{m}, a_{m}^{k_{2}-m} b_{m}$, e or $a_{m}^{k_{2}} b_{m}$. Then $\left|\rho\left(r_{\alpha}^{l} f_{\alpha}\right)\right|$ divides $\left|r_{\alpha}^{l} f_{\alpha}\right|$. Thus we have $4 m$ homomorphisms in this case. Hence we get the result.

Corollary 4.1. Let m be a positive integer and $\alpha>2$. Then there is no monomorphism and epimorphisms from $M_{p^{\alpha}}$ into Q_{m}.

Proof. If $p \neq 2$, then the trivial homomorphism is the only homomorphism from $M_{p^{\alpha}}$ into Q_{m}, which is neither 1-1 nor onto. So, assume that $p=2$. Since $M_{p^{\alpha}}$ has 2 elements of order 2 . But Q_{m} have only one element of order 2 . Thus there is no monomorphism from $M_{2^{\alpha}}$ into Q_{m}.

Also, we can verify that none of the homomorphisms obtained in the proof of Theorem 4.2 generate all the elements of Q_{m}. Hence there is no epimorphism from $M_{p^{\alpha}}$ onto Q_{m}.

5. The Number of Homomorphisms From $M_{p^{\beta}}$ into $Q D_{2^{\alpha}}$

Theorem 5.1. Let $p \neq 2$ be a prime number. Then there is only the trivial homomorphism from $M_{p^{\beta}}$ into $Q D_{2^{\alpha}}$.
Proof. Suppose $\rho: M_{p^{\beta}} \rightarrow Q D_{2^{\alpha}}$ is a group homomorphism. Then $\left|\rho\left(r_{\beta}\right)\right|$ divides $\left|r_{\beta}\right|=p^{\beta-1}$ and $\left|\rho\left(f_{\beta}\right)\right|$ divides $\left|f_{\beta}\right|=p$. That is the trivial homomorphism is the only homomorphism exist from $M_{p^{\beta}}, p \neq 2$ into $Q D_{2^{\alpha}}$.

Theorem 5.2. Suppose $\alpha, \beta>3$ are two positive integers. Then the number of homomorphisms from $M_{2^{\beta}}$ into $Q D_{2^{\alpha}}$ is $2^{\alpha}+\left(2+2^{\alpha-1}\right)\left(\sum_{k \mid \operatorname{gcd}\left(2^{\alpha-1}, 2^{\beta-1}\right)} \phi(k)\right)$

Proof. Suppose $\rho: M_{2^{\beta}} \rightarrow Q D_{2^{\alpha}}$ is a group homomorphism. Then $\left|\rho\left(r_{\beta}\right)\right|$ divides $\left|r_{\beta}\right|=2^{\beta-1}$ and $\left|\rho\left(f_{\beta}\right)\right|$ divides $\left|f_{\beta}\right|=2$. That is, $\rho\left(r_{\beta}\right)$ is either s_{α}^{k}, where $\left|s_{\alpha}^{k}\right|$ divides both $2^{\alpha-1}$ and $2^{\beta-1}$ or $\rho\left(r_{\beta}\right)=s_{\alpha}^{k_{1}} t_{\alpha}, 0 \leq k_{1}<2^{\alpha-1}$, and $\rho\left(f_{\beta}\right)$ is one of e, $s_{\alpha}^{2^{\alpha-2}}$ or $s_{\alpha}^{m} t_{\alpha}, 0 \leq m<2^{\alpha-1}$ where m is even.

