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1. Introduction

Enumeration of homomorphisms between two groups or rings is a basic problem in abstract algebra. For instance, in [2] and
[3], this problem was settled in the case of finite cyclic groups and specific type of rings respectively by using only elementary
methods. But in general counting homomorphisms between groups needs advanced tools of algebra; see, for instance [1, 5].
So in [4] Jeremiah Johnson, described a method of enumerating homomorphisms between two specified dihedral groups
by using only elementary methods. Now we consider dihedral group, quaternion group, quasi-dihedral group and modular
group. In [6], [7] and [8] authors give the enumeration of homomorphisms, monomorphisms and epimorphisms from each of
dihedral group, quaternion group and quasi-dihedral group into each of these four groups respectively by using elementary
techniques. In this paper, we consider the problem of enumerating the homomorphisms, monomorphisms and epimorphisms
from a modular group into each of these four groups by using elementary methods.

We use the following notations in this paper: for a positive integer n > 1, the dihedral group D, := (Zn,yn | T = € =
Y2, TnYn = Yty '); and for a positive integer m > 1, the quarternion group Qm = {@m, bm | 62" = € = b, ambm = bmay');
and for a positive integer a > 3, the quasi-dihedral group QDzo = (sa,ta | 5(2;71 =e=12,ta8a = siaﬁ_lta); and for a

B—1 B—2
positive integer 8 > 2, the modular group Ms := (rs, fs | 7~ =e= f§, farg =1} T 15).

2. The Number of Homomorphisms From M« into M

Theorem 2.1. Let o, 8 > 3 be any two positive integers. Then the number of homomorphisms from Mpe into Ms is

»’ > o(k) |, ifp=a; 1, if p#q.

k| ged(p>—1,pf—1)
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Proof.  Suppose p : Mpe — M s is a group homomorphism. Then |p(rq)| must divide |ra| = p* ! and |p(fa)| must divide
|fal =p-

Suppose p # g, this is possible only when p(rs) = e and p(fo) = e which gives the trivial homomorphism.

Suppose p = ¢, then p(ro) must be of the form 7‘;1 gz, where |r§1| divides both p*~* and p?~! and 0 < ks < p and p(fa)
must be of the form rj*! f7**, where [r;"!| divides p and 0 < m2 < p. Then by simple calculation, we can verify that lp(rl fo)

divides |, fa|. Since p(ra) has p Z #(k) | choices and p(fa) has p? choices , we get the result. O
k| ged(pe—1,pF—1)

Corollary 2.1. Let o > 2 be any positive integer. Then the number of monomorphism from Mpe into M s is (p3 —p)po‘72,

if p=q and a < B; 0, otherwise. The number of epimorphisms from Mpe onto M s is »* —p)pﬁfz, ifp=gqand o> B; 0,

otherwise.

Proof. By the Theorem 2.1, the trivial homomorphism is the only homomorphism from Mpa to M s, which is neither
1 — 1 nor onto. So, assume that p = g. If @ > j, then there is no element in M,s having order p*~!. Thus there is no
monomorphisms in this case. Now, assume that o < 8. Then the homomorphisms p(r.) = 7"21 f;;, where |r§1| =p®~ 1 and
0<!l; <p,and p(fa) = r’;”’ﬁdfff,o < ke < pand 0 < [y < p obtained in the Theorem 2.1, preserve the order of r, and
fo. And also |rE fL| = |p(rE f1)|. Hence there are p(p® — 1)¢(p>~*) = (p* — p)p®~2 number monomorphisms from My« into
M,s, if a < 8.

