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1. Introduction and Preliminaries

Several authors [1-7] have shown their interest in developing optimality conditions and duality results for minimax program-
ming problems. Ahmad & Husain [8] considered the following minimax programming problem

1/2
minsup f (z, y) + (xT B x)

yey
Subject to g (z) <0, x € R"
In this paper, we consider the following non differentiable minimax fractional programming problem (HFP)

. f (@) +y"h(z) /2
min 325 W + (xTB m)

Subject to h (z) <0, x € R™, where Y is a compact subset of R', f g: R® — R (g (z) > 0). h: R® — R™ are continuously
differentiable function at z € R™ and B is an n x n positive semidefinite symmetric matrix. In this paper, we formulate
a higher order fractional dual of (HFP) and establish weak, strong, and converse-duality theorems under higher order

(F, o, p, d)-Type-1 assumptions.

2. Notations and Preliminary Results

Definition 2.1. (f, g, hi) is said to be higher order (F, o, p, d) - Type I at T € X with respect to p € R" for all

z€Sandy, €Y (z),
f @) +7,hs(z) _ f (@) +7] hy (T)
g(z) - g(T)
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Definition 2.2. (f,g;) is said to be higher order (F, «, p, d) pseudo quasi type — I at x € X with respect to p € R™ if for
allze S andy, €Y (z).

f@) +ylh(z)  f@) +y) h;(T) N {pTv(f(f)wThj (f))j@
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i@ - 9@ @) Y (M> p}

g(T)

7Y, {pTv (f @) g+(§h(f)> N %pTvz <f @) ;gh (f)) p}
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g (T) g(T)

In the above definition, if

oY f (@) +§§-’hj (T)
g (%)

+1pTV2 ((f(f) Jr?Th(f)) P> 7Y, [pTV <f(f) +§Th(f)> n lpTvz (f(f) JF?Th(f)) p]

f@) +7 hs(z) _ f(@)+7] hy (T)

g (@) @

2 9(@) 9(T) 2 9()
Lemma 2.1 (Generalized schwartz Inequality). Let B be a positive semidefinite symmetric matriz of order n. Then for all

z, u € R",
T T 12/ 1/2
z Bu < (1: Bm) (u Bu)
We observe that equality holds if Bx = \Bu for some A\ > 0. If uT Bu < 1, we have T Bu < (xTBx) 1/2

Theorem 2.1 (Necessary conditions). If z* is a local or global solution of (HFP) satisfying «*" Bz* > 0 and if Vg; (%),j €

J (%) are linearly independent then there exist (s*,t*,5") € K, u* € R" and u* € R such that

thv (f (m*);_gi)h] (1:*)) + Bu * +ZVu;hj (z*)=0
i=1 j=1
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3. High Order Dual Problem

We formulate higher order dual
sup

Zt [%hl() {pTA (%W)

e (S5 e (235 e (2550) |

1 1
4Bt 3 Ly () s [0 9 () 4 30790, (p| =57V, s (5790 )+ 3V 0 )|}
J€jo
where H (s, t, §) denotes the set of all (z, u, u, p) € R" X R" x R} X R"

. . S z 7Thi z z hi(z
Satisfying Y ¢t:V, [pTV (7” )J;(y;) ( >) 15TV (7f( 1:”(';) ( ))p]
i=1

Bt YV, [uj <pTVh]- (2) + 5"V, (z)p)] ~0 (1)

j=1

Z {Mjhj (2) + (PTth (2) + %PTvzhj (Z)P) A (“j {pTth (2) + %pTV%j (Z)pD} =0
B=1,2 ..r )
u"Bu <1 ®3)

Theorem 3.1 (Weak duality). Let z and (z, u, u, s, t, g, p) be the feasible solutions of (HFP) and (HFD) respectively.

Suppose that |:Z t )Z?I) L0 O Bu+ X pih (), ZjeJﬁ ujh; () B=1, 2, ....,7‘] is higher order (F, «, p, d) pseu-

Jj€Jo
> % 12
doquasi Type I at z and 1(’; 5 + aﬁz(; 5 = 0. Theny e Y%)h(z) + (=" Bz)

S [FEFE i (T () e (FE) )} -

VY, {pTV (f( )J;(y;)h (= )) +%pTv2 (f( )Z(y;)h (z ))p} +2TBu
+ ) (hy (2) + [pTth (2) + %pTVth (Z)p} —p'V, (uj (pTth (2) + %pTV% (Z)p>> ,J€J,