Suppose $\rho\left(r_{\beta}\right)=s_{\alpha}^{k}$, where $\left|s_{\alpha}^{k}\right|$ divides both $2^{\alpha-1}$ and $2^{\beta-1}$. First assume that $\rho\left(f_{\beta}\right)=e$. Then $\rho\left(r_{\beta}^{l} f_{\beta}\right)=s_{\alpha}^{l k}$. Since $\left|s_{\alpha}^{k}\right|$ divides $\left|\rho\left(r_{\beta}\right)\right|,\left|s_{\alpha}^{k}\right|$ divides $\left|r_{\beta}^{l}\right|=\left|r_{\beta}^{l} f_{\beta}\right|$. Thus in the case, we have $\left(\sum_{k \mid \operatorname{gcd}\left(2^{\alpha-1}, 2^{\beta-1}\right)} \phi(k)\right)$ homomorphisms. Now, suppose $\rho\left(f_{\beta}\right)=s_{\alpha}^{2^{\alpha-2}}$. Then $\rho\left(r_{\beta}^{l} f_{\beta}\right)=s_{\alpha}^{l k+2^{\alpha-2}}$ for each k, this ρ is a homomorphism. Thus we have another $\left(\sum_{k \mid \operatorname{gcd}\left(2^{\alpha-1}, 2^{\beta-1}\right)} \phi(k)\right)$ homomorphisms.
Suppose $\rho\left(r_{\beta}\right)=s_{\alpha}^{k}$, where $\left|s_{\alpha}^{k}\right|$ divides both $2^{\alpha-1}$ and $2^{\beta-1}$, and $\rho\left(f_{\beta}\right)=s_{\alpha}^{m} t_{\alpha}, 0 \leq m<2^{\alpha-1}$ and m is even. Then $\rho\left(r_{\beta}^{l} f_{\beta}\right)=$ $s_{\alpha}^{l k+m} t_{\alpha}$. Since $\left|s_{\alpha}^{l k+m} t_{\alpha}\right|=2$ or $4,\left|\rho\left(r_{\beta}^{l} f_{\beta}\right)\right|$ divides $\left|r_{\beta}^{l} f_{\beta}\right|$. Thus we have $2^{\alpha-2}\left(\sum_{k \mid \operatorname{gcd}\left(2^{\alpha-1}, 2^{\beta-1}\right)} \phi(k)\right)$ homomorphisms. Suppose $\rho\left(r_{\beta}\right)=s_{\alpha}^{k_{1}} t_{\alpha}, 0 \leq k_{1}<2^{\alpha-1}$ and $\rho\left(f_{\beta}\right)=e$, then $\rho\left(r_{\beta}^{l} f_{\beta}\right)=\left(s_{\alpha}^{k_{1}} t_{\alpha}\right)^{l}$. Since $\left|\left(s_{\alpha}^{k_{1}} t_{\alpha}\right)^{l}\right|=1$ or 2 or 4 which divides $\left|\rho\left(r_{\beta}^{l} f_{\beta}\right)\right|=\left|r_{\beta}^{l}\right|$. Thus we have $2^{\alpha-1}$ homomorphisms.
Similarly $\rho\left(r_{\beta}\right)=s_{\alpha}^{k_{1}} t_{\alpha}, 0 \leq k_{1}<2^{\alpha-1}$ and $\rho\left(f_{\beta}\right)=s_{\alpha}^{2^{\alpha-2}}$ are also homomorphisms. Thus we have another $2^{\alpha-1}$ homomorphisms.

Suppose $\rho\left(r_{\beta}\right)=s_{\alpha}^{k_{1}} t_{\alpha}, 0 \leq k_{1}<2^{\alpha-1}$ and $\rho\left(f_{\beta}\right)=s_{\alpha}^{k_{2}} t_{\alpha}, 0 \leq k_{2}<2^{\alpha-1}$ and k_{2} is even. Then $\rho\left(r_{\beta}^{l} f_{\beta}\right)=\left(s_{\alpha}^{k_{1}} t_{\alpha}\right)^{l}\left(s_{\alpha}^{k_{2}} t_{\alpha}\right)$. If l is even, $\rho\left(r_{\beta}^{l} f_{\beta}\right)=s_{\alpha}^{k_{1} 2^{\alpha-2}+k_{2}} t_{\alpha}$ or $s_{\alpha}^{k_{2}} t_{\alpha}$. That is $\left|\rho\left(r_{\beta}^{l} f_{\beta}\right)\right|$ divides $\left|r_{\beta}^{l} f_{\beta}\right|$. If l is odd, $\left|r_{\beta}^{l} f_{\beta}\right|=2^{\beta-1}$ and $\rho\left(r_{\beta}^{l} f_{\beta}\right)=$
$s_{\alpha}^{k_{1}+k_{2}\left(2^{\alpha-2}-1\right)}$ or $s_{\alpha}^{k_{1} 2^{\alpha-2}+k_{1}} s_{\alpha}^{k_{2}\left(2^{\alpha-2}-1\right)}$. If ρ is a homomorphism, then $\left|s_{\alpha}^{k_{1}-k_{2}}\right|$ divides $2^{\beta-1}$. That is, for each k_{2}, we have to choose k_{1} such that $\left|s_{\alpha}^{k_{1}-k_{2}}\right|$ divides $2^{\beta-1}$. Therefore, for each k_{2}, we have $\left(\sum_{k \mid \operatorname{gcd}\left(2^{\alpha-1}, 2^{\beta-1}\right)} \phi(k)\right)$ choices for k_{1}. Thus we have $2^{\alpha-2}\left(\sum_{k \mid \operatorname{gcd}\left(2^{\alpha-1}, 2^{\beta-1}\right)} \phi(k)\right)$ homomorphisms. Hence we get the result.