Suppose o < 3, then there is no epimorphism from Mpe onto M,s . So, assume that o > 8. The the homomorphisms

5

2
p(ra) = rglfll, where |r§1| =p’and 0 <y < p, and p(fa) = r;“’ le,O < k2 < pand 0 < Iz < p obtained in the

Theorem 2.1, are onto. Hence we get the result. O

3. The Number of Homomorphisms From M. into D,

Theorem 3.1. Let p # 2 be a prime number and o > 2 be any positive integer. Then the number of homomorphisms from

Mpe into Dy is p Z o(k) |, if n is a multiple of p; 1, if n is not a multiple of p.
k| ged(n,p>—1)

Proof. Suppose p : Mpa — D, is a group homomorphism, where p # 2 and n is positive integer. Then |p(r4 )| must divide
[ro| = p*~ ! and |p(fa)| must divide |fo| = p.

If n is not a multiple of p, this is possible only when p(r.) = e and p(fo) = e which gives the trivial homomorphism.

Next, we assume that n is a multiple of p. Then |p(r)| must be of the form z¥!, where |z%1| divides both n and p*~! and

|p(fo)| must be of the form z¥2, where |z¥!| divides p. Then p(rl f7*) = al¥1+™*2 Then |p(rl f7)| divides |rh f7|, for every

B B

B
— wﬁﬁp +mkap

0<!<p*?!and 0<m < p. Forsuppose |rh| = p®, 8 > 1, then (ztF1+mhr2)r = e. That is |zlFrTmFk2|

divides p®. Thus we have p Z ¢(k) | homomorphisms. O

k| ged(n,pa—1)
Theorem 3.2. Letn be a positive odd integer and o > 3 be any positive integer. Then the number of homomorphisms from

Msa into D, is 3n + 1.

Proof.  Suppose p: Maa — D, is a group homomorphism. Then |p(r4)| must divide |ro| = 2*7% and |p(fa)| must divide
|fo| = 2. Since n is odd, p(ra) must be either e or %1y, 0 < k1 < n, and p(f.) must be either e or z¥2y,, 0 < ks < n.

Suppose p(ro) = € and p(fo) = zR2y,, 0 < k2 < n. Then p(rh fo) = %2y,. Since |zF2y,| is 2, |p(rh fa)| divides |4 fal.
Thus we have n homomorphisms. Suppose p(ra) = Try,, 0 < ki < n and p(fa) = e. Then p(rhfa) = (zF1y,)". Since

[(zFry,)! is 1 or 2, |p(rh fo)| divides |rh fo|. Thus we have another n homomorphisms.
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Suppose p(re) = :c,’ilyn, 0 < ki <mnand p(fa) = mfﬁym 0 < ks < n. Then p(réfa) = :c,’i’“yn or z¥17%2 Then pis a

homomorphism only when |z%1=*2| divides |rl, fo|. Since n is odd, this is possible only when ki — ks = 0. Thus we have n

such homomorphisms. Therefore, in addition to the trivial homomorphism, we have 3n + 1 homomorphisms. (I

Theorem 3.3. Let n be a positive even integer and o > 3 be any positive integer. Then the number of homomorphisms

from Mao into Dy, is 4n + (n + 2) Z o(k)
k| ged(n,20—1)

Proof. Suppose p : Moo — D,, is a group homomorphism. Then p(r,) must be either My, 0 < ki < n or zF2, where
|¥2| divides both n and 27!, and p(f,) must be one of e, x§ or ¥y, 0 < ks <n.

As in the proof of the Theorem 3.2, p(r4) = %1y, 0 < k1 < n and p(f.) = e is a homomorphism. Suppose p(fo) = x?,
then p(rh fo) = xil_%yn or a,é Then |p(rl fo)| divides |}, fo|. Thus we have 2n homomorphisms.