J€Jo

For ally, €Y (x), i =1,2,...s. If follows from lemma 2.1 and (3) that

i z(f @)+, b (@) +a" Bu + Y iy (x)

i=1 9 (ZL‘) Jj€Jg

Yih(z) | 1o f(2) 4T h(z) 1 roaf(2)+7 h(2)
= Zt {7)” VT Tty 9(2) }p

Y (_pva(z) ;gh(z)) +%pTv<f( );(ZBM ?) >+ZTBu

+> (ug ) + 1 (pTth (2) + %pTVth (Z)) p) —p'V, (uj (pTVth (2) + %pTVzhj (Z)p>> (4)

Jj€Jo
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Also from (2) we have

1 1
- {ug 2) + <pTth (2) + 5P V°h; (Z)p> —p' Vp <uj (pTth (2) + 5P V°h; (Z)p)>} <0, 8=1,...,r (5)
jeJB

The higher order (F, a, p, d)pseudoquasi type — I assumption at z with (4) and (5), implies

F(x,z;al(w»{;tivp(v (Mz(iyjhﬁ) L ((fcz>+y?h ) >+ .

+ XV (10" V() + 3"V | < k@) @)

j€Jdo

Flz, 2o (z, 2) Z Vo (‘LL]‘ (pTth (2) + %pTVth (=) P)) < —ppd (x, 2),8=1,...,r

Jj€JB

By using ot (z, 2) >0, o (z, z) > 0 and the sublinearity of F in the above inequalities, we summarize to get

F(:r: =30y, (pTV (—f( 2) 19, hale )) + 2PV (—f ) Z(ZT)}’ (2)>p> + Bu

— g(2)

+§Vp (Mj (pTth (2) + %pTVth (z)p>) ) < 7% + Bi %f (z,2)

Since
s

Inequality (6) yields

F({E,Z;i:tivp <pTV (M+—W> + %pTvz <%§5}“(2)> p) + Bu

2 g9(2)
+ ml v, (uj (pthj (2) + %pTvzhj (Z)p)> ) <0

Jj=

Which contradicts (1) as F(x,z,0) = 0.

Theorem 3.2 (Strong duality). Let x* be an optimal solution of (HFP) and let Vh; (z*), j € J (z) be linearly independent.

z* 7T . x* 9:* 7T . x*
Assume that p* Vv <f();r&7ﬂ;“()) + LpTv? (%) p=0 forp=0.

- {pTV (f(m*) + 7 hi (w*)) L Lrge (f(x*) + 7 hi (w*)) p] _ oW @) +7 ki (@)
! g (z*) 2 g (z*) g (x*)
forp=01=1,2,...,s
p Vh; (z¥) + %pTV2hj (z)p=0 forp = 0

* 1 * * .
Vp [pTth (%) + §pTV2hj (z )p} =Vh;(z"), forp=0, j€J (7)

Then there exist (s*, t*, y*) € k and (z*, u*, u*, p*) € H (s*,t*,5") such that (z*, u*, p*, s*, t*, y*,p* = 0) is a feasible

solution of (HFD) and the two objectives have the same values. If the assumption of weak duality (Theorem 3.1) hold for all

feasible solutions of (HFP) and (HFD), then (x*, u*, u*, s*, t*, 3", p* = 0) is an optimal solution of (HFD).
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Proof.  Since z* is an optimal solution of (HFP) and Vh; (z*), j € J(z*) are linearly independent, by Theorem 2.1,

there exist (s*, t*, 7*) € K and (z*, u*,u*, p*) € H (s*, t*, ") such that

s* * =T . * m
S v (f(’f )+ bz )>+Bu*+ZVu§hj(:c*):0 (8)

i=1 9(@) =1
> Vushs (x) =0 9)

j=1
>0, i=1,...,5, Y ti=1, (10)
i=1

T Bu* <1, (11)
(z*T Bz*)"/? = 2T Bu* (12)

Thus the relations (8) to (11) along with (7) imply that (z*, u*, p*, s*, t*, ", p* = 0) is a feasible solution of (HFD). Also
(7), (9) and (12) with p* = 0 show the equality of objective values Optimality of (z*, u*, pu*, s*, t*, ¥*, p* = 0) thus follows

from weak duality theorem. O

4. Conclusion

The results appeared in this paper can be further generalized to the Non differentiable multi objective higher order fractional

programming under generalized convexity and generalized university assumption.
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