Corollary 5.1. Let p be a prime number and $\alpha, \beta>3$. Then there is no monomorphism and epimorphism from $M_{p^{\beta}}$ into $Q D_{2}$.

Proof. Suppose $p \neq 2$, then by the Theorem 5.1, the trivial homomorphism is the only homomorphism from $M_{p^{\beta}}$ into $Q D_{2^{\alpha}}$, which is not $1-1$. So, assume that $p=2$. If $\beta>\alpha$, then there is no element in $Q D_{2^{\alpha}}$ having order $2^{\beta-1}$, thus we have no monomorphism from $M_{2^{\beta}}$ into $Q D_{2^{\alpha}}$. Suppose $\beta \leq \alpha, \rho\left(r_{\beta}\right)=s_{\alpha}^{k}$, where $\left|s_{\alpha}^{k}\right|=2^{\beta-1}$ and $\rho\left(f_{\beta}\right)=s_{\alpha}^{m} t_{\alpha}, 0 \leq m<2^{\alpha-1}$ is the homomorphism which preserve the order of r_{β} and f_{β}. Then $\rho\left(r_{\beta} f_{\beta}\right)=s_{\alpha}^{k+m} t_{\alpha} .\left|r_{\beta} f_{\beta}\right|=2^{\alpha-1}$ but $\left|s_{\alpha}^{k+m} t_{\alpha}\right|=2$ or 4. Thus this ρ is not a monomorphism. Also, we can verify that the homomorphisms obtained in the Theorem 5.2 are not onto.

References

[1] M.Bate, The number of homomorphisms from finite groups to classical groups, J. Algebra, 308(2007), 612-628
[2] J.A.Gallian and J.Van Buskirk, The number of homomorphisms from \mathbb{Z}_{m} into \mathbb{Z}_{n}, Amer. Math. Monthly, 91(1984), 196-197.
[3] J.A.Gallian and D.S.Jungreis, Homomorphisms from $\mathbb{Z}_{m}[i]$ into $\mathbb{Z}_{n}[i]$ and $\mathbb{Z}_{m}[\rho]$ into $\mathbb{Z}_{n}[\rho]$, where $i^{2}+1=0$ and $\rho^{2}+\rho+1=0$, Amer. Math. Monthly, 95(1988), 247-249.
[4] Jeremiah Johnson, The number of group homomorphisms from D_{m} into D_{n}, The College Mathematics Journal, 44(2013), 190-192.
[5] D.Matei and A.Suciu, Counting homomorphisms onto finite solvable groups, J. Algebra, 286(2005), 161-186.
[6] R.Rajkumar, M.Gayathri, T.Anitha, The number of homomorphisms from dihedral groups in to some finite groups, Mathematical Sciences International Research Journal, 4(2015), 161-165.
[7] R.Rajkumar, M.Gayathri, T.Anitha, The number of homomorphisms from quaternion groups in to some finite groups, International Journal of Mathematics And its Applications, 3(3-A)(2015), 23-30.
[8] R.Rajkumar, M.Gayathri, T.Anitha, Counting homomorphisms from quasi-dihedral groups in to some finite groups, International Journal of Mathematics And its Applications, 3(3-B)(2015), 9-13.

[^0]: Abstract: We derive general formulae for counting the number of homomorphisms from modular group into each of modular group, dihedral group, quaternion group and quasi-dihedral group by using only elementary group theory.

 MSC: 20K30.

[^1]: * E-mail: rrajmaths@yahoo.co.in