Suppose p(ra) = 2K y,, 0 < k1 < n and p(fa) = z¥3y,, 0 < ks < n. As in the proof of Theorem 3.2, p is a homomorphism

only when [z} ~*#| divides |rl, fa|. This is possible if k1 — k2 = 0 or 2. Thus we have another 2n homomorphisms in this

case.

lko

Suppose p(rq) = k2, where |z52| divides both n and 2°~!, and p(fs) = e. Then p(rl fo) = z¥2. Since |zF?| divides |rq],

|ztk2| divides |rh | = |k fo| . Thus we have Z #(k) | homomorphisms. Suppose p(re) = 2£2, where |2F2| divides
k| ged(n,20—1)
a—1 _ 5 1 _ Mkt g S .
both n and 2°7°, and p(fa) = 2, then p(ry fa) = Tn . This gives another Z ¢(k) | homomorphisms.
k| ged(n,2271)
Suppose p(re) = %2, where |zF?| divides both n and 2*~!, and o) = 283y, 0 < ks < n. Then p(rl, fo) = z*2+%3 . Since
p P y P

lp(rL fo)| divides |7 fo|, we have n Z ¢(k) | homomorphisms. Hence we get the result. O
k| ged(n, 20— 1)

Corollary 3.1. Let n be a positive even integer and o« > 2 be any positive integer. Then there is no monomorphism and

epimorphism from Mpe into Dy,.

Proof. Suppose p # 2, then the group My contains p(p — 1) elements having order p but D,, contains atmost p — 1
elements having order p. And Masa contains 4 elements having order 4 but D,, contains atmost 2 elements having order 4.
Thus there is no monomorphism from My« into D,. Also we can verify that the homomorphisms obtained in the Theorem

3.3, are not onto. O

4. The Number of Homomorphisms From M. into @,

Theorem 4.1. Let p # 2 be a prime number and o > 2 be any positive integer. Then the number of homomorphisms from

Mye into Qm is p Z o(k) |, if n is a multiple of p; 1, if n is not a multiple of p.
k| ged(n,p>—1)

Proof.  The proof is similar to the Theorem 3.1 O

Theorem 4.2. Let m be a positive integer and o > 2. Then the number of homomorphisms from Maa into Qm is

4m + 2 > o(k)

k| ged(2m,20—1)
Proof.  Suppose p : Maa — Q. is a group homomorphism. Then |p(rq)| divides |ro| = 2°7! and |p(fa)| divides |fa| = 2.

Then p(rq) is either a¥!, where |a%1| divides both 2m and 2°71, or a®2b,,, 0 < k2 < 2m and p(fa) = e or all.
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Assume that p(ro) = akl, where |a¥!| divides both 2m and 2*~!. Suppose p(fo) = e. Then p(r fo) = atf1. Since |akl|

divides |rq|, |a!®t| divides |r| = |r) fa|. Thus we have Z ¢(k) | homomorphisms. Suppose p(fa) = aq,, then
k| ged(2m,20—1)

p(rll fo) = altFt™ 0 <1y < 2°71. Thus we have Z ¢(k) | homomorphisms.

k| gcd(2m,20—1)
Suppose p(ra) = a®2by,, 0 < ko < 2m and p(fa) = e, then p(réfa) = (alf,%bm)l. Since |(af,§bm)l\ = 1,2 or 4, then |p(rflfa)|

divides |réfa|, for each 1,0 < 1 < 2*7'. Suppose p(fa) = a7, then p(rflfa) = (a’f,fbm)laﬁ is one of a™, ak27™b,,, e or

a*2b,,. Then |p(rl fo)| divides |rl fo|. Thus we have 4m homomorphisms in this case. Hence we get the result. O

Corollary 4.1. Let m be a positive integer and a > 2. Then there is no monomorphism and epimorphisms from Mpe into

Qm-

Proof. 1Ifp # 2, then the trivial homomorphism is the only homomorphism from Mpe into @, which is neither 1 — 1 nor
onto. So, assume that p = 2. Since Mpe has 2 elements of order 2. But @, have only one element of order 2. Thus there
is no monomorphism from Maa into Qp,.

Also, we can verify that none of the homomorphisms obtained in the proof of Theorem 4.2 generate all the elements of Q..

Hence there is no epimorphism from Mpe onto Qm. O

5. The Number of Homomorphisms From M,s into () Da.

Theorem 5.1. Let p # 2 be a prime number. Then there is only the trivial homomorphism from M, into QDae.

Proof.  Suppose p: M,s — QDao is a group homomorphism. Then |p(rs)| divides || = P71 and |p(fs)| divides | f5| = p.

That is the trivial homomorphism is the only homomorphism exist from M5, p # 2 into QD3 O

Theorem 5.2. Suppose a, B > 3 are two positive integers. Then the number of homomorphisms from Myps into QDaa is
2%+ (2+2°7) > (k)

klged(20—1,26-1)
Proof.  Suppose p: Mys — QDaa is a group homomorphism. Then |p(rs)| divides |rg| = 2°~% and |p(f5)| divides | f5| = 2.
That is, p(rg) is either s, where |s%| divides both 2°~! and 2°7! or p(rs) = s¥'ta,0 < k1 < 27!, and p(fs) is one of e,

a—2 — .
s2 or s™tq,0 < m < 27! where m is even.

Suppose p(rg) = sk, where |sf| divides both 27! and 2°~'. First assume that p(fs) = e. Then p(rhfs) = st¥. Since

|st| divides |p(rg)|, |sk| divides || = |rhfs|. Thus in the case, we have Z ¢(k) | homomorphisms.
k| ged(2—1,28-1)

Now, suppose p(fz) = siad. Then p(rlﬁf/;) = sla’“*'wi2 for each k, this p is a homomorphism. Thus we have another

Z ¢(k) | homomorphisms.
k| ged(22—1,26—1)
Suppose p(r5) = sk, where |sk| divides both 2%~ and 2°7", and p(fs) = s3'ta, 0 < m < 2" and m is even. Then p(rh fz) =

sHT ML, Since [s4Tta| = 2 or 4, |p(r f5)| divides |r} fs|. Thus we have 2072 Z ¢(k) | homomorphisms.
k| ged(20—1,28-1)
Suppose p(rs) = sk1ta,0 < k1 < 2°7" and p(fs) = e, then p(rhfs) = (sk'ta)". Since |(sE'ta)!| =1 or 2 or 4 which divides

|p(rh fa)| = |r5|. Thus we have 2*~' homomorphisms.

Similarly p(rg) = s51t4,0 < ki1 < 2°7% and p(f3) = s2*” are also homomorphisms. Thus we have another 2°~! homomor-
phisms.

Suppose p(r3) = silta,0 < k1 < 27" and p(fs) = $82ta,0 < k2 < 2%~ and ks is even. Then p(rhfs) = (sh'ta)' (sE2ta).

If [ is even, p(rhfs) = 5§12a72+k2ta or s¥2t,. That is |p(rhfs)| divides |rhfs|. If I is odd, |rhfs| = 2°7" and p(rhfs) =
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kitka(2272-1) k129 24k ko(2072
Sa Saf

or s R p is a homomorphism, then |s%1~*2| divides 2°~*. That is, for each k2, we have

to choose k; such that |sE1=*2| divides 2°~!. Therefore, for each k2, we have Z ¢(k) | choices for k1. Thus
k| ged(20—1,28-1)

we have 2% 72 Z ¢(k) | homomorphisms. Hence we get the result. O
k| ged(20—1,26-1)

Corollary 5.1. Let p be a prime number and o, 8 > 3. Then there is no monomorphism and epimorphism from M,s into

QDso.

Proof. Suppose p # 2, then by the Theorem 5.1, the trivial homomorphism is the only homomorphism from M,s into
Q Dy, which is not 1—1. So, assume that p = 2. If 3 > «, then there is no element in QDse having order 2°~!, thus we have
no monomorphism from M,s into @Daa. Suppose 3 < a, p(rg) = sk, where |s%| = 27 and p(fs) = s, 0 < m < 2071
is the homomorphism which preserve the order of 5 and fs. Then p(rgfs) = sEt™to. |rafs| = 2%~ but |s57t,| = 2 or
4. Thus this p is not a monomorphism. Also, we can verify that the homomorphisms obtained in the Theorem 5.2 are not

onto. o
